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We address the question of the long-term coexistence of three competing species whose dynamics are governed by the partial
differential equations. We obtain criteria for permanent coexistence in a Lotka-Volterra system modeling the interaction of three
competing species in a bounded habitat whose exterior is lethal to each species. It is also proved that if the intercompeting strength
is very weak, the system is always permanent, provided that each single one of the three species can survive in the absence of the
two other species.

1. Introduction

Reaction-diffusion systems are some of the most widely used
models for population dynamics in situations where spatial
dispersal plays a significant role. Generally speaking, the
dynamical behaviors of the systems with two competing
species are relatively simple andhave beenwidely investigated
in the past years. However, the investigation and knowledge
about the systems with three competing species are very
limited; see [1–5] for some related results. It is well known,
in general, that the dynamical behavior of systems with
three competing species may be extremely complex, even in
nondiffusive case, namely, ODE case; see, for example, [6–9]
and the references therein.

The object of this paper is to study the problem of
coexistence for three competing species dispersing through
a spatially heterogeneous region. We model the population
dynamics of the specieswith a systemof three diffusive Lotka-
Volterra equations.

The model we consider has the general form
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(1)

with 𝑢
𝑖
= 0 on 𝜕𝑢

𝑖
×R
+
, whereΩ ⊆ R𝑁 is a bounded domain

and 𝑎
𝑖
(𝑥) > 0, 𝑏

𝑖𝑖
(𝑥) > 0, 𝑏

𝑖𝑗
(𝑥) ≥ 0 (𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗)

are all continuous inΩ. The variables 𝑢
𝑖
represent population

densities of the competing species. The boundary condition
𝑢
𝑖
= 0 describes a situation that the boundary of Ω is lethal

to the species.
We will use the criterion of permanence to characterize

coexistence. A system is said to be permanent if any solutions
with all components positive initially must ultimately enter
and remain within a fixed set of positive states that are strictly
bounded away from zero in each component. For some
investigations of coexistence characterized by permanence,
mostly in the case for two interacting species, see [10–12], and
also some parts of the books [13, 14].

This paper is organized as follows. In Section 2, we
introduce some necessary material about semiflow and state
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V. Hutson’s average Lyapunov theorem which will be the
basic tool in the proof of our main theorem. We also
discuss the dissipative property of our systems, which is
necessary for using V. Hutson’s average Lyapunov function
theorem. In Section 3, we establish our main permanent
result, Theorem 11. We also prove that if the intercompeting
strength is “very weak,” the system (1) is always permanent,
provided that either single one of the three species can survive
with the absence of the two other species. In Section 4, we give
some summery and discussion of the results of this paper.

2. Semiflows and Dissipativity

In this section, we will make some preparations for estab-
lishing our main results in the next section. Firstly, we will
introduce some terminologies and results about semiflows
(semigroups) for readers’ convenience. The materials can be
found in [15] or [13, 14].

Let (𝑌, 𝑑) be a metric space, with points in 𝑌 being
denoted by 𝑢, V, . . . and subsets 𝑌 by 𝑈,𝑉, . . .. The following
two unsymmetric distances of sets will be used:

𝑑 (𝑈, 𝑉) = sup
𝑢∈𝑈

𝑑 (𝑢, 𝑉) ,

𝑑 (𝑈, 𝑉) = inf
𝑢∈𝑈

𝑑 (𝑢, 𝑉) .

(2)

The triple (𝑌, 𝜋,R
+
) is said to be a semiflow (or semigroup),

if 𝜋 : 𝑌 ×R
+
→ 𝑌 is continuous and satisfies:

(i) 𝜋(𝑢, 0) = 𝑢,
(ii) 𝜋(𝜋(𝑢, 𝑡), 𝑠) = 𝜋(𝑢, 𝑡 + 𝑠)(𝑠, 𝑡 ∈ 𝑅

+
),

for all 𝑢 ∈ 𝑌. For convenience, we often write 𝜋(𝑢, 𝑡) = 𝑢 ⋅ 𝑡.
The symbols 𝛾+(𝑢) and 𝜔(𝑢) denote the semiorbit through 𝑢
and the omega limit set of 𝑢, respectively, and the equivalent
expressions for sets are defined by taking unions.

A solution 𝜙 through 𝑢 is a continuous map 𝜙 : 𝑅 → 𝑌

such that 𝜙(0) = 𝑢 and 𝜋(𝜙(𝜏), 𝑡) = 𝜙(𝑡 + 𝜏) for 𝑡 ∈ R
+
, 𝜏 ∈

R. The range of 𝜙 is denoted by 𝛾(𝑢) and is called an orbit
through 𝑢.

A set 𝑈 is said to be forward invariant if 𝛾+(𝑢) ⊂ 𝑈 and
invariant if 𝛾(𝑢) ⊂ 𝑈.The semiflows is said to be dissipative if
there is a bounded set 𝑈 such that lim

𝑡→∞
𝑑(𝑢 ⋅ 𝑡, 𝑈) = 0 for

all 𝑢 ∈ 𝑌. 𝑈 is said to be a global attractor of the semiflow if
it is compact invariant and for all bounded 𝑉, lim

𝑡→∞
𝑑(𝑉 ⋅

𝑡, 𝑈) = 0, where 𝑉 ⋅ 𝑡 = {V ⋅ 𝑡, V ∈ 𝑉}.

Theorem 1. Let 𝑌 be complete and suppose that the semiflow
is dissipative. Assume that there is a 𝑡

0
≥ 0 such that 𝜋(⋅, 𝑡) is

compact for 𝑡 > 𝑡
0
; then there is a nonempty global attractor.

Consider next the concept of permanence in the abstract
semiflow context. We suppose that 𝑌 = 𝑌

0
∪ 𝜕𝑌
0
, where 𝑌

0

is open, and assume that 𝑌
0
, 𝜕𝑌
0
are forward invariant. In

relation to the remarks in the introduction, 𝜕𝑌
0
will consist

of the states with at least one species identically zero.

Definition 2. The semiflow is said to be permanent if there
exists a bounded set 𝑈 with 𝑑(𝑈, 𝜕𝑌

0
) > 0 such that

lim
𝑡→∞

𝑑(V ⋅ 𝑡, 𝑈) = 0 for all V ∈ 𝑌
0
.

A set𝑈 ⊂ 𝑌
0
is said to be strongly bounded if it is bounded

and 𝑑(𝑈, 𝜕𝑌
0
) > 0.A

0
is said to be a global attractor relative

to strongly bounded sets if it is a compact invariant subset of
𝑌
0
and lim

𝑡→∞
𝑑(𝑈 ⋅ 𝑡,A

0
) = 0 for all strongly bounded 𝑈.

Permanence is obviously an asymptotic property. It can
thus be studied by examining the semiflow restricted to
a forward invariant set derived from an 𝜀-neighbourhood
𝐵(A, 𝜀) of the global attractor A of Theorem 1. Set then
𝑋 = 𝑐𝑙𝜋(𝐵(A, 𝜀), [1,∞)), the closure of 𝜋(𝐵(A, 𝜀), [1,∞)),
and take 𝑆 = 𝑋 ∩ 𝜕𝑌

0
. The following Hutson’s theorem on

average Lyapunov functions is the basic tool for establishing
our main theorem in Section 3.

Theorem3 (see [15]). Assume that the conditions ofTheorem 1
hold, and let𝑋, 𝑆 be as defined above. Suppose that𝑃 : 𝑋\𝑆 →

R
+
is continuous, strictly positive, and bounded, and for 𝑢 ∈ 𝑆

define

𝛼 (𝑡, 𝑢) = lim inf
𝜐→𝑢,𝜐∈𝑋\𝑆

(
𝑃 (𝜐 ⋅ 𝑡)

𝑃 (𝜐)
) . (3)

Then the semiflow is permanent if

sup
𝑡>0

𝛼 (𝑡, 𝑢) > 1 𝑢 ∈ 𝜔 (𝑆) ,

sup
𝑡>0

𝛼 (𝑡, 𝑢) > 0 𝑢 ∈ 𝑆.

(4)

For our application of the last theorem, we will cast the
system (1) to the abstract frame of the semiflow. It is well
known that if (1) is simply viewed as a parabolic system,
it actually generated a semiflow in 𝐶

1
(Ω), and solutions

which belong to𝐶1(Ω)must have Hölder-continuous second
derivatives on Ω (see [13]). Thus, we may use maximum
principles to obtain a priori bounds, even though we will
ultimately want to view our semiflow as acting on 𝐶

1
(Ω).

Then by maximum principle (or comparison theorem), any
solution (𝑢

1
, 𝑢
2
, 𝑢
3
) of (1) must satisfy a uniform bound of

the form 0 ≤ 𝑢
𝑖
≤ 𝐶
𝑖
for some constants 𝐶

𝑖
, 𝑖 = 1, 2, 3, after

finite time. So the semiflow generated by (1) is dissipative.We
state it as follows.

Theorem 4. The semiflow generated by the system (1) is
dissipative.

3. Permanent Coexistence Results

In this section, we establish criteria of permanent coexistence
of the system (1).Themain tool is Hutson’s average Lyapunov
function theorem stated in Section 2, and the key step is to
set up a suitable average Lyapunov function. To construct
the average Lyapunov functions, we must have a detailed
knowledge of the 𝜔-limit set of the generated semiflow in the
boundary of the positive cone.

Themaximum principle implies that solutions of (1) with
nonnegative nonzero initial data for a given component will
have that component strictly positive inΩ for all 𝑡 > 0. In the
case of Dirichlet conditions, such solutions will have normal
derivatives on 𝜕Ω which are bounded above by a negative
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constant. Hence, the only trajectories which remain in the
boundary of the positive cone have one or both components
identically zero. Thus, to determine the 𝜔-limit set of the
semiflow generated by (1) on the boundary, we need only
consider the steady state solutions (equilibrium points) of
subsystems of (1).

Let 𝜆
1
> 0 denote the principal eigenvalue for problem

Δ𝜙 + 𝜆𝜙 = 0 in Ω,

𝜙 = 0 on 𝜕Ω.

(5)

In the rest of this paper, we denote

𝑀
𝑖
= max
𝑥∈Ω

𝑎
𝑖
(𝑥)

𝑏
𝑖𝑖
(𝑥)

. (6)

The point (0, 0, 0) is always a steady state, which means
that there are no species in the domain. With the absence
of two species and only the other one species left, system (1)
becomes a scalar equation, and we have the following well-
known result (see [14]).

Lemma 5. Suppose that 𝑎(𝑥) > 𝜇
𝑖
𝜆
1
for 𝑥 ∈ Ω. Then the

following problem

𝑢
𝑖𝑡
= 𝜇
𝑖
Δ𝑢
𝑖
+ 𝑢
𝑖
(𝑎
𝑖
(𝑥) − 𝑏

𝑖𝑖
(𝑥) 𝑢
𝑖
) 𝑖𝑛 Ω × (0,∞) ,

𝑢
𝑖
= 0 on 𝜕Ω × (0,∞) ,

(7)

for = 1, 2, 3, has a unique positive steady state solution 𝑢
𝑖
(𝑥)

which is globally approximately stable.

Remark 6. Lemma 5 tells us that if 𝑎(𝑥) > 𝜇
𝑖
𝜆
1
for 𝑥 ∈ Ω, 𝑖 =

1, 2, 3, then either single one of the three species can survive
in the absence of the other two species.

Now we consider the subsystem of (1) with only one
species to be absent. There are three cases.

Case 1. One has 𝑢
3
≡ 0,

𝑢
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11
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2
)
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𝑢
1
= 𝑢
2
= 0 on 𝜕Ω × (0,∞) .

(8)
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2
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𝑢
1𝑡
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3
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in Ω × (0,∞) ,

𝑢
1
= 𝑢
3
= 0 on 𝜕Ω × (0,∞) .

(9)

Case 3. One has 𝑢
1
≡ 0,

𝑢
2𝑡
= 𝜇
2
Δ𝑢
2
+ 𝑢
2
(𝑎
2
(𝑥) − 𝑏

22
(𝑥) 𝑢
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in Ω × (0,∞) ,

𝑢
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3
Δ𝑢
3
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(𝑥) 𝑢
3
)

in Ω × (0,∞) ,

𝑢
1
= 𝑢
3
= 0 on 𝜕Ω × (0,∞) .

(10)

With some modification of lower-supper solution meth-
ods of parabolic systems (see [14]), it is easy to prove the
following results.

Theorem 7. With𝑀
𝑖
, 𝑖 = 1, 2, 3, as defined in (6),

(1) if

𝑎
1
(𝑥) > 𝜇

1
𝜆
1
+𝑀
2
𝑏
12
(𝑥) ,

𝑎
2
(𝑥) > 𝜇

2
𝜆
1
+𝑀
1
𝑏
21
(𝑥) ,

∀𝑥 ∈ Ω,

(11)

the system (8) has a steady state solution (𝑢̃
(12)

(𝑥),

𝑢̃
(21)

(𝑥)) with 𝑢̃(12)(𝑥) > 0, 𝑢̃
(21)

(𝑥) > 0 for 𝑥 ∈ Ω;
similarly,

(2) if

𝑎
1
(𝑥) > 𝜇

1
𝜆
1
+𝑀
3
𝑏
13
(𝑥) ,

𝑎
3
(𝑥) > 𝜇

3
𝜆
1
+𝑀
1
𝑏
31
(𝑥) , ∀𝑥 ∈ Ω,

(12)

the system (9) has a steady state solution (𝑢̃
(13)

(𝑥),

𝑢̃
(31)

(𝑥)) with 𝑢̃(13)(𝑥) > 0, 𝑢̃(31)(𝑥) > 0 for 𝑥 ∈ Ω;

(3) if

𝑎
2
(𝑥) > 𝜇

2
𝜆
1
+𝑀
3
𝑏
23
(𝑥) ,

𝑎
3
(𝑥) > 𝜇

3
𝜆
1
+𝑀
2
𝑏
32
(𝑥) , ∀𝑥 ∈ Ω,

(13)

the system (10) has a steady state solution (𝑢̃
(23)

(𝑥),

𝑢̃
(32)

(𝑥)) with 𝑢̃(23)(𝑥) > 0, 𝑢̃(32)(𝑥) > 0 for 𝑥 ∈ Ω.

Proof. We only prove the part (1); the proof of part (2) and
part (3) are similar.
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Let 𝑤(𝑥) be a positive eigenfunction of the principal
eigenvalue 𝜆

1
for the eigenvalue problem (5). Choose 𝑟

1
> 0

sufficiently small,

𝜇
1
Δ (𝑟
1
𝑤 (𝑥)) + 𝑟

1
𝑤 (𝑥)

× [𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑟
1
𝑤 (𝑥) − 𝑏

12
(𝑥) 𝑢
2
]

≥ 𝑟
1
𝑤 (𝑥) [𝑎

1
(𝑥) − 𝜇

1
𝜆
1

−𝑏
11
(𝑥) 𝑟
1
𝑤 (𝑥) − 𝑏

12
(𝑥)𝑀

2
] ≥ 0,

𝜇
1
Δ (𝑀
1
) + 𝑀

1
[(𝑎
1
(𝑥) − 𝑏

11
(𝑥)𝑀

1
− 𝑏
12
(𝑥) 𝑢
2
]

= 𝑀
1
[(𝑎
1
(𝑥) − 𝑏

11
(𝑥)𝑀

1
− 𝑏
12
(𝑥) 𝑢
2
]

≤ 𝑀
1
[(𝑎
1
(𝑥) − 𝑏

11
(𝑥)𝑀

1
] ≤ 0

(14)

for all 0 ≤ 𝑢
2
≤ 𝑀
2
. So, (𝑀

1
, 𝑟
1
𝑤(𝑥)) is a set of upper and

lower solutions for 𝑢
1
in (8).

Similarly, choose 𝑟
2
> 0 sufficiently small; (𝑀

2
, 𝑟
2
𝑤(𝑥)) is

a set of upper and lower solutions for 𝑢
2
in (8).

By coupled upper and lower theorem (see [16, The-
orem 1.4-2]), the system (8) has a steady state solution
(𝑢̃
(12)

(𝑥), 𝑢̃
(21)

(𝑥)) with 𝑢̃
(12)

(𝑥) > 0, 𝑢̃(21)(𝑥) > 0 for 𝑥 ∈

Ω.

Remark 8. By the comparison principle, it is easy to see that,
in Ω, we have 𝑢̃(12), 𝑢̃(13) < 𝑢

1
< 𝑀
1
, 𝑢̃(21), 𝑢̃(23) < 𝑢

2
< 𝑀
2
,

and 𝑢̃(31), 𝑢̃(32) < 𝑢
3
< 𝑀
3
.

Now, we consider the unique problem of the steady state
solutions above.

Let 𝜃
𝜇,𝐴(𝑥)

denote the unique positive solution of

𝜇
𝑖
Δ𝜃 + 𝜃 (𝐴 (𝑥) − 𝜃) = 0 in Ω,

𝜃 = 0 on 𝜕Ω,

(15)

for any 𝐴(𝑥) > 𝜇
𝑖
𝜆
1
. For brevity, we denote

𝑢
(1)
= 𝜃
𝜇
1
,𝑎
1
(𝑥)
, 𝑢

(2)
= 𝜃
𝜇
2
,𝑎
2
(𝑥)
, 𝑢

(3)
= 𝜃
𝜇
3
,𝑎
3
(𝑥)
,

𝑢
(12)

= 𝜃
𝜇
1
,(𝑎
1
(𝑥)−𝑀

2
𝑏
12
(𝑥))

, 𝑢
(21)

= 𝜃
𝜇
2
,(𝑎
2
(𝑥)−𝑀

1
𝑏
21
(𝑥))

,

𝑢
(13)

= 𝜃
𝜇
1
,(𝑎
1
(𝑥)−𝑀

3
𝑏
13
(𝑥))

, 𝑢
(31)

= 𝜃
𝜇
3
,(𝑎
3
(𝑥)−𝑀

1
𝑏
31
(𝑥))

,

𝑢
(23)

= 𝜃
𝜇
2
,(𝑎
2
(𝑥)−𝑀

3
𝑏
23
(𝑥))

, 𝑢
(32)

= 𝜃
𝜇
3
,(𝑎
3
(𝑥)−𝑀

2
𝑏
32
(𝑥))

.

(16)

They are all positive functions in Ω.

Theorem 9. Assume that all the hypotheses of Theorem 7 are
satisfied.

(1) If

𝑏
2

12
(𝑥) 𝑢
(1)

𝑏2
11
(𝑥) 𝑢(21)

+ 2
𝑏
12
(𝑥) 𝑏
21
(𝑥)

𝑏
11
(𝑥) 𝑏
22
(𝑥)

+
𝑏
2

21
(𝑥) 𝑢
(2)

𝑏2
22
(𝑥) 𝑢(12)

< 4, (17)

then the strictly positive steady state solution
(𝑢̃
(12)

(𝑥), 𝑢̃
(21)

(𝑥)) of system (8) is unique; similarly

(2) if

𝑏
2

13
(𝑥) 𝑢
(1)

𝑏2
11
(𝑥) 𝑢(31)

+ 2
𝑏
13
(𝑥) 𝑏
31
(𝑥)

𝑏
11
(𝑥) 𝑏
33
(𝑥)

+
𝑏
2

31
(𝑥) 𝑢
(3)

𝑏2
33
(𝑥) 𝑢(13)

< 4, (18)

then the steady state solution (𝑢̃
(13)

(𝑥), 𝑢̃
(31)

(𝑥)) of
system (9) is unique;

(3) if

𝑏
2

23
(𝑥) 𝑢
(2)

𝑏2
22
(𝑥) 𝑢(32)

+ 2
𝑏
23
(𝑥) 𝑏
32
(𝑥)

𝑏
22
(𝑥) 𝑏
33
(𝑥)

+
𝑏
2

32
(𝑥) 𝑢
(3)

𝑏2
33
(𝑥) 𝑢(23)

< 4, (19)

then the steady state solution (𝑢̃
(23)

(𝑥), 𝑢̃
(32)

(𝑥)) of
system (10) is unique.

Remark 10. For fixed functions 𝑎
𝑖
(𝑥) > 0, 𝑏

𝑖𝑖
(𝑥) > 0,

(𝑖 = 1, 2, 3), hypothesis (17) will be satisfied for 𝑏
12
(𝑥),

𝑏
21
(𝑥) ≥ 0 sufficiently small. This is true because of Hopf ’s

strong maximal value theorem, and also because 𝑢(12) (resp.,
𝑢
(21)) increases as 𝑏

12
(𝑥) (resp., 𝑏

21
(𝑥)) decreases for 𝑥 ∈

Ω. Thus (𝑏2
21
(𝑥)𝑢
(2)
/𝑏
2

22
(𝑥)𝑢
(12)

) (resp., 𝑏2
12
(𝑥)𝑢
(1)
/𝑏
2

11
(𝑥)𝑢
(21))

decreases as 𝑏
12
(𝑥) (resp., 𝑏

21
(𝑥)) decreases. Similarly,

hypotheses (18) and (19) will be satisfied if 𝑏
13
(𝑥), 𝑏

31
(𝑥),

𝑏
23
(𝑥), and 𝑏

32
(𝑥) are sufficiently small.

Proof. We only give the proof of part (1) in Theorem 9, since
the arguments of part (2) and part (3) are similar.

Assume that (𝑢̃(12)(𝑥), 𝑢̃(21)(𝑥)), (Ṽ(12)(𝑥), Ṽ(21)(𝑥)) are two
strictly positive steady state solutions of system (8) in Ω.

Let

𝑝 (𝑥) = 𝑢̃
(12)

(𝑥) − Ṽ(12) (𝑥) ,

𝑞 (𝑥) = 𝑢̃
(21)

(𝑥) − Ṽ(21) (𝑥)

𝐼
12
= 𝑏
11
(𝑥) Ṽ(12) (𝑥) 𝑝 (𝑥) + 𝑏

12
(𝑥) Ṽ(12) (𝑥) 𝑞 (𝑥)

𝐼
21
= 𝑏
21
(𝑥) 𝑢̃
(21)

(𝑥) 𝑝 (𝑥) + 𝑏
22
(𝑥) 𝑢̃
(21)

(𝑥) 𝑞 (𝑥) ;

(20)

then

𝜇
1
Δ𝑝 (𝑥) + [𝑎

1
(𝑥) − 𝑏

11
(𝑥) 𝑢̃
(12)

(𝑥)

−𝑏
12
(𝑥) 𝑢̃
(21)

(𝑥)] 𝑝 (𝑥) − 𝐼
12
= 0

in Ω,

𝜇
2
Δ𝑞 (𝑥) + [𝑎

2
(𝑥) − 𝑏

21
(𝑥) Ṽ(12) (𝑥)

−𝑏
22
(𝑥) Ṽ(21) (𝑥)] 𝑞 (𝑥) − 𝐼

21
= 0

in Ω,

𝑝 (𝑥) = 𝑞 (𝑥) = 0 on 𝜕Ω.

(21)
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Since 𝑢̃(12)(𝑥) is a strictly positive solution of

𝜇
1
Δ𝜓 + [𝑎

1
(𝑥) − 𝑏

11
(𝑥) 𝑢̃
(12)

(𝑥)

−𝑏
12
(𝑥) 𝑢̃
(21)

(𝑥)] 𝜓 + 𝛼𝜓 = 0

in Ω,

𝜓 = 0 on 𝜕Ω,

(22)

with 𝛼 = 0, the number 𝛼 = 0must be the smallest eigenvalue
of the above problem.Moreover, by variational properties, we
have

∫
Ω

𝑧 (−𝜇
1
Δ𝑧 − [𝑎

1
(𝑥) − 𝑏

11
(𝑥) 𝑢̃
(12)

(𝑥)

−𝑏
12
(𝑥) 𝑢̃
(21)

(𝑥)] 𝑧) 𝑑𝑥 ≥ 0,

(23)

for any 𝑧 ∈ 𝐶
2
(Ω) which vanishes on 𝜕Ω. Similarly, since

Ṽ(21)(𝑥) is strictly positive solution of

𝜇
2
Δ𝜓 + [𝑎

2
(𝑥) − 𝑏

21
(𝑥) Ṽ(12) (𝑥)

−𝑏
22
(𝑥) Ṽ(21) (𝑥)] 𝜓 + 𝛼𝜓 = 0

in Ω,

𝜓 = 0 on 𝜕Ω,

(24)

with 𝛼 = 0, the number 𝛼 = 0must be the smallest eigenvalue
of the above problem. Moreover,

∫
Ω

𝑧 (−𝜇
2
Δ𝑧 − [𝑎

2
(𝑥) − 𝑏

21
(𝑥) Ṽ(12) (𝑥)

−𝑏
22
(𝑥) Ṽ(21) (𝑥)] 𝑧) 𝑑𝑥 ≥ 0,

(25)

for any 𝑧 ∈ 𝐶2(Ω)which vanishes on 𝜕Ω. Multiplying the first
equation of (21) by −𝑝(𝑥), the second by −𝑞(𝑥), integrating
overΩ, and adding, we deduce from (23) and (25) that

∫
Ω

[𝑏
11
(𝑥) Ṽ(12) (𝑥) 𝑝2 (𝑥)

+ (𝑏
12
(𝑥) Ṽ(12) (𝑥) + 𝑏

21
(𝑥) 𝑢̃
(21)

(𝑥)) 𝑝 (𝑥) 𝑞 (𝑥)

+𝑏
22
(𝑥) 𝑢̃
(21)

(𝑥) 𝑞
2
(𝑥)] 𝑑𝑥 ≤ 0.

(26)

By comparison of scalar equations using upper and lower
solutions we can readily obtain for 𝑖 = 1, 2, 𝑥 ∈ Ω,

(
1

𝑏
11
(𝑥)

) 𝑢
(12)

≤ 𝑢̃
(12)

, Ṽ(12) ≤ (
1

𝑏
11
(𝑥)

) 𝑢
(1)
,

(
1

𝑏
22
(𝑥)

) 𝑢
(21)

≤ 𝑢̃
(21)

, Ṽ(21) ≤ (
1

𝑏
22
(𝑥)

) 𝑢
(2)
.

(27)

From (27), we have

𝑏
22
(𝑥) 𝑏
2

12
(𝑥) 𝑢
(1)

𝑏
11
(𝑥) 𝑢(21)

+ 2𝑏
12
(𝑥) 𝑏
21
(𝑥) +

𝑏
11
(𝑥) 𝑏
2

21
(𝑥) 𝑢
(2)

𝑏
22
(𝑥) 𝑢(12)

> 𝑏
2

12
(𝑥)

Ṽ(12) (𝑥)
𝑢̃(21) (𝑥)

+ 2𝑏
12
(𝑥) 𝑏
21
(𝑥) + 𝑏

2

21
(𝑥)

𝑢̃
(21)

(𝑥)

Ṽ(12) (𝑥)
(28)

in Ω. It follows from (17) that

𝑏
2

12
(𝑥)

Ṽ(12) (𝑥)
𝑢̃(21) (𝑥)

+ 2𝑏
12
(𝑥) 𝑏
21
(𝑥)

+ 𝑏
2

21
(𝑥)

𝑢̃
(21)

(𝑥)

Ṽ(12) (𝑥)
< 4𝑏
11
(𝑥) 𝑏
22
(𝑥) , in Ω.

(29)

Then it is easy to see that the quadratic expression in the
integrand of (26) is positive definite for each 𝑥 ∈ Ω.
Consequently, we must have 𝑝(𝑥) and 𝑞(𝑥) identically equal
to zero inΩ.That is (𝑢̃(12)(𝑥), 𝑢̃(21)(𝑥)) ≡ (Ṽ(12)(𝑥), Ṽ(21)(𝑥)) in
Ω.

Now we are ready to develop the permanent coexistence
results of the system (1). To construct the average Lyapunov
functions, we will use the positive eigenfunctions 𝜓

1
, 𝜓
2
, and

𝜓
3
corresponding to the principal eigenvalues 𝜎

1
, 𝜎
2
, and 𝜎

3

of

𝜇
1
Δ𝜓
1
+ 𝜓
1
(𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

= 𝜎𝜓
1

in Ω,

𝜓
1
= 0 on 𝜕Ω,

(30)

𝜇
2
Δ𝜓
2
+ 𝜓
2
(𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(13)

− 𝑏
23
(𝑥) 𝑢̃
(31)

)

= 𝜎𝜓
2

in Ω,

𝜓
2
= 0 on 𝜕Ω,

(31)

𝜇
3
Δ𝜓
3
+ 𝜓
3
(𝑎
3
(𝑥) − 𝑏

31
(𝑥) 𝑢̃
(12)

− 𝑏
32
(𝑥) 𝑢̃
(21)

)

= 𝜎𝜓
3

in Ω,

𝜓
3
= 0 on 𝜕Ω,

(32)

respectively.

Theorem 11. Suppose that (11)–(13), (17)–(19) hold, and the
principal eigenvalues 𝜎

1
, 𝜎
2
, and 𝜎

3
of (30), (31), and (32),

respectively, are all positive. Assume also that

𝜎
1
+ 𝑏
12
(𝑥) 𝑢̃
(23)

+ 𝑏
13
(𝑥) 𝑢̃
(32)

> max {𝑏
12
(𝑥) 𝑢
2
, 𝑏
13
(𝑥) 𝑢
3
} ,

𝜎
2
+ 𝑏
21
(𝑥) 𝑢̃
(13)

+ 𝑏
23
(𝑥) 𝑢̃
(31)

> max {𝑏
21
(𝑥) 𝑢
1
, 𝑏
23
(𝑥) 𝑢
3
} ,

𝜎
3
+ 𝑏
31
(𝑥) 𝑢̃
(12)

+ 𝑏
32
(𝑥) 𝑢̃
(21)

> max {𝑏
31
(𝑥) 𝑢
1
, 𝑏
32
(𝑥) 𝑢
2
} ,

(33)

for all 𝑥 ∈ Ω; then the semiflow on [𝐶
1

0
(Ω)]
3 generated

by (1) under homogeneous Dirichlet boundary conditions is
permanent.

Proof. The hypotheses imply that (1) is dissipative and that
the 𝜔-limit set in the boundary of the positive cone consists
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of the following seven cases: (0, 0, 0), (𝑢
1
, 0, 0), (0, 𝑢

2
, 0),

(0, 0, 𝑢
3
), (𝑢̃(12), 𝑢̃(21), 0), (𝑢̃(13), 0, 𝑢̃(31)), and (0, 𝑢̃

(23)
, 𝑢̃
(32)

).
Thus we need only find a suitable average Lyapunov function
to conclude permanence. Since the semiflow is dissipative,
we may restrict our attention to a bounded absorbing subset
𝑋 of the positive cone in [𝐶

1

0
(Ω)]
3 that contains the global

attractor whose existence is asserted in Theorem 1. Let 𝑆
denote the intersection of𝑋with the boundary of the positive
cone. Choose eigenfunctions𝜓

1
,𝜓
2
,𝜓
3
> 0 for (30), (31), and

(32), respectively, and define

𝑃 ((V
1
, V
2
, V
3
))

= (∫
Ω

𝜓
1
V
1
𝑑𝑥)(∫

Ω

𝜓
2
V
2
𝑑𝑥)(∫

Ω

𝜓
3
V
3
𝑑𝑥)

= exp [log∫
Ω

𝜓
1
V
1
𝑑𝑥 + log∫

Ω

𝜓
2
V
2
𝑑𝑥

+ log∫
Ω

𝜓
3
V
3
𝑑𝑥] .

(34)

We have for (𝑢
1
, 𝑢
2
, 𝑢
3
) ∈ 𝑆 that

𝛼 (𝑡, (𝑢
1
, 𝑢
2
, 𝑢
3
)) = lim inf
(V1,V2,V3)→ (𝑢1,𝑢2,𝑢3)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝑃 ((V
1
, V
2
, V
3
) ⋅ 𝑡)

𝑃 ((V
1
, V
2
, V
3
))

(35)

we need sup
𝑡>0
𝛼(𝑡, (𝑢

1
, 𝑢
2
, 𝑢
3
)) > 0 for (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈ 𝑆

and sup
𝑡>0
𝛼(𝑡, (𝑢

1
, 𝑢
2
, 𝑢
3
)) > 1 for (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈ 𝜔(𝑆). Let

(𝑤
1
(𝑡), 𝑤
2
(𝑡), 𝑤
3
(𝑡)) = ((V

1
, V
2
, V
3
)⋅𝑡). Computation using (34)

yields

𝑃 ((V
1
, V
2
, V
3
) ⋅ 𝑡)

𝑃 ((V
1
, V
2
, V
3
))

= exp [(log∫
Ω

𝜓
1
𝑤
1
𝑑𝑥|
𝑡
− log∫

Ω

𝜓
1
𝑤
1
𝑑𝑥|
0
)

+ (log∫
Ω

𝜓
2
𝑤
2
𝑑𝑥|
𝑡
− log∫

Ω

𝜓
2
𝑤
2
𝑑𝑥|
0
)

+(log∫
Ω

𝜓
3
𝑤
3
𝑑𝑥|
𝑡
− log∫

Ω

𝜓
3
𝑤
3
𝑑𝑥|
0
)]

= exp[∫
𝑡

0

(
∫
Ω
𝜓
1
𝑤
1𝑡
𝑑𝑥

∫
Ω
𝜓
1
𝑤
1
𝑑𝑥

) + ∫

𝑡

0

(
∫
Ω
𝜓
2
𝑤
2𝑡
𝑑𝑥

∫
Ω
𝜓
2
𝑤
2
𝑑𝑥

)

+ ∫

𝑡

0

(
∫
Ω
𝜓
3
𝑤
3𝑡
𝑑𝑥

∫
Ω
𝜓
3
𝑤
3
𝑑𝑥

)] .

(36)

We have for 𝑡 > 0

∫
Ω

𝜓
1
𝑤
1𝑡
𝑑𝑥

= ∫
Ω

𝜓
1
[𝜇
1
Δ𝑤
1
+ 𝑤
1
(𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑤
1

−𝑏
12
(𝑥) 𝑤
2
− 𝑏
13
(𝑥) 𝑤
3
)] 𝑑𝑥

= ∫
Ω

[(𝜇
1
Δ𝜓
1
) 𝑤
1
+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥)𝑤
1

−𝑏
12
(𝑥)𝑤
2
− 𝑏
13
(𝑥) 𝑤
3
) 𝜓
1
𝑤
1
] 𝑑𝑥

= ∫
Ω

[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑤
1
− 𝑏
12
(𝑥)𝑤
2

−𝑏
13
(𝑥) 𝑤
3
)] 𝜓
1
𝑤
1
𝑑𝑥

= ∫
Ω

[𝜎
1
− 𝑏
11
(𝑥) 𝑤
1
− 𝑏
12
(𝑥) (𝑤

2
− 𝑢̃
(23)

)

−𝑏
13
(𝑥) (𝑤

3
− 𝑢̃
(32)

)] 𝜓
1
𝑤
1
𝑑𝑥.

(37)

Similarly,

∫
Ω

𝜓
2
𝑤
2𝑡
𝑑𝑥

= ∫
Ω

[𝜎
2
− (𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(13)

− 𝑏
23
(𝑥) 𝑢̃
(31)

)

+ (𝑎
2
(𝑥) − 𝑏

22
(𝑥) 𝑤
2
− 𝑏
21
(𝑥)𝑤
1

−𝑏
23
(𝑥) 𝑤
3
) ] 𝜓
2
𝑤
2
𝑑𝑥

= ∫
Ω

[𝜎
2
− 𝑏
22
(𝑥)𝑤
2
− 𝑏
21
(𝑥) (𝑤

1
− 𝑢̃
(13)

)

−𝑏
23
(𝑥) (𝑤

3
− 𝑢̃
(31)

)] 𝜓
2
𝑤
2
𝑑𝑥,

(38)

∫
Ω

𝜓
3
𝑤
3𝑡
𝑑𝑥

= ∫
Ω

[𝜎
3
− (𝑎
3
(𝑥) − 𝑏

31
(𝑥) 𝑢̃
(12)

− 𝑏
32
(𝑥) 𝑢̃
(21)

)

+ (𝑎
3
(𝑥) − 𝑏

33
(𝑥) 𝑤
3
− 𝑏
31
(𝑥) 𝑤
1

−𝑏
32
(𝑥) 𝑤
2
) ] 𝜓
2
𝑤
2
𝑑𝑥

= ∫
Ω

[𝜎
3
− 𝑏
33
(𝑥)𝑤
3
− 𝑏
31
(𝑥) (𝑤

1
− 𝑢̃
(12)

)

−𝑏
32
(𝑥) (𝑤

2
− 𝑢̃
(21)

)] 𝜓
3
𝑤
3
𝑑𝑥.

(39)
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Since𝑋 is bounded,

𝜎
1
− 𝑏
11
(𝑥) 𝑤
1
− 𝑏
12
(𝑥) (𝑤

2
− 𝑢̃
(23)

)

− 𝑏
13
(𝑥) (𝑤

3
− 𝑢̃
(32)

) ,

𝜎
2
− 𝑏
22
(𝑥) 𝑤
2
− 𝑏
21
(𝑥) (𝑤

1
− 𝑢̃
(13)

)

− 𝑏
23
(𝑥) (𝑤

3
− 𝑢̃
(31)

) ,

𝜎
3
− 𝑏
33
(𝑥) 𝑤
3
− 𝑏
31
(𝑥) (𝑤

1
− 𝑢̃
(12)

)

− 𝑏
32
(𝑥) (𝑤

2
− 𝑢̃
(21)

)

(40)

are bounded below on 𝑋 \ 𝑆, so that the ratios
(∫
Ω
𝜓
𝑖
𝑤
𝑖𝑡
𝑑𝑥/ ∫
Ω
𝜓
𝑖
𝑤
𝑖
𝑑𝑥) are bounded below. It follows

that 𝑃((V
1
, V
2
, V
3
) ⋅ 𝑡)/𝑃((V

1
, V
2
, V
3
)) has a strictly positive

lower bounded since the expression inside the exponential
in (36) is bounded away from −∞. To see what happens as
(V
1
, V
2
, V
3
) → 𝜔(𝑆), we must examine how

∫
Ω

[𝜎
1
− 𝑏
11
(𝑥) 𝑤
1
− 𝑏
12
(𝑥) (𝑤

2
− 𝑢̃
(23)

)

−𝑏
13
(𝑥) (𝑤

3
− 𝑢̃
(32)

)] 𝜓
1
𝑤
1
𝑑𝑥

× (∫
Ω

𝜓
1
𝑤
1
𝑑𝑥)

−1

+ ∫
Ω

[𝜎
2
− 𝑏
22
(𝑥) 𝑤
2
− 𝑏
21
(𝑥) (𝑤

1
− 𝑢̃
(13)

)

−𝑏
23
(𝑥) (𝑤

3
− 𝑢̃
(31)

)] 𝜓
2
𝑤
2
𝑑𝑥

× (∫
Ω

𝜓
2
𝑤
2
𝑑𝑥)

−1

+ ∫
Ω

[𝜎
3
− 𝑏
33
(𝑥) 𝑤
3
− 𝑏
31
(𝑥) (𝑤

1
− 𝑢̃
(12)

)

−𝑏
32
(𝑥) (𝑤

2
− 𝑢̃
(21)

)] 𝜓
3
𝑤
3
𝑑𝑥

× (∫
Ω

𝜓
3
𝑤
3
𝑑𝑥)

−1

(41)

behaves as (V
1
, V
2
, V
3
) → (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈ 𝜔(𝑆), (V

1
, V
2
, V
3
) ∈

𝑋 \ 𝑆. By the continuity of the semiflow 𝜋, 𝑤
1
, 𝑤
2
, and 𝑤

3

will be uniformly close to V
1
, V
2
, and V

3
, respectively, for 𝑡 > 0

sufficiently small. Hence, if we can show that the expression

𝜎
∗
(V
1
, V
2
, V
3
)

= ∫
Ω

[𝜎
1
− 𝑏
11
(𝑥) V
1
− 𝑏
12
(𝑥) (V

2
− 𝑢̃
(23)

)

−𝑏
13
(𝑥) (V

3
− 𝑢̃
(32)

)] 𝜓
1
V
1
𝑑𝑥

× (∫
Ω

𝜓
1
V
1
𝑑𝑥)

−1

+ ∫
Ω

[𝜎
2
− 𝑏
22
(𝑥) V
2
− 𝑏
21
(𝑥) (V

1
− 𝑢̃
(13)

)

−𝑏
23
(𝑥) (V

3
− 𝑢̃
(31)

)] 𝜓
2
V
2
𝑑𝑥

× (∫
Ω

𝜓
2
V
2
𝑑𝑥)

−1

+ ∫
Ω

[𝜎
3
− 𝑏
33
(𝑥) V
3
− 𝑏
31
(𝑥) (V

1
− 𝑢̃
(12)

)

−𝑏
32
(𝑥) (V

2
− 𝑢̃
(21)

)] 𝜓
3
V
3
𝑑𝑥

× (∫
Ω

𝜓
3
V
3
𝑑𝑥)

−1

(42)

always has a positive lim inf as (V
1
, V
2
, V
3
) → (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈

𝜔(𝑆), then by (35)–(39), we have 𝛼(𝑡, (𝑢
1
, 𝑢
2
, 𝑢
3
)) > 1 for

(𝑢
1
, 𝑢
2
, 𝑢
3
) ∈ 𝜔(𝑆) and 𝑡 sufficiently small.

If we let (V
1
, V
2
, V
3
) → (0, 0, 0), then

𝜎
1
− 𝑏
11
(𝑥) V
1
− 𝑏
12
(𝑥) (V

2
− 𝑢̃
(23)

) − 𝑏
13
(𝑥) (V

3
− 𝑢̃
(32)

)

󳨀→ 𝜎
1
+ 𝑏
12
(𝑥) 𝑢̃
(23)

+ 𝑏
13
(𝑥) 𝑢̃
(32)

≥ 𝜎
1
> 0,

𝜎
2
− 𝑏
22
(𝑥) V
2
− 𝑏
21
(𝑥) (V

1
− 𝑢̃
(13)

) − 𝑏
23
(𝑥) (V

3
− 𝑢̃
(31)

)

󳨀→ 𝜎
2
+ 𝑏
21
(𝑥) 𝑢̃
(13)

+ 𝑏
23
(𝑥) 𝑢̃
(31)

≥ 𝜎
2
> 0,

𝜎
3
− 𝑏
33
(𝑥) V
3
− 𝑏
31
(𝑥) (V

1
− 𝑢̃
(12)

) − 𝑏
32
(𝑥) (V

2
− 𝑢̃
(21)

)

󳨀→ 𝜎
3
+ 𝑏
31
(𝑥) 𝑢̃
(12)

+ 𝑏
32
(𝑥) 𝑢̃
(21)

≥ 𝜎
3
> 0.

(43)

Then
lim inf
(V1,V2,V3)→(0,0,0)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) ≥ 𝜎
1
+ 𝜎
2
+ 𝜎
3
> 0.

(44)

As (V
1
, V
2
, V
3
) → (𝑢

1
, 0, 0),

∫
Ω

[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥) V
1
− 𝑏
12
(𝑥) V
2

−𝑏
13
(𝑥) V
3
) ] 𝜓
1
V
1
𝑑𝑥

󳨀→ ∫
Ω

[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑢
1
) ] 𝜓
1
𝑢
1
𝑑𝑥.

(45)

Also

∫
Ω

(𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑢
1
) 𝜓
1
𝑢
1
𝑑𝑥

= −∫
Ω

𝜓
1
𝜇
1
Δ𝑢
1
𝑑𝑥

= −∫
Ω

𝑢
1
𝜇
1
Δ𝜓
1
𝑑𝑥

= −∫
Ω

𝑢
1
𝜓
1
[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

−𝑏
13
(𝑥) 𝑢̃
(32)

)] 𝑑𝑥

(46)
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so that as (V
1
, V
2
, V
3
) → (𝑢

1
, 0, 0),

∫
Ω

[𝜎
1
− 𝑏
11
(𝑥) V
1
− 𝑏
12
(𝑥) (V

2
− 𝑢̃
(23)

)

−𝑏
13
(𝑥) (V

3
− 𝑢̃
(32)

)] 𝜓
1
V
1
𝑑𝑥 󳨀→ 0.

(47)

Since∫
Ω
𝜓
1
V
1
𝑑𝑥 → ∫

Ω
𝜓
1
𝑢
1
𝑑𝑥 > 0, the first ratio of integrals

in (42) has limit 0 as (V
1
, V
2
, V
3
) → (𝑢

1
, 0, 0). For the latter

two ratios of integrals, note that as (V
1
, V
2
, V
3
) → (𝑢

1
, 0, 0).

By the assumption (33), we have

𝜎
2
− 𝑏
21
(𝑥) (𝑢

1
− 𝑢̃
(13)

) + 𝑏
23
(𝑥) 𝑢̃
(31)

> 0,

𝜎
3
− 𝑏
31
(𝑥) (𝑢

1
− 𝑢̃
(12)

) + 𝑏
32
(𝑥) 𝑢̃
(21)

> 0.

(48)

Hence we have

lim inf
(V1,V2,V3)→ (𝑢1,0,0)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) > 0.

(49)

As (V
1
, V
2
, V
3
) → (0, 𝑢

2
, 0), computations similar to (45) and

(46) show that

∫
Ω

[𝜎
2
− 𝑏
22
(𝑥) V
2
− 𝑏
21
(𝑥) (V

1
− 𝑢̃
(13)

)

−𝑏
23
(𝑥) (V

3
− 𝑢̃
(31)

)] 𝜓
2
V
2
𝑑𝑥

× (∫
Ω

𝜓
3
V
3
𝑑𝑥)

−1

󳨀→ 0.

(50)

By assumption (33), we have

𝜎
1
− 𝑏
12
(𝑥) (𝑢

2
− 𝑢̃
(23)

) + 𝑏
13
(𝑥) 𝑢̃
(32)

> 0,

𝜎
3
+ 𝑏
31
(𝑥) 𝑢̃
(12)

− 𝑏
32
(𝑥) (𝑢

2
− 𝑢̃
(21)

) > 0.

(51)

Hence we have

lim inf
(V1,V2,V3)→ (0,𝑢2,0)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) > 0.

(52)

As (V
1
, V
2
, V
3
) → (0, 0, 𝑢

3
), computations similar to (45) and

(46) show that

∫
Ω

[𝜎
3
− 𝑏
33
(𝑥) V
3
− 𝑏
31
(𝑥) (V

1
− 𝑢̃
(12)

)

−𝑏
32
(𝑥) (V

2
− 𝑢̃
(21)

)] 𝜓
3
V
3
𝑑𝑥

× (∫
Ω

𝜓
3
V
3
𝑑𝑥)

−1

󳨀→ 0.

(53)

By assumption (33), we get

𝜎
1
+ 𝑏
12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) (𝑢

3
− 𝑢̃
(32)

) > 0,

𝜎
2
+ 𝑏
21
(𝑥) 𝑢̃
(13)

− 𝑏
23
(𝑥) (𝑢

3
− 𝑢̃
(31)

) > 0.

(54)

Hence we have

lim inf
(V1,V2,V3)→ (0,0,𝑢3)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) > 0.

(55)

As (V
1
, V
2
, V
3
) → (𝑢̃

(12)
, 𝑢̃
(21)

, 0),

∫
Ω

[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥) V
1
− 𝑏
12
(𝑥) V
2

−𝑏
13
(𝑥) V
3
) ] 𝜓
1
V
1
𝑑𝑥

󳨀→ ∫
Ω

[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

− 𝑏
13
(𝑥) 𝑢̃
(32)

)

+ (𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑢̃
(12)

−𝑏
12
(𝑥) 𝑢̃
(21)

)] 𝜓
1
𝑢̃
(12)

𝑑𝑥.

(56)

Also

∫
Ω

[𝑎
1
(𝑥) − 𝑏

11
(𝑥) 𝑢̃
(12)

− 𝑏
12
(𝑥) 𝑢̃
(21)

] 𝜓
1
𝑢̃
(12)

𝑑𝑥

= −∫
Ω

𝜓
1
𝜇
1
Δ𝑢̃
(12)

𝑑𝑥

= −∫
Ω

𝑢̃
(12)

𝜇
1
Δ𝜓
1
𝑑𝑥

= −∫
Ω

𝑢̃
(12)

𝜓
1
[𝜎
1
− (𝑎
1
(𝑥) − 𝑏

12
(𝑥) 𝑢̃
(23)

−𝑏
13
(𝑥) 𝑢̃
(32)

)] 𝑑𝑥

(57)

so that as (V
1
, V
2
, V
3
) → (𝑢̃

(12)
, 𝑢̃
(21)

, 0),

∫
Ω

[𝜎
1
− 𝑏
11
(𝑥) V
1
− 𝑏
12
(𝑥) (V

2
− 𝑢̃
(23)

)

−𝑏
13
(𝑥) (V

3
− 𝑢̃
(32)

)] 𝜓
1
V
1
𝑑𝑥

× (∫
Ω

𝜓
1
V
1
𝑑𝑥)

−1

󳨀→ 0.

(58)

For the second ratio of integrals,

∫
Ω

[𝜎
2
− (𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(13)

− 𝑏
23
(𝑥) 𝑢̃
(31)

)

+ (𝑎
2
(𝑥) − 𝑏

21
(𝑥) V
1
− 𝑏
22
(𝑥) V
2
− 𝑏
23
(𝑥) V
3
)] 𝜓
2
V
2
𝑑𝑥

󳨀→ ∫
Ω

[𝜎
2
− (𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(13)

− 𝑏
23
(𝑥) 𝑢̃
(31)

)

+ (𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(12)

− 𝑏
22
(𝑥) 𝑢̃
(21)

)] 𝜓
2
𝑢̃
(21)

𝑑𝑥.

(59)
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Also

∫
Ω

[𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(12)

− 𝑏
22
(𝑥) 𝑢̃
(21)

] 𝜓
2
𝑢̃
(12)

𝑑𝑥

= −∫
Ω

𝜓
2
𝜇
2
Δ𝑢̃
(21)

𝑑𝑥

= −∫
Ω

𝑢̃
(21)

𝜇
2
Δ𝜓
2
𝑑𝑥

= −∫
Ω

𝑢̃
(21)

𝜓
2
[𝜎
2
− (𝑎
2
(𝑥) − 𝑏

21
(𝑥) 𝑢̃
(13)

−𝑏
23
(𝑥) 𝑢̃
(31)

)] 𝑑𝑥

(60)

so that as (V
1
, V
2
, V
3
) → (𝑢̃

(12)
, 𝑢̃
(21)

, 0),

∫
Ω

[𝜎
2
− 𝑏
22
(𝑥) V
2
− 𝑏
21
(𝑥) (V

1
− 𝑢̃
(13)

)

−𝑏
23
(𝑥) (V

3
− 𝑢̃
(31)

)] 𝜓
2
V
2
𝑑𝑥

× (∫
Ω

𝜓
2
V
2
𝑑𝑥)

−1

󳨀→ 0.

(61)

For the third ratio of integrals, as (V
1
, V
2
, V
3
) → (𝑢̃

(12)
,

𝑢̃
(21)

, 0),

𝜎
3
− 𝑏
33
(𝑥) V
3
− 𝑏
31
(𝑥) (V

1
− 𝑢̃
(12)

) − 𝑏
32
(𝑥) (V

2
− 𝑢̃
(21)

)

󳨀→ 𝜎
3
> 0.

(62)

Hence we have

lim inf
(V1,V2,V3)→(𝑢̃(12) ,𝑢̃(12) ,0)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) ≥ 𝜎
3
> 0.

(63)

Using the same method, we can get the conclusion about the
other two cases.

As (V
1
, V
2
, V
3
) → (𝑢̃

(13)
, 0, 𝑢̃
(31)

),

lim inf
(V1,V2,V3)→(𝑢̃(13) ,0,𝑢̃(31))
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) ≥ 𝜎
2
> 0.

(64)

and as (V
1
, V
2
, V
3
) → (0, 𝑢̃

(23)
, 𝑢̃
(32)

),

lim inf
(V1,V2,V3)→(0,𝑢̃(23) ,𝑢̃(32))
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) ≥ 𝜎
1
> 0.

(65)

In conclusion

lim inf
(V1,V2,V3)→𝜔(𝑆)
(V
1
,V
2
,V
3
)∈𝑋\𝑆

𝜎
∗
(V
1
, V
2
, V
3
) > 0

(66)

so that 𝛼(𝑡, (𝑢
1
, 𝑢
2
, 𝑢
3
)) > 1 for (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈ 𝜔(𝑆) and 𝑡

sufficiently small, and permanence follows from the abstract
results of the previous section.

Now we are ready to prove an interesting result, namely,
permanent existence always holds among three “very weak”
competing species. The result may be known, but to our
knowledge, it does not appear in the published literature.

Theorem 12. Suppose that 𝑎
𝑖
(𝑥) > 𝜇

𝑖
𝜆
1
, 𝑏
𝑖𝑖
(𝑥) > 0 for 𝑥 ∈ Ω,

𝑖 = 1, 2, 3. Then there is a constant 𝛿 > 0, such that if 𝑏
𝑖𝑗
< 𝛿

for 𝑖, 𝑗 = 1, 2, 3 with 𝑖 ̸= 𝑗, the semiflow on [𝐶1
0
(Ω)]
3 generated

by (1) under homogeneous Dirichlet boundary conditions is
permanent.

Proof. For fixed 𝑎
𝑖
> 𝜇
𝑖
𝜆
1
and 𝑏
𝑖𝑖
(𝑥) > 0 in Ω, 𝑖 = 1, 2, 3,

when 𝑏
𝑖𝑗
≥ 0 (𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗) are sufficiently small,

conditions (11)–(13) and (17)–(19) are satisfied, and by the
variational expression of principal eigenvalues (see [13]) and
the boundedness of 𝑢̃(𝑖𝑗) (𝑖 ̸= 𝑗) (see Remark 8), the principal
eigenvalues 𝜎

1
, 𝜎
2
, and 𝜎

3
of (30), (31), and (32), respectively,

are all positive. And then it is easy to see that condition (33)
is satisfied when 𝑏

𝑖𝑗
(𝑖 ̸= 𝑗) are even smaller, if necessary. The

proof is completed byTheorem 11.

4. Summary and Discussion

The important aspect of the approach of our main result,
Theorem 11, is that it produces conditions that in terms of
coefficients describing the strength of interactions. The crite-
rions depend only on the behavior near the species equilibria
of the two-dimensional subsystems, which is relatively easy
to examine experimentally. The eigenvalues depending on
the coefficients can be computed explicitly in simple cases,
and there is a huge literature available on their estimation,
numerical approximation, qualitative properties, and so on.
Eigenvalue-based criteria for coexistence can then be used to
reach biological conclusions that have been difficult to deduce
through other methods.

Theorem 12 tell us that if the intercompeting coefficients
are sufficiently small, the system (1) is always permanent,
provided that 𝑎

𝑖
> 𝜇
𝑖
𝜆
1
in Ω, which is, by Lemma 5, every

single species can survive when the other two species become
extinct.This sounds reasonable, and we guess that this is true
for systems of any finitemultiple competing species. A related
topic on the systems of finite multiple competing species with
constant coefficients and Neumann boundary condition can
be found in [17], Theorem 9.

The significant feature of our conditions for permanence
is that they do not require any special assumptions the
uniqueness of coexistence states, the existence of a global
Lyapunov function, or other such properties, and so the
methods used here can be used to other more general
situations.
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