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We study a very general class of delayed reaction-diffusion equations in which the reaction term can be nonmonotone and spatially
nonlocal. By using a fluctuationmethod, combinedwith the careful analysis of the corresponding characteristic equations, we obtain
some sufficient conditions for the global asymptotic stability of the trivial solution and the positive steady state to the equations
subject to the Neumann boundary condition.

1. Introduction

There has been a growing interest in the dynamic behavior of
spatial nonlocal and time-delayed population systems since
the 1970s [1]. When the death function of such a system is
linear many researchers used the theory of monotone semi-
flows, the comparison arguments, and the fluctuationmethod
to study spreading speeds, traveling waves, and the global
stability (see, e.g., [2–10]). However, researches on these
problems become relatively rare for nonmonotone delayed
reaction-diffusion systems in which the death function is
nonlinear (see [11, 12]). The reason lies in the fact that it is
difficult to establish an appropriate expression for solutions
to study the solution semiflow under this case.

In this paper, we will investigate the global asymptotic
stability of the positive steady state for the following time-
delayed reaction-diffusion equation:

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝑓 (𝑤 (𝑡, 𝑥))

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(1)

where 𝑑 > 0, 𝛼 ≥ 0, 𝜏 ≥ 0, Δ denotes the Laplacian
operator on R𝑚, Ω is a bounded and open domain of R𝑚
with a smooth boundary 𝜕Ω, 𝜕/𝜕n is the differentiation in
the direction of the outward normal n to 𝜕Ω, and the kernel
function 𝑘(𝛼, 𝑥, 𝑦) is given by

𝑘 (𝛼, 𝑥, 𝑦) =

{{

{{

{

+∞

∑

𝑛=1

𝑒
−𝜆
𝑛
𝛼
𝜑
𝑛 (𝑥) 𝜑𝑛 (𝑦) , if 𝛼 > 0,

𝛿 (𝑥 − 𝑦) , if 𝛼 = 0.
(2)

Here, 0 = 𝜆
1
< 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ with lim

𝑛→∞
𝜆
𝑛
= +∞

is the eigenvalue of the linear operator −Δ subject to the
homogeneous Neumann boundary condition on 𝜕Ω, 𝜑

𝑛
is

the eigenvector corresponding to 𝜆
𝑛
, {𝜑
𝑛
}
+∞

𝑛=1
is a complete

orthonormal system in the space 𝐿2(Ω), 𝜑
1
(𝑥) > 0 for all 𝑥 ∈

Ω, and 𝛿(𝑥) is the Dirac function onR𝑚 [10, 13]. Throughout
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this paper, we assume that the functions 𝑓 and 𝑏 satisfy the
following.

(A1) 𝑏 : R+ → R+ is Lipschitz continuous with 𝑏(0) = 0
and 𝑏(0) > 0, and 𝑏(𝑤) ≤ 𝑏(0)𝑤 for all 𝑤 ≥ 0.

(A2) 𝑓(𝑤) = 𝑤𝑔(𝑤) for all 𝑤 ≥ 0, where 𝑔 : R+ → R+

is Lipschitz continuous with 𝑔(0) ≥ 0, 𝑔(𝑤) > 0, and
𝑔

(𝑤) ≥ 0 for all 𝑤 > 0.

(A3) There exists a positive number𝑀 such that, for all𝑤 >
𝑀, 𝑏(𝑤) < 𝑓(𝑤), where 𝑏(𝑤) = max

𝑢∈[0,𝑤]
𝑏(𝑢).

In the monotone case, where the function 𝑏(𝑤) increases
with 𝑤 > 0, Xu and Zhao [12] studied the global dynamics of
(1) and obtained some results on the uniqueness and global
attractivity of a positive steady state by using the theory
of monotone dynamical systems. In the case of 𝑓(𝑤) =
𝜇𝑤, Zhao [10] proved the global attractivity of the positive
constant equilibrium for (1) by using a fluctuation method of
Thieme and Zhao [14], where 𝜇 is a positive constant. In the
case where 𝑓(𝑤) = 𝜇𝑤 and 𝛼 = 0, Yi and Zou [7] proved the
global attractivity of the unique positive constant equilibrium
for (1) by combining a dynamical systems argument and
some subtle inequalities. In the case where Ω = [0, 𝐿] and
𝑓(𝑤) = 𝜇𝑤, (1) reduces to the equation derived in [3], where
the numerical solutions are considered. A global convergence
theorem was obtained in [11] for a special case of (1).

The aim of this paper is to establish some criteria to
guarantee the global asymptotic stability of the trivial solution
and the positive steady state for (1) by using a fluctuation
method, combined with the careful analysis of the corre-
sponding characteristic equations. The interesting thing is
that main results obtained in this paper extend the related
existing results.

The rest of this paper is organized as follows. We will
present some preliminary results in Section 2. Our main
results are presented and proved in Sections 3 and 4, wherewe
obtain sufficient conditions to ensure the global asymptotic
stability of the trivial solution and the positive steady state
for (1) in a nonmonotone case. In Section 5, we provide four
examples to illustrate the applicability of the main results.

2. Preliminaries

Firstly, we show that the kernel 𝑘(𝛼, 𝑥, 𝑦) in (2) enjoys the
following properties.

Lemma 1. For 𝛼 > 0, one has

(i) (𝜕/𝜕n)𝑘(𝛼, 𝑥, 𝑦)|
𝑥∈𝜕Ω
= (𝜕/𝜕n)𝑘(𝛼, 𝑥, 𝑦)|

𝑦∈𝜕Ω
= 0,

(ii) 0 < 𝑘(𝛼, 𝑥, 𝑦) ≤ 𝐶∗, for all 𝑥, 𝑦 ∈ Ω, where 𝐶∗ is a
positive constant depending only on𝑚 and Ω,

(iii) |𝜑
𝑛
(𝑥)| ≤ √𝐶∗ exp[(1/2)𝜆

𝑛
𝛼], for all 𝑥 ∈ Ω, 𝑛 =

1, 2, . . .,
(iv) ∫
Ω
𝑘(𝛼, 𝑥, 𝑦)𝑑𝑦 = 1, for all 𝑥 ∈ Ω.

Proof. The verification of (i) is straightforward and is thus
omitted. Part (ii) follows from [15, Lemma 3.2.1 andTheorem
4.4.6] since 𝑘(𝛼, 𝑥, 𝑦) is a heat kernel of the heat equation

(Δ − (𝜕/𝜕𝛼))𝑢(𝑥, 𝛼) = 0. Part (iii) follows from
𝑒
−𝜆
𝑛
𝛼
(𝜑
𝑛
(𝑥))
2
≤ 𝑘(𝛼, 𝑥, 𝑥) ≤ 𝐶

∗, for all 𝑥 ∈ Ω, 𝑛 = 1, 2, . . ..
And part (iv) follows from 𝜆

1
= 0, 𝜑

1
(𝑥) ≡ √1/mes(Ω),

and ∫
Ω
𝜑
𝑛
(𝑦)𝑑𝑦 = 0 for all 𝑛 = 2, 3, . . ., where mes(Ω) is the

measure ofΩ. The proof is completed.

Let X = 𝐶(Ω,R) and X+ = {𝜙 ∈ X | 𝜙(𝑥) ≥ 0, ∀𝑥 ∈ Ω}.
Then (X,X+) is a strongly ordered Banach space. It is well
known that the differential operator 𝐴 = 𝑑Δ generates a
𝐶
0-semigroup 𝑇(𝑡) on X. Moreover, the standard parabolic

maximum principle (see, e.g., [16, Corollary 7.2.3]) implies
that the semigroup 𝑇(𝑡) : X → X is strongly positive in
the sense that 𝑇(𝑡)(X+ \ {0}) ⊂ Int(X+), ∀𝑡 > 0.

Let Y = 𝐶([−𝜏, 0],X) and Y+ = 𝐶([−𝜏, 0],X+). For the
sake of convenience, we will identify an element 𝜙 ∈ Y as a
function from [−𝜏, 0] × Ω to R defined by 𝜙(𝑠, 𝑥) = 𝜙(𝑠)(𝑥),
and for each 𝑠 ∈ [−𝜏, 0], we regard 𝑓(𝜙(𝑠)) as a function on
Ω defined by 𝑓(𝜙(𝑠)) = 𝑓(𝜙(𝑠, ⋅)). For any function 𝑤(⋅) :
[−𝜏, 𝜎) → X, where 𝜎 > 0, we define 𝑤

𝑡
∈ Y , 𝑡 ∈ [0, 𝜎) by

𝑤
𝑡
(𝑠) = 𝑤(𝑡 + 𝑠), ∀𝑠 ∈ [−𝜏, 0]. Define 𝐹 : Y+ → X by

𝐹 (𝜙) (𝑥) = −𝑓 (𝜙 (0, 𝑥)) + ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝜙 (−𝜏, 𝑦)) 𝑑𝑦,

∀𝑥 ∈ Ω, 𝜙 ∈ Y
+
.

(3)

Then we can rewrite (1) as an abstract functional equation:

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐴𝑤 (𝑡) + 𝐹 (𝑤𝑡) , 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
.

(4)

Therefore, we can write (4) as an integral equation:

𝑤 (𝑡) = 𝑇 (𝑡) 𝜙 (0) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹 (𝑤𝑠) 𝑑𝑠, 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
,

(5)

whose solutions are called mild solutions for (1).
Since 𝑇(𝑡) : X → X is strongly positive, we have

lim
ℎ→0

+

dist (𝜙 (0) + ℎ𝐹 (𝜙) ,X+) = 0, ∀𝜙 ∈ Y+. (6)

By [17, Proposition 3 and Remark 2.4] (or [18, Corollary
8.1.3]), for each 𝜙 ∈ Y+, (1) has a unique noncontinuable
mild solution 𝑤(𝑡, 𝜙) with 𝑤

0
= 𝜙, and 𝑤(𝑡, 𝜙) ∈ X+ for all

𝑡 ∈ (0, 𝜎
𝜙
). Moreover, 𝑤(𝑡, 𝜙) is a classical solution of (1) for

𝑡 > 𝜏 (see [18, Corollary 2.2.5]).
By the same arguments as in the proof of [12, Theorems

2.1 and 3.1], we have the following two lemmas.

Lemma 2. Let (A1)–(A3) hold. Then, for each 𝜙 ∈ Y+,
a unique solution 𝑤(𝑡, 𝜙) of (1) globally exists on [−𝜏,∞),
lim sup

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) ≤ 𝑀 uniformly for 𝑥 ∈ Ω, and the

solution semiflow Φ(𝑡) = 𝑤
𝑡
(⋅) : Y+ → Y+, 𝑡 ≥ 0, admits

a connected global attractor.
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Lemma 3. Let (A1)–(A3) hold, and let 𝑤(𝑡, 𝑥, 𝜙) be the
solution of (1) with 𝜙 ∈ Y+. Then the following two statements
are valid.

(i) If 𝑏(0) < 𝑔(0), then for any 𝜙 ∈ Y+, we have
lim sup

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) = 0 uniformly for 𝑥 ∈ Ω.

(ii) If 𝑏(0) > 𝑔(0), then (1) admits at least one spatially
homogeneous steady state𝑤∗ ∈ (0,𝑀], and there exists
𝜂 > 0 such that for any𝜙 ∈ Y+ with𝜙(0, ⋅) ̸≡ 0wehave
lim inf

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) ≥ 𝜂 uniformly for 𝑥 ∈ Ω.

Note that in case (ii) above, the function 𝑆(𝑤) = 𝑏(𝑤) −
𝑓(𝑤) satisfies 𝑆(0) = 0, 𝑆(0) > 0, and 𝑆(𝑀) ≤ 0. Therefore,
there exists at least one positive number 𝑤∗ ∈ (0,𝑀] such
that 𝑆(𝑤∗) = 0, and hence, 𝑤∗ is a spatially homogeneous
steady state of (1).

3. Global Attractivity

In this section, we establish the global attractivity of the
positive and spatially homogeneous steady state𝑤∗ for (1) by
the fluctuation method used in [10, Theorem 3.1].

Motivated by [10, Section 3], we assume further that the
functions 𝑓(𝑤) and 𝑏(𝑤) satisfy the following.

(A4) 𝑏(0) > 𝑔(0), (𝑏(𝑤)/𝑓(𝑤)) is strictly decreasing for
𝑤 ∈ (0,𝑀], and 𝑓(𝑤) and 𝑏(𝑤) have the property (P)
that, for any 𝑢, V ∈ (0,𝑀] satisfying 𝑢 ≤ 𝑤∗ ≤ V,
𝑓(𝑢) ≥ 𝑏(V), and 𝑓(V) ≤ 𝑏(𝑢), we have 𝑢 = V.

Note that if 𝑏(𝑤) is nondecreasing for 𝑤 ∈ [0,𝑀], then
𝑓(𝑤) and 𝑏(𝑤) have the property (𝑃). Indeed, for any 0 < 𝑢 ≤
𝑤
∗
≤ V ≤ 𝑀 with 𝑓(𝑢) ≥ 𝑏(V) and 𝑓(V) ≤ 𝑏(𝑢), we have

𝑓 (𝑤
∗
) ≤ 𝑓 (V) ≤ 𝑏 (𝑢) ≤ 𝑏 (𝑤∗) ≤ 𝑏 (V) ≤ 𝑓 (𝑢) ≤ 𝑓 (𝑤∗) ,

(7)

which implies that 𝑢 = V = 𝑤∗. Combining this observation
and [10, Lemma 3.1] with 𝜇𝑤 replaced by 𝑓(𝑤), where 𝜇 > 0,
we then have the following result.

Lemma 4. Either of the following two conditions is sufficient
for the property (P) in condition (A4) to hold.

(P1) 𝑏(𝑤) is nondecreasing for 𝑤 ∈ [0,𝑀].

(P2) 𝑓(𝑤)𝑏(𝑤) is strictly increasing for 𝑤 ∈ (0,𝑀].

Now we are in a position to prove our main result in this
section.

Theorem 5. Assume that (A1)–(A4) hold, and let𝑤(𝑡, 𝑥, 𝜙) be
the solution of (1) with 𝜙 ∈ Y+. Then for any 𝜙 ∈ Y+ with
𝜙(0, ⋅) ̸≡ 0, we have lim

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) = 𝑤

∗ uniformly for
𝑥 ∈ Ω.

In order to prove Theorem 5, we will need the following
lemma.

Lemma 6. Assume that (A1)–(A3) hold, and let 𝑤(𝑡, 𝑥) ≡
𝑤(𝑡, 𝑥, 𝜙) be the solution of (1) with 𝜙 ∈ Y+. Then 𝑤(𝑡, 𝑥)
satisfies

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧) 𝑏 (𝑤 (𝑡−𝑠−𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠,

(8)

where 𝛾 = max
𝑤∈[0,𝑀]

𝑓

(𝑤) and the kernel function 𝑘 is given

in (2).

Proof. Let

𝐻(𝑡, 𝑥) ≡ 𝛾𝑤 (𝑡, 𝑥) − 𝑓 (𝑤 (𝑡, 𝑥))

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦.

(9)

Since X ⊂ 𝐿2(Ω), for each 𝑡 ≥ 0, there exist real numbers
𝑎
𝑛
(𝑡) and 𝑏

𝑛
(𝑡), 𝑛 = 1, 2, . . ., such that

𝑤 (𝑡, 𝑥) =

+∞

∑

𝑛=1

𝑎
𝑛 (𝑡) 𝜑𝑛 (𝑥) , (10)

𝐻(𝑡, 𝑥) =

+∞

∑

𝑛=1

𝑏
𝑛 (𝑡) 𝜑𝑛 (𝑥) . (11)

Therefore, by (10), (11), and (1), we have

𝑎
𝑛 (0) = ∫

Ω

𝜙 (0, 𝑦) 𝜑
𝑛
(𝑦) 𝑑𝑦,

𝑏
𝑛 (𝑠) = ∫

Ω

𝐻(𝑠, 𝑦) 𝜑
𝑛
(𝑦) 𝑑𝑦,

(12)

𝑑𝑎
𝑛 (𝑡)

𝑑𝑡
= − (𝑑𝜆

𝑛
+ 𝛾) 𝑎

𝑛 (𝑡) + 𝑏𝑛 (𝑡) , 𝑛 = 1, 2, . . . . (13)

By using the variation of constants method, we obtain

𝑎
𝑛 (𝑡) = [𝑎𝑛 (0) + ∫

𝑡

0

𝑒
(𝑑𝜆
𝑛
+𝛾)𝑠
𝑏
𝑛 (𝑠) 𝑑𝑠] 𝑒

−(𝑑𝜆
𝑛
+𝛾)𝑡
,

𝑛 = 1, 2, . . . .

(14)
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Thus, by (10), (12), and (14), we further get

𝑤 (𝑡, 𝑥)

=

+∞

∑

𝑛=1

[𝑎
𝑛 (0) + ∫

𝑡

0

𝑒
(𝑑𝜆
𝑛
+𝛾)𝑠
𝑏
𝑛 (𝑠) 𝑑𝑠] 𝑒

−(𝑑𝜆
𝑛
+𝛾)𝑡
𝜑
𝑛 (𝑥)

= 𝑒
−𝛾𝑡

+∞

∑

𝑛=1

∫
Ω

𝜙 (0, 𝑦) 𝑒
−𝑑𝜆
𝑛
𝑡
𝜑
𝑛 (𝑥) 𝜑𝑛 (𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

+∞

∑

𝑛=1

∫
Ω

𝑒
−𝑑𝜆
𝑛
(𝑡−𝑠)
𝐻(𝑠, 𝑦) 𝜑

𝑛 (𝑥) 𝜑𝑛 (𝑦) 𝑑𝑦 𝑑𝑠

= 𝑒
−𝛾𝑡
∫
Ω

𝜙 (0, 𝑦) 𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

∫
Ω

𝐻(𝑠, 𝑦) 𝑘 (𝑑 (𝑡 − 𝑠) , 𝑥, 𝑦) 𝑑𝑦 𝑑𝑠

= 𝑒
−𝛾𝑡
∫
Ω

𝜙 (0, 𝑦) 𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝐻(𝑡 − 𝑠, 𝑦) 𝑘 (𝑑𝑠, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑠.

(15)

Therefore, (8) follows immediately from (9) and (15). The
proof is completed.

Proof of Theorem 5. For any given 𝜙 ∈ Y+ with 𝜙(0, ⋅) ̸≡ 0,
let 𝜔(𝜙) be the omega limit set of the positive orbit through
𝜙 for the solution semiflow Φ(𝑡). By Lemma 1, we get 𝜔(𝜙) ⊂
A ⊆ Y

[0,𝑀]
, where A is the global attractor of the solution

semiflow Φ(𝑡) and

Y
[0,𝑀]
≡ {𝜙 ∈ Y | 0 ≤ 𝜙 (𝜃, 𝑥) ≤ 𝑀, ∀ (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω} .

(16)

Note that A is a maximal compact invariant set of the
solution semiflow Φ(𝑡). Thus, it is sufficient to prove the
global attractivity of 𝑤∗ for all 𝜙 ∈ Y

[0,𝑀]
with 𝜙(0, ⋅) ̸≡ 0.

Let 𝜙 ∈ Y
[0,𝑀]

be given such that 𝜙(0, ⋅) ̸≡ 0. Then it
follows from Lemma 6 that

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧) 𝑏 (𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠,

(17)

where 𝑤(𝑡, 𝑥) ≡ 𝑤(𝑡, 𝑥, 𝜙) is the solution of (1) starting from
the initial function 𝜙. Following [19], we define a function ℎ :
[0,𝑀] × [0,𝑀] → R by

ℎ (𝑢, V) = {
min {𝑏 (𝑤) | 𝑢 ≤ 𝑤 ≤ V} , if 𝑢 ≤ V,
max {𝑏 (𝑤) | V ≤ 𝑤 ≤ 𝑢} , if V ≤ 𝑢.

(18)

Then ℎ(𝑢, V) is nondecreasing in 𝑢 ∈ [0,𝑀] and nonincreas-
ing in V ∈ [0,𝑀]. Moreover, 𝑏(𝑤) = ℎ(𝑤, 𝑤), ∀𝑤 ∈ [0,𝑀],
and ℎ(𝑢, V) is continuous in (𝑢, V) ∈ [0,𝑀] × [0,𝑀] (see [20,
Section 2]). Therefore, by (17), we have

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+ ∫
Ω

𝑘 (𝛼, 𝑦, 𝑧)

× ℎ (𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧) , 𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠.

(19)

Let

𝑤
∞
(𝑥) ≡ lim sup

𝑡→∞

𝑤 (𝑡, 𝑥) , 𝑤
∞ (𝑥) ≡ lim inf

𝑡→∞
𝑤 (𝑡, 𝑥) ,

∀𝑥 ∈ Ω.

(20)

Then Lemmas 2 and 3 imply that

𝑀 ≥ 𝑤
∞
(𝑥) ≥ 𝑤∞ (𝑥) ≥ 𝜂 > 0, ∀𝑥 ∈ Ω. (21)

On the other hand, note that 𝛾 = max
𝑤∈[0,𝑀]

𝑓

(𝑤).Therefore,

the function 𝛾𝑤−𝑓(𝑤) is nondecreasing in𝑤 ∈ [0,𝑀].Thus,
by Fatou’s lemma and (19), we further get

𝑤
∞
(𝑥)

≤ ∫

∞

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤
∞
(𝑦) − 𝑓 (𝑤

∞
(𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧)ℎ (𝑤
∞
(𝑧) , 𝑤∞ (𝑧))𝑑𝑧]𝑑𝑦 𝑑𝑠.

(22)

Let

𝑤
∞
≡ sup
𝑥∈Ω

𝑤
∞
(𝑥) , 𝑤

∞
≡ inf
𝑥∈Ω

𝑤
∞ (𝑥) . (23)

Then

𝑀 ≥ 𝑤
∞
≥ 𝑤
∞
≥ 𝜂 > 0. (24)
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Moreover, it follows from Lemma 1 that

∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦) 𝑑𝑦 = 1, ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦 = 1,

∀𝑠 ≥ 0, 𝑥 ∈ Ω.

(25)

Therefore, by (22), we have

𝑤
∞
≤ [𝛾𝑤

∞
− 𝑓 (𝑤

∞
) + ℎ (𝑤

∞
, 𝑤
∞
)] ∫

∞

0

𝑒
−𝛾𝑠
𝑑𝑠

=
1

𝛾
[𝛾𝑤
∞
− 𝑓 (𝑤

∞
) + ℎ (𝑤

∞
, 𝑤
∞
)] .

(26)

Thus,
𝑓 (𝑤
∞
) ≤ ℎ (𝑤

∞
, 𝑤
∞
) . (27)

Similarly, we have
𝑓 (𝑤
∞
) ≥ ℎ (𝑤

∞
, 𝑤
∞
) . (28)

By (18), we may find 𝑢, V ∈ [𝑤
∞
, 𝑤
∞
] ⊂ (0,𝑀] such that

ℎ (𝑤
∞
, 𝑤
∞
) = 𝑏 (𝑢) , ℎ (𝑤

∞
, 𝑤
∞
) = 𝑏 (V) . (29)

It then follows from (27) and (28) that
𝑏 (𝑢) ≥ 𝑓 (𝑤

∞
) ≥ 𝑓 (𝑢) , 𝑏 (V) ≤ 𝑓 (𝑤∞) ≤ 𝑓 (V) , (30)

and hence,
𝑏 (V)
𝑓 (V)

≤ 1 =
𝑏 (𝑤
∗
)

𝑓 (𝑤∗)
≤
𝑏 (𝑢)

𝑓 (𝑢)
. (31)

This, together with the strict monotonicity of 𝑏(𝑤)/𝑓(𝑤) for
𝑤 ∈ (0,𝑀], implies that 𝑢 ≤ 𝑤∗ ≤ V. Moreover, by (27) and
(28), we also have
𝑏 (𝑢) ≥ 𝑓 (𝑤

∞
) ≥ 𝑓 (V) , 𝑏 (V) ≤ 𝑓 (𝑤∞) ≤ 𝑓 (𝑢) . (32)

Therefore, the property (P) implies that
𝑢 = V = 𝑤∗. (33)

Thus, by (30), we obtain
𝑤
∞
= 𝑤
∞
= 𝑤
∗
. (34)

Since

𝑤
∞
≥ 𝑤
∞
(𝑥) ≥ 𝑤

∞
(𝑥) ≥ 𝑤

∞
, 𝑥 ∈ Ω, (35)

we further get

𝑤
∞
(𝑥) = 𝑤∞ (𝑥) = 𝑤

∗
, 𝑥 ∈ Ω. (36)

This implies that

lim
𝑡→∞
𝑤 (𝑡, 𝑥) = 𝑤

∗
, 𝑥 ∈ Ω. (37)

It remains to prove that lim
𝑡→∞
𝑤(𝑡, 𝑥) = 𝑤

∗ uniformly
for 𝑥 ∈ Ω. For any𝜓 ∈ 𝜔(𝜙), there exists a sequence 𝑡

𝑛
→ ∞

such thatΦ(𝑡
𝑛
)𝜙 → 𝜓 in Y as 𝑛 → ∞. Therefore, we have

lim
𝑛→∞
𝑤 (𝑡
𝑛
+ 𝜃, 𝑥, 𝜙) = 𝜓 (𝜃, 𝑥) (38)

uniformly for (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω. By (37), we further get

𝜓 (𝜃, 𝑥) = 𝑤
∗
, ∀ (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω. (39)

Thus, we obtain 𝜔(𝜙) = {𝑤∗}, which implies that 𝑤(𝑡, ⋅, 𝜙)
converges to𝑤∗ inX as 𝑡 → ∞.The proof is completed.

4. Global Asymptotic Stability

In this section, we establish the global asymptotic stability
of the trivial solution and the positive and spatially homo-
geneous steady state 𝑤∗ for (1) by the careful analysis of the
corresponding characteristic equations. To this end, we first
give the following formal definitions of stability (see, e.g., [18,
Remark 2.1.3]).

Definition 7. Let 𝑤 = 𝑤 be a steady state of the abstract
equation (4). It is called stable if for any 𝜀 > 0 there exists
𝛿 > 0 such that the solution 𝑤(𝑡, 𝜙) of (4) with ‖𝜙 − 𝑤‖Y <
𝛿 satisfies ‖𝑤(𝑡, 𝜙) − 𝑤‖X < 𝜀, for all 𝑡 ≥ 0. It is called
unstable if it is not stable. It is asymptotically stable if it is
stable and there exists 𝛿

0
> 0 such that the solution𝑤(𝑡, 𝜙) of

(4) with ‖𝜙 − 𝑤‖Y < 𝛿0 satisfies lim𝑡→+∞‖𝑤(𝑡, 𝜙) − 𝑤‖X =
0. It is globally asymptotically stable if it is stable and
any solution 𝑤(𝑡, 𝜙) of (4) with arbitrary 𝜙 ∈ Y satisfies
lim
𝑡→+∞

‖𝑤(𝑡, 𝜙) − 𝑤‖X = 0.

Let𝑤 be a spatially homogeneous steady state for (1) (e.g.,
the trivial solution and 𝑤∗). Define 𝐺 : Y+ → X by

𝐺 (𝜙) (𝑥) = − 𝑓

(𝑤) 𝜙 (0, 𝑥)

+ 𝑏

(𝑤) ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝜙 (−𝜏, 𝑦) 𝑑𝑦,

∀𝑥 ∈ Ω, 𝜙 ∈ Y
+
,

(40)

where 𝑓(𝑤) = (𝑑𝑓(𝑤)/𝑑𝑤)|
𝑤=𝑤

and 𝑏(𝑤) = (𝑑𝑏(𝑤)/
𝑑𝑤)|
𝑤=𝑤

. Note that 𝑘(𝛼, 𝑥, 𝑦) is given in (2). Then we can
write the linearized equation of (1) at 𝑤 = 𝑤 as the following
abstract functional equation

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐴𝑤 (𝑡) + 𝐺 (𝑤𝑡) , 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
,

(41)

where 𝐴 can be referred to Section 2.
For each complex number𝜆wedefine theX-valued linear

operator Θ(𝜆) by

Θ (𝜆) 𝑢 = 𝐴𝑢 − 𝜆𝑢 + 𝐺 (𝑒
𝜆⋅
𝑢) , 𝑢 ∈ Dom (𝐴) , (42)

where 𝑒𝜆⋅𝑢 ∈ Y is defined by (note that we use Y to denote its
complexification here)

(𝑒
𝜆⋅
𝑢) (𝜃) = 𝑒

𝜆𝜃
𝑢, 𝜃 ∈ [−𝜏, 0] . (43)

We will call 𝜆 a characteristic value of (41) if there exists 𝑢 ∈
Dom(𝐴) \ {0} solving the characteristic equation Θ(𝜆)𝑢 = 0
(see, e.g., [18]). Since Dom(𝐴) ⊂ X ⊂ 𝐿2(Ω), for any 𝑢 ∈
Dom(𝐴) \ {0}, there exist complex numbers 𝑎

𝑛
, 𝑛 = 1, 2, . . .,

such that

𝑢 (𝑥) =

+∞

∑

𝑛=1

𝑎
𝑛
𝜑
𝑛 (𝑥) . (44)
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Therefore, by (2), (42), and (44), we have

Θ (𝜆) 𝑢 (𝑥)

= 𝑑Δ𝑢 (𝑥) − 𝜆𝑢 (𝑥) − 𝑓

(𝑤) 𝑢 (𝑥)

+ 𝑏

(𝑤) ∫
Ω

𝑒
−𝜏𝜆
𝑢 (𝑦) 𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦

=

+∞

∑

𝑛=1

𝑎
𝑛
[−𝑑𝜆
𝑛
− 𝜆 − 𝑓


(𝑤) + 𝑏


(𝑤) 𝑒
−𝜏𝜆
𝑒
−𝜆
𝑛
𝛼
] 𝜑
𝑛 (𝑥) .

(45)

Thus, the characteristic value 𝜆 of (41) satisfies at least one of
the following equations:

𝜆 = −𝑑𝜆
𝑛
− 𝑓

(𝑤) + 𝑏


(𝑤) 𝑒
−𝜆
𝑛
𝛼
𝑒
−𝜏𝜆
, 𝑛 = 1, 2, . . . . (46)

Lemma 8. Assume that (A1)–(A3) hold, and let 𝛽 be the
smallest real number such that if 𝜆 is a characteristic value of
(41), then Re 𝜆 ≤ 𝛽. One has the following:

(i) if 𝑏(𝑤) > 𝑓(𝑤), then 𝛽 > 0,
(ii) if −𝑓(𝑤) ≤ 𝑏(𝑤) < 𝑓(𝑤), then 𝛽 < 0,
(iii) if 𝑏(𝑤) = 𝑓(𝑤), then 𝛽 = 0.

Proof. (i) If 𝑏(𝑤) > 𝑓(𝑤), then, by (46) and [21, Proposition
4.6], there exists at least one characteristic value 𝜆 of (41) such
that Re 𝜆 > 0. Therefore, 𝛽 > 0.

(ii) If −𝑓(𝑤) ≤ 𝑏(𝑤) < 𝑓(𝑤), then since 0 = 𝜆
1
< 𝜆
2
≤

⋅ ⋅ ⋅ ≤ 𝜆
𝑛
≤ ⋅ ⋅ ⋅ , we have

− [𝑑𝜆
𝑛
+ 𝑓

(𝑤)] 𝑒

𝜆
𝑛
𝛼
≤ 𝑏

(𝑤)

< [𝑑𝜆
𝑛
+ 𝑓

(𝑤)] 𝑒

𝜆
𝑛
𝛼
, 𝑛 = 1, 2, . . . .

(47)

Therefore, by (46) and [21, Proposition 4.6], all the charac-
teristic values of (41) have negative real parts.Thus, it follows
from [18, Theorem 3.1.10] that 𝛽 < 0.

(iii) If 𝑏(𝑤) = 𝑓(𝑤), then 𝜆 = 0 is a characteristic value
of (41). Therefore, 𝛽 ≥ 0. If 𝛽 > 0, then there exists at least
one characteristic value of (41) 𝜆(0) and a positive number 𝑛
such that Re 𝜆(0) > 0 and

𝜆
(0)
= −𝑑𝜆

𝑛
− 𝑓

(𝑤) + 𝑏


(𝑤) 𝑒
−𝜆
𝑛
𝛼
𝑒
−𝜏𝜆
(0)

. (48)

Let 𝜆(0) = 𝑥(0) + 𝑖𝑦(0), where 𝑥(0) and 𝑦(0) both are real
numbers. Then 𝑥(0) > 0. By (48), we have

𝑥
(0)
= −𝑑𝜆

𝑛
− 𝑓

(𝑤) + 𝑓


(𝑤) 𝑒
−𝜆
𝑛
𝛼
𝑒
−𝜏𝑥
(0)

cos (𝜏𝑦(0)) , (49)

and hence, cos(𝜏𝑦(0)) > 0. This implies that

𝑥
(0)
≤ −𝑓

(𝑤) + 𝑓


(𝑤) 𝑒
−𝜏𝑥
(0)

cos (𝜏𝑦(0))

= 𝑓

(𝑤) [𝑒

−𝜏𝑥
(0)

cos (𝜏𝑦(0)) − 1] .
(50)

But, since 𝑥(0) > 0, we have 𝑒−𝜏𝑥
(0)

cos(𝜏𝑦(0)) < 1. Therefore,

𝑥
(0)
≤ 𝑓

(𝑤) [𝑒

−𝜏𝑥
(0)

cos (𝜏𝑦(0)) − 1] < 0, (51)

contradicting 𝑥(0) > 0. This contradiction proves 𝛽 = 0. The
proof is completed.

Now we are ready to summarize our main results on the
global stability. By Definition 7, Lemmas 3 and 8,Theorem 5,
[18, Corollary 3.1.11], and the principle of linearized stability
(see, e.g., [21]), we obtain the following.

Theorem 9. Assume that (A1)–(A3) hold. Then the following
two statements are valid.

(i) If 𝑏(0) < 𝑔(0), then the zero solution of (1) is globally
asymptotically stable in Y+.

(ii) If 𝑏(0) > 𝑔(0), then the zero solution of (1) is unstable,
and (1) admits at least one spatially homogeneous
steady state 𝑤∗ ∈ (0,𝑀].

Theorem 10. Assume that (A1)–(A3) hold, and 𝑏(0) > 𝑔(0).
Then the following two statements for the positive and spatially
homogeneous steady state 𝑤∗ of (1) are valid.

(i) If 𝑏(𝑤∗) > 𝑓(𝑤∗), then 𝑤∗ is unstable.
(ii) If −𝑓(𝑤∗) ≤ 𝑏(𝑤∗) < 𝑓(𝑤∗) and (A4) hold, then𝑤∗

is globally asymptotically stable in Y+ \ {0}.

5. Examples

In this section, we present four examples to illustrate the
feasibility of our main results.

Example 1. Consider the equation resulting from letting
𝑓(𝑤) = 𝜇𝑤 in (1); that is,

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤 (𝑡, 𝑥)

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(52)

where 𝜇 is a positive constant.

In this case, we now formulate the following assumptions
to replace (A2)–(A4):

(A2)There exists a positive number𝑀 such that, for all𝑤 >
𝑀, 𝑏(𝑤) < 𝜇𝑤, where 𝑏(𝑤) = max

𝑢∈[0,𝑤]
𝑏(𝑢).

(A3) 𝑏(0) > 𝜇, (𝑏(𝑤)/𝑤) is strictly decreasing for 𝑤 ∈
(0,𝑀], and 𝑏(𝑤) has the property (𝑃) that, for any
𝑢, V ∈ (0,𝑀] satisfying 𝑢 ≤ 𝑤∗ ≤ V, 𝜇𝑢 ≥ 𝑏(V), and
𝜇V ≤ 𝑏(𝑢), we have 𝑢 = V.
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By applying Theorems 9 and 10, we then obtain the
following results for (52).

Theorem 11. Assume that (A1) and (A2) hold. Then the
following two statements are valid.

(i) If 𝑏(0) < 𝜇, then the zero solution of (52) is globally
asymptotically stable in Y+.

(ii) If 𝑏(0) > 𝜇, then the zero solution of (52) is unstable,
and (52) admits at least one spatially homogeneous
steady state 𝑤∗ ∈ (0,𝑀].

Theorem 12. Assume that (A1) and (A2) hold, and 𝑏(0) > 𝜇.
Then the following two statements for the positive and spatially
homogeneous steady state 𝑤∗ of (52) are valid.

(i) If 𝑏(𝑤∗) > 𝜇, then 𝑤∗ is unstable.

(ii) If −𝜇 ≤ 𝑏(𝑤∗) < 𝜇 and (A3) hold, then 𝑤∗ is globally
asymptotically stable in Y+ \ {0}.

Remark 13. It is easy to see that (52) is discussed in [10] and
some partial results ofTheorems 11 and 12 have been obtained
[10].

Example 2. Consider the following Nicholson’s blowfly equa-
tion resulting from letting 𝑓(𝑤) = 𝜇𝑤 and 𝑏(𝑤) = 𝑝𝑤𝑒−𝑞𝑤 in
(1):

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤 (𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦) 𝑒
−𝑞𝑤(𝑡−𝜏,𝑦)

𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(53)

where 𝑝 and 𝑞 are two positive constants.

By the same arguments as in [10, Section 4], together with
Theorems 11 and 12, we have the following results for (53).

Theorem 14. (𝑖) If 𝑝 < 𝜇, then the zero solution of (53) is
globally asymptotically stable in Y+.
(𝑖𝑖) If 𝑝 > 𝜇, then the zero solution of (53) is unstable,

and (53) admits the unique positive constant equilibrium𝑤∗ =
(ln(𝑝/𝜇))/𝑞.

Theorem 15. If 𝜇 < 𝑝 ≤ 𝑒2𝜇, the unique positive constant
equilibrium 𝑤∗ = (ln(𝑝/𝜇))/𝑞 of (53) is globally asymptoti-
cally stable in Y+ \ {0}.

Remark 16. It is easy to see that the equation in [7] is a special
case of 𝛼 = 0 of (53). Hence all main results of [7] are special
cases of our Theorems 14 and 15.

Example 3. Consider the following Mackey-Glass equation
resulting from letting 𝑓(𝑤) = 𝜇𝑤𝑙+1 and 𝑏(𝑤) = 𝑝𝑤/(𝑞 + 𝑤𝑙)
in (1):

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤

𝑙+1
(𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦)

𝑞 + 𝑤𝑙 (𝑡 − 𝜏, 𝑦)
𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(54)

where 𝑙 is a positive constant.

By the same arguments as in [10, Section 4], together with
Theorems 9 and 10, we have the following results for (54).

Theorem 17. The zero solution of (54) is always unstable, and
(54)must admit the unique positive constant equilibrium𝑤∗ =
(𝑍
0
)
1/𝑙, where

𝑍
0
=
1

2
(−𝑞 + √𝑞2 +

4𝑝

𝜇
) . (55)

Theorem 18. If ((𝑝𝑞+𝑝(1− 𝑙)𝑍
0
)/(𝑞+𝑍

0
)
2
) > 𝜇(1+ 𝑙)𝑍

0
, the

unique positive constant equilibrium 𝑤∗ = (𝑍
0
)
1/𝑙 is unstable,

and if −𝜇(1+𝑙)𝑍
0
≤ ((𝑝𝑞+𝑝(1−𝑙)𝑍

0
)/(𝑞+𝑍

0
)
2
) < 𝜇(1+𝑙)𝑍

0

it is globally asymptotically stable in Y+ \ {0}.

Example 4. Consider the equation resulting from letting
𝑓(𝑤) = 𝜇𝑤

2 and 𝑏(𝑤) = 𝑝𝑤(1 − (𝑤/𝑟)) in (1); that is,

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡

= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤
2
(𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦) (1 −
𝑤 (𝑡 − 𝜏, 𝑦)

𝑟
) 𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(56)

where 0 < 𝑟 ≤ +∞.

Clearly, 𝑤∗ = (𝑝/(𝜇 + 𝑝𝑟−1)), max
𝑤≥0
𝑏(𝑤) = 𝑏(𝑟/2), and

(A1)–(A3) hold, where 𝑟−1 = 0 if 𝑟 = +∞. Moreover, 0 <
𝑤
∗
≤ 𝑟/2 if 𝜇 ≥ 𝑝𝑟−1. Therefore, (A4) is satisfied if 𝜇 ≥ 𝑝𝑟−1.

Thus, Theorems 9 and 10 imply the following results.

Theorem 19. The zero solution of (56) is always unstable, and
(56)must admit the unique positive constant equilibrium𝑤∗ =
(𝑝/(𝜇 + 𝑝𝑟

−1
)).
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Theorem 20. If 𝜇 ≥ 𝑝𝑟−1, then the unique positive constant
equilibrium 𝑤∗ = (𝑝/(𝜇 + 𝑝𝑟−1)) is globally asymptotically
stable in Y+ \ {0}.

Remark 21. It is easy to see that the equation in [11] is a special
case of 𝑟 = +∞ of (56) and hence some partial results of
Theorems 19 and 20 have been obtained [11].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by National Natural
Science Foundation of China, Research Fund for theDoctoral
Program of Higher Education of China (no. 20124410110001),
and Program for Changjiang Scholars and Innovative
Research Team in University (IRT1226).

References

[1] S. A. Gourley and J.Wu, “Delayed non-local diffusive systems in
biological invasion and disease spread,” in Nonlinear Dynamics
and Evolution Equations, H. Brunner, X.-Q. Zhao, and X. Zou,
Eds., vol. 48 of Fields Institute Communications, pp. 137–200,
American Mathematical Society, Providence, RI, USA, 2006.

[2] C. Huang, Z. Yang, T. Yi, and X. Zou, “On the basins of
attraction for a class of delay differential equations with non-
monotone bistable nonlinearities,” Journal of Differential Equa-
tions, vol. 256, no. 7, pp. 2101–2114, 2014.

[3] D. Liang, J. W.-H. So, F. Zhang, and X. Zou, “Population
dynamic models with nonlocal delay on bounded domains
and their numerical computations,” Differential Equations and
Dynamical Systems, vol. 11, no. 1-2, pp. 117–139, 2003.

[4] J. W.-H. So, J. Wu, and Y. Yang, “Numerical steady state and
Hopf bifurcation analysis on the diffusive Nicholson’s blowflies
equation,”AppliedMathematics and Computation, vol. 111, no. 1,
pp. 33–51, 2000.

[5] J. W.-H. So, J. Wu, and X. Zou, “A reaction-diffusion model for
a single species with age structure. I. Travelling wavefronts on
unbounded domains,”The Royal Society of London Proceedings
A: Mathematical, Physical and Engineering Sciences, vol. 457, no.
2012, pp. 1841–1853, 2001.

[6] H. R. Thieme and X.-Q. Zhao, “Asymptotic speeds of spread
and traveling waves for integral equations and delayed reaction-
diffusion models,” Journal of Differential Equations, vol. 195, no.
2, pp. 430–470, 2003.

[7] T. Yi and X. Zou, “Global attractivity of the diffusive Nicholson
blowflies equation with Neumann boundary condition: a non-
monotone case,” Journal of Differential Equations, vol. 245, no.
11, pp. 3376–3388, 2008.

[8] T. Yi and X. Zou, “Global dynamics of a delay differential
equation with spatial non-locality in an unbounded domain,”
Journal of Differential Equations, vol. 251, no. 9, pp. 2598–2611,
2011.

[9] T. Yi and X. Zou, “On Dirichlet problem for a class of delayed
reaction-diffusion equations with spatial non-locality,” Journal
of Dynamics and Differential Equations, vol. 25, no. 4, pp. 959–
979, 2013.

[10] X.-Q. Zhao, “Global attractivity in a class of nonmonotone
reaction-diffusion equationswith time delay,”CanadianApplied
Mathematics Quarterly, vol. 17, no. 1, pp. 271–281, 2009.

[11] S. A. Gourley and Y. Kuang, “Wavefronts and global stability
in a time-delayed population model with stage structure,” The
Royal Society of London Proceedings A: Mathematical, Physical
and Engineering Sciences, vol. 459, no. 2034, pp. 1563–1579, 2003.

[12] D. Xu and X.-Q. Zhao, “A nonlocal reaction-diffusion popula-
tion model with stage structure,” Canadian Applied Mathemat-
ics Quarterly, vol. 11, no. 3, pp. 303–319, 2003.

[13] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate
Studies in Mathematics, American Mathematical Society, Prov-
idence, RI, USA, 1998.

[14] H. R. Thieme and X.-Q. Zhao, “A non-local delayed and
diffusive predator-prey model,” Nonlinear Analysis: Real World
Applications, vol. 2, no. 2, pp. 145–160, 2001.

[15] S. T. Yau and R. Schoen, Lectures on Differential Geometry,
Higher Education Press, Beijing, China, 1994.

[16] H. L. Smith, Monotone Dynamical Systems: An Introduction to
the Theory of Competitive and Cooperative Systems, vol. 41 of
Mathematical Surveys and Monographs, American Mathemat-
ical Society, Providence, RI, USA, 1995.

[17] R. H. Martin, Jr. and H. L. Smith, “Abstract functional-
differential equations and reaction-diffusion systems,” Transac-
tions of the American Mathematical Society, vol. 321, no. 1, pp.
1–44, 1990.

[18] J. Wu,Theory and Applications of Partial Functional-Differential
Equations, vol. 119 of Applied Mathematical Sciences, Springer,
New York, NY, USA, 1996.

[19] H. R. Thieme, “Density-dependent regulation of spatially dis-
tributed populations and their asymptotic speed of spread,”
Journal of Mathematical Biology, vol. 8, no. 2, pp. 173–187, 1979.

[20] H. R. Thieme, “On a class of Hammerstein integral equations,”
Manuscripta Mathematica, vol. 29, no. 1, pp. 49–84, 1979.

[21] H. Smith, An Introduction to Delay Differential Equations with
Applications to the Life Sciences, vol. 57 of Texts in Applied
Mathematics, Springer, New York, NY, USA, 2011.


