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Circulant type matrices have become an important tool in solving differential equations. In this paper, we consider circulant
type matrices, including the circulant and left circulant and 𝑔-circulant matrices with the sum and product of Fibonacci and
Lucas numbers. Firstly, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix
by constructing the transformation matrices. Furthermore, the invertibility of the left circulant and 𝑔-circulant matrices is also
discussed.We obtain the determinants and the inversematrices of the left circulant and 𝑔-circulantmatrices by utilizing the relation
between left circulant, and 𝑔-circulant matrices and circulant matrix, respectively.

1. Introduction

Circulant matrices may play a crucial role for solving various
differential equations. In [1], Ruiz-Claeyssen and dos Santos
Leal introduced factor circulant matrices: matrices with the
structure of circulants, butwith the entries below the diagonal
being multiplied by the same factor. The diagonalization
of a circulant matrix and the spectral decomposition are
conveniently generalized to block matrices with the structure
of factor circulants. Matrix and partial differential equations
involving factor circulants are considered. Wu and Zou in
[2] discussed the existence and approximation of solutions
of asymptotic or periodic boundary value problems of mixed
functional differential equations. They focused on (5.13) in
[2] with a circulant matrix, whose principal diagonal entries
are zeroes. In [3], some Routh-Hurwitz stability conditions
are generalized to the fractional order case. The authors
considered the 1-system CML (10). They selected a circu-
lant matrix, which reads a tridiagonal matrix. Ahmed and
Elgazzar used coupled map lattices (CML) as an alternative
approach to include spatial effects in fractional order systems
(FOS). Consider the 1-system CML (10) in [4]. They claimed
that the system is stable if all the eigenvalues of the circulant
matrix satisfy (2) in [4]. Trench considered nonautonomous

systems of linear differential equations (1) in [5] with some
constraint on the coefficientmatrix𝐴(𝑡). One case is that𝐴(𝑡)
is a variable block circulant matrix. Kloeden et al. adopted
the simplest approximation schemes for (1) in [6] with the
Euler method, which reads (5) in [6]. They exploited that
the covariance matrix of the increments can be embedded
in a circulant matrix. The total loops can be done by fast
Fourier transformation, which leads to a total computational
cost of 𝑂(𝑚 log𝑚) = 𝑂(𝑛 log 𝑛). Guo et al. concerned on
generic Dn-Hopf bifurcation to a delayed Hopfield-Cohen-
Grossberg model of neural networks (5.17) in [7], where 𝑇
denoted an interconnection matrix. They especially assumed
𝑇 is a symmetric circulant matrix. Lin and Yang discretized
the partial integrodifferential equation (PIDE) in pricing
options with the preconditioned conjugate gradient (PCG)
method, which constructed the circulant preconditioners.
By using FFT, the cost for each linear system is 𝑂(𝑛 log 𝑛),
where 𝑛 is the size of the system in [8]. Lee et al. investigated
a high-order compact (HOC) scheme for the general two-
dimensional (2D) linear partial differential equation (1.1) in
[9] with a mixed derivative. Meanwhile, in order to establish
the 2D combined compact difference (CCD2) scheme, they
rewrote (1.1) in [9] into (2.1) in [9]. Towrite theCCD2 system
in a concise style, they employed circulant matrix to obtain

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 375251, 12 pages
http://dx.doi.org/10.1155/2014/375251

http://dx.doi.org/10.1155/2014/375251


2 Abstract and Applied Analysis

the corresponding whole CCD2 linear system (2.10) in [9],
whose entries are circulant block.

Circulant type matrices have important applications in
various disciplines including image processing, communica-
tions, signal processing, encoding, solving Toeplitz matrix
problems, and least squares problems.They have been put on
firm basis with the work of Davis [10], Jiang and Zhou [11],
and Gray [12].

In [13], the authors pointed out the processes based on the
eigenvalue of circulant type matrices with i.i.d. entries. There
are discussions about the convergence in probability and in
distribution of the spectral norm of circulant typematrices in
[14]. The 𝑔-circulant matrices play an important role in vari-
ous applications as well. For details, please refer to [15, 16] and
the references therein. Ngondiep et al. showed the singular
values of 𝑔-circulants in [17]. In [18, 19], the authors gave the
limiting spectral distributions of left circulant matrices.

The Fibonacci and Lucas sequences are defined by the
following recurrence relations [20, 21], respectively:

𝐹
𝑛+2

= 𝐹
𝑛+1

+ 𝐹
𝑛

where 𝐹
0
= 0, 𝐹

1
= 1,

𝐿
𝑛+2

= 𝐿
𝑛+1

+ 𝐿
𝑛

where 𝐿
0
= 2, 𝐿

1
= 1.

(1)

For 𝑛 ≥ 0, the first few values of the sequences are given
by the following equation:

𝑛 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

𝐹
𝑛
0 1 1 2 3 5 8 13 21 ⋅ ⋅ ⋅

𝐿
𝑛
2 1 3 4 7 11 18 29 47 ⋅ ⋅ ⋅

(2)

Let 𝛼, 𝛽 be the roots of characteristic equation 𝑥2−𝑥−1 =
0; then the Binet formulas of the sequences {𝐹

𝑛
} and {𝐿

𝑛
} have

the form

𝐹
𝑛
=
𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽
, 𝐿

𝑛
= 𝛼
𝑛

+ 𝛽
𝑛

,

𝛼 =
1 + √5

2
, 𝛽 =

1 − √5

2
.

(3)

LetF
𝑛
= 𝐹
𝑛
⋅𝐿
𝑛
andL

𝑛
= 𝐹
𝑛
+𝐿
𝑛
, so we can get two new

sequencesF
𝑛
andL

𝑛
[22].The two sequences are defined by

the following recurrence relations, respectively:

F
𝑛+2

= 3F
𝑛+1

+F
𝑛
, where F

0
= 0, F

1
= 1,

L
𝑛+2

=L
𝑛+1

+L
𝑛
, where L

0
= 2, L

1
= 2.

(4)

For 𝑛 ≥ 0, the first few values of the sequences are given
by the following equation:

𝑛 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

F
𝑛
0 1 3 8 21 55 144 377 987 ⋅ ⋅ ⋅

L
𝑛
2 2 4 6 10 16 26 42 68 ⋅ ⋅ ⋅

(5)

TheF
𝑛
is given by the formulaF

𝑛
= (𝛼
𝑛

1
−𝛽
𝑛

1
)/(𝛼
1
−𝛽
1
),

where 𝛼
1
, 𝛽
1
are the roots of 𝑥2 − 3𝑥 + 1 = 0.L

𝑛
is given by

the formula L
𝑛
= 𝐹
𝑛
+ 𝐿
𝑛
= (𝛼
𝑛

− 𝛽
𝑛

)/(𝛼 − 𝛽) + (𝛼
𝑛

+ 𝛽
𝑛

),
where 𝛼, 𝛽 are the roots of 𝑥2 − 𝑥 − 1 = 0.

Besides, some scholars have given various algorithms
for the determinants and inverses of nonsingular circulant

matrices [10, 11]. Unfortunately, the computational com-
plexities of these algorithms are very amazing with the
order of matrix increasing. However, some authors gave the
explicit determinants and inverse of circulant and skew-
circulant involving Fibonacci and Lucas numbers. For exam-
ple, Dazheng gave the determinant of the Fibonacci-Lucas
quasicyclic matrices in [20]. Shen et al. considered circulant
matrices with Fibonacci and Lucas numbers and presented
their explicit determinants and inverses by constructing
the transformation matrices [21]. Jaiswal evaluated some
determinants of circulant whose elements are the generalized
Fibonacci numbers [23]. Lind presented the determinants of
circulant and skew-circulant involving Fibonacci numbers
[24]. Bozkurt and Tam gave determinants and inverses
of circulant matrices with Jacobsthal and Jacobsthal-Lucas
numbers [25].

In [22], the authors gave some determinantal and perma-
nental representations of F

𝑛
and L

𝑛
and complex factor-

ization formulas. The purpose of this paper is to obtain the
explicit determinants and inverse of circulant type matrices
by some perfect properties ofF

𝑛
andL

𝑛
.

In this paper, we adopt the following two conventions
0
0

= 1, and for any sequence {𝑎
𝑛
}, ∑𝑛
𝑘=𝑖
𝑎
𝑘
= 0 in the case

𝑖 > 𝑛.

Definition 1 (see [10, 11]). In a circulant matrix (or right
circulant matrix [26])

Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
𝑛
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

...
...

...
𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

]
]
]
]

]

, (6)

each row is a cyclic shift of the row above to the right.

Circulant matrix is a special case of a Toeplitz matrix. It is
evidently determined by its first row (or column).

Definition 2 (see [11, 26]). In a left circulantmatrix (or reverse
circulant matrix [13, 14, 18, 19])

LCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

...
...

...
𝑎
𝑛
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

]
]
]
]

]

, (7)

each row is a cyclic shift of the row above to the left.

Left circulant matrix is a special Hankel matrix.

Definition 3 (see [14, 27]). A 𝑔-circulant matrix is an 𝑛 × 𝑛
complex matrix with the following form:

𝐴
𝑔,𝑛
=(

𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛

𝑎
𝑛−𝑔+1

𝑎
𝑛−𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑛−𝑔

𝑎
𝑛−2𝑔+1

𝑎
𝑛−2𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑛−2𝑔

...
... d

...
𝑎
𝑔+1

𝑎
𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑔

), (8)
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where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.

The first row of 𝐴
𝑔,𝑛

is (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by 𝑔
positions (equivalently, 𝑔 mod 𝑛 positions). Note that 𝑔 = 1
or 𝑔 = 𝑛 + 1 yields the standard circulant matrix. If 𝑔 = 𝑛 − 1,
then we obtain the left circulant matrix.

Lemma4 (see [21]). Let𝐴 = Circ(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be a circulant

matrix; then one has

(i) 𝐴 is invertible if and only if 𝑓(𝜔𝑘) ̸= 0, (𝑘 = 0, 1,

2, . . . , 𝑛 − 1), where 𝑓(𝑥) = ∑
𝑛

𝑗=1
𝑎
𝑗
𝑥
𝑗−1 and 𝜔 =

exp(2𝜋𝑖/𝑛);

(ii) If𝐴 is invertible, then the inverse𝐴−1 of𝐴 is a circulant
matrix.

Lemma 5. Define

Δ :=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 1

0 0 0 ⋅ ⋅ ⋅ 1 0

...
... d

...
0 0 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

; (9)

the matrix Δ is an orthogonal cyclic shift matrix (and a
left circulant matrix). It holds that LCirc(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

ΔCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Lemma6 (see [27]). The 𝑛×𝑛matrixQ
𝑔
is unitary if and only

if (𝑛, 𝑔) = 1, whereQ
𝑔
is a 𝑔-circulant matrix with the first row

𝑒
∗

= [1, 0, . . . , 0].

Lemma 7 (see [27]). 𝐴
𝑔,𝑛

is a 𝑔-circulant matrix with the first
row [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
] if and only if 𝐴

𝑔,𝑛
= Q
𝑔
𝐶, where 𝐶 =

Circ(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

2. Determinant and Inverse of a Circulant
Matrix with the Product of the Fibonacci
and Lucas Numbers

In this section, letA
𝑛
= Circ(F

1
,F
2
, . . . ,F

𝑛
) be a circulant

matrix. Firstly, we give the determinant equation of matrix
A
𝑛
. Afterwards, we prove that A

𝑛
is an invertible matrix for

𝑛 > 2, and then we find the inverse of the matrixA
𝑛
.

Theorem 8. Let A
𝑛
= Circ(F

1
,F
2
, . . . ,F

𝑛
) be a circulant

matrix; then one has

detA
𝑛
= (1 −F

𝑛+1
)
𝑛−1

+ (−F
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

1 −F
𝑛+1

−F
𝑛

)

𝑘−1

,

(10)

whereF
𝑛
is the 𝑛th 𝐹

𝑛
⋅ 𝐿
𝑛
number.

Proof. Obviously, detA
1
= 1 satisfies (10). In the case 𝑛 > 1,

let

Γ =

(
(
(
(
(
(

(

1

−3 1

1 1 −3

0 0 1 −3 1

... c c c
0 1 c c
0 1 −3 c 0

0 1 −3 1

)
)
)
)
)
)

)𝑛×𝑛

,

Π
1
=

(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
−F
𝑛

F
1
−F
𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
−F
𝑛

F
1
−F
𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...

0
−F
𝑛

F
1
−F
𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)

)𝑛×𝑛

.

(11)

We can obtain

ΓA
𝑛
Π
1

=
(
(

(

F
1
𝑓
󸀠

𝑛
F
𝑛−1

F
𝑛−2

⋅ ⋅ ⋅ F
2

0 𝑓
𝑛

−F
𝑛−2

−F
𝑛−3

⋅ ⋅ ⋅ −F
1

0 0 F
1
−F
𝑛+1

0 0 F
𝑛

F
1
−F
𝑛+1

...
... F

𝑛

0 0 0 F
1
−F
𝑛+1

)
)

)

,

(12)

where

𝑓
𝑛
= F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

,

𝑓
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

F
𝑘+1
(

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

.

(13)

We obtain

det Γ detA
𝑛
detΠ
1

= F
1
[F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

]

× (F
1
−F
𝑛+1
)
𝑛−2

= F
1
[F
1
−F
𝑛+1

+

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

]



4 Abstract and Applied Analysis

× (F
1
−F
𝑛+1
)
𝑛−2

= (1 −F
𝑛+1
)
𝑛−1

+ (−F
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

1 −F
𝑛+1

−F
𝑛

)

𝑘−1

,

(14)

while

det Γ = detΠ
1
= (−1)

(𝑛−1)(𝑛−2)/2

, (15)

we have

detA
𝑛
= (1 −F

𝑛+1
)
𝑛−1

+ (−F
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

1 −F
𝑛+1

−F
𝑛

)

𝑘−1

.

(16)

Thus, the proof is completed.

Theorem 9. Let A
𝑛
= Circ(F

1
,F
2
, . . . ,F

𝑛
) be a circulant

matrix; if 𝑛 > 2, thenA
𝑛
is an invertible matrix.

Proof. When 𝑛 = 3, in Theorem 8, we have detA
3
= 468 ̸= 0;

henceA
3
is invertible. In the case 𝑛 > 3, sinceF

𝑛
= (𝛼
𝑛

1
−𝛽
𝑛

1
)/

(𝛼
1
− 𝛽
1
), where 𝛼

1
+ 𝛽
1
= 3, 𝛼

1
⋅ 𝛽
1
= 1.We have

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑗=1

F
𝑗
(𝜔
𝑘

)
𝑗−1

=
1

𝛼
1
− 𝛽
1

𝑛

∑

𝑗=1

(𝛼
𝑗

1
− 𝛽
𝑗

1
) (𝜔
𝑘

)
𝑗−1

=
1

𝛼
1
− 𝛽
1

[
𝛼
1
(1 − 𝛼

𝑛

1
)

1 − 𝛼
1
𝜔𝑘

−
𝛽
1
(1 − 𝛽

𝑛

1
)

1 − 𝛽
1
𝜔𝑘

]

=
1

𝛼
1
− 𝛽
1

[
(𝛼
1
− 𝛽
1
) − (𝛼

𝑛+1

1
− 𝛽
𝑛+1

1
)

1 − (𝛼
1
+ 𝛽
1
) 𝜔𝑘 + 𝛼

1
𝛽
1
𝜔2𝑘

]

+
1

𝛼
1
− 𝛽
1

[
𝛼
1
𝛽
1
(𝛼
𝑛

1
− 𝛽
𝑛

1
) 𝜔
𝑘

1 − (𝛼
1
+ 𝛽
1
) 𝜔𝑘 + 𝛼

1
𝛽
1
𝜔2𝑘

]

=
1 −F

𝑛+1
+F
𝑛
𝜔
𝑘

1 − 3𝜔𝑘 + 𝜔2𝑘
(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(17)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙) = 0,
we obtain 1−F

𝑛+1
+F
𝑛
𝜔
𝑙

= 0 for 1−3𝜔𝑙+𝜔2𝑙 ̸= 0; thus, 𝜔𝑙 =
(F
𝑛+1

− 1)/F
𝑛
is a real number. While 𝜔𝑙 = exp(2𝑙𝜋𝑖/𝑛) =

cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛), hence, sin(2𝑙𝜋/𝑛) = 0, so we have
𝜔
𝑙

= −1 for 0 < 2𝑙𝜋/𝑛 < 2𝜋. But 𝑥 = −1 is not the root of
equation 1 −F

𝑛+1
+F
𝑛
𝑥 = 0 (𝑛 > 3). We obtain 𝑓(𝜔𝑘) ̸= 0

for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 1), while 𝑓(1) = ∑
𝑛

𝑗=1
F
𝑗
=

F
𝑛+1

−F
𝑛
− 1 ̸= 0. By Lemma 4, the proof is completed.

Lemma 10. Let the matrixG = [𝑔
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1

be of the form

𝑔
𝑖𝑗
=

{{

{{

{

F
1
−F
𝑛+1
, 𝑖 = 𝑗,

F
𝑛
, 𝑖 = 𝑗 + 1,

0, otherwise,
(18)

and then the inverse G−1 = [𝑔󸀠
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1

of the matrix G is equal
to

𝑔
󸀠

𝑖,𝑗
=

{{

{{

{

(−F
𝑛
)
𝑖−𝑗

(F
1
−F
𝑛+1
)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(19)

Proof. Let 𝑐
𝑖𝑗
= ∑
𝑛−2

𝑘=1
𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
. Obviously, 𝑐

𝑖,𝑗
= 0 for 𝑖 < 𝑗. In

the case 𝑖 = 𝑗, we obtain 𝑐
𝑖𝑖
= 𝑔
𝑖𝑖
𝑔
󸀠

𝑖𝑖
= (F
1
−F
𝑛+1
) ⋅ (1/(F

1
−

F
𝑛+1
)) = 1. For 𝑖 ≥ 𝑗 + 1, we obtain

𝑐
𝑖𝑗
=

𝑛−2

∑

𝑘=1

𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
= 𝑔
𝑖,𝑖−1

𝑔
󸀠

𝑖−1,𝑗
+ 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑗

= F
𝑛
⋅

(−F
𝑛
)
𝑖−𝑗−1

(F
1
−F
𝑛+1
)
𝑖−𝑗

+ (F
1
−F
𝑛+1
) ⋅

(−F
𝑛
)
𝑖−𝑗

(F
1
−F
𝑛+1
)
𝑖−𝑗+1

= 0.

(20)

We verify GG−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is the (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verify G−1G = 𝐼

𝑛−2
. Thus,

the proof is completed.

Theorem 11. Let A
𝑛
= Circ(F

1
,F
2
, . . . ,F

𝑛
) (𝑛 > 2) be a

circulant matrix; then one has

A
−1

𝑛
=
1

𝑓
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

− 3 +

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

1

F
1
−F
𝑛+1

,

−F
𝑛

(F
1
−F
𝑛+1
)
2
,

(−F
𝑛
)
2

(F
1
−F
𝑛+1
)
3
, . . . ,

(−F
𝑛
)
𝑛−3

(F
1
−F
𝑛+1
)
𝑛−2

) ,

(21)

where

𝑓
𝑛
= F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

. (22)
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Proof. Let

Π
2
=

(
(
(
(
(

(

1 −𝑓
󸀠

𝑛
−
𝑓
󸀠

𝑛

𝑓
𝑛

F
𝑛−2

−F
𝑛−1

⋅ ⋅ ⋅ −
𝑓
󸀠

𝑛

𝑓
𝑛

F
1

0 1
F
𝑛−2

𝑓
𝑛

⋅ ⋅ ⋅
F
1

𝑓
𝑛

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)

)

,

(23)

where

𝑓
𝑛
= F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

,

𝑓
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

F
𝑘+1
(

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

.

(24)

We have

ΓA
𝑛
Π
1
Π
2
= D
1
⊕G, (25)

whereD
1
= diag(F

1
, 𝑓
𝑛
) is a diagonal matrix andD

1
⊕G is

the direct sum ofD
1
andG. If we denoteΠ = Π

1
Π
2
, then we

obtain

A
−1

𝑛
= Π (D

−1

1
⊕G
−1

) Γ. (26)

Since the last row elements of the matrix Π are

0, 1,
F
𝑛−2

𝑓
𝑛

,
F
𝑛−3

𝑓
𝑛

, . . . ,
F
2

𝑓
𝑛

,
F
1

𝑓
𝑛

. (27)

By Lemma 10, if we letA−1
𝑛
= Circ(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), its last

row elements are given by the following equations:

𝑥
2
= −

3

𝑓
𝑛

+
1

𝑓
𝑛

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

𝑥
3
=

F
1

𝑓
𝑛
(F
1
−F
𝑛+1
)
,

𝑥
4
=
1

𝑓
𝑛

2

∑

𝑖=1

F
3−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
−

3F
1

𝑓
𝑛
(F
1
−F
𝑛+1
)
,

𝑥
5
=
1

𝑓
𝑛

3

∑

𝑖=1

F
4−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
−
3

𝑓
𝑛

2

∑

𝑖=1

F
3−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

+
F
1

𝑓
𝑛
(F
1
−F
𝑛+1
)
,

...

𝑥
𝑛
=
1

𝑓
𝑛

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
−
3

𝑓
𝑛

𝑛−3

∑

𝑖=1

F
𝑛−2−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

+
1

𝑓
𝑛

𝑛−4

∑

𝑖=1

F
𝑛−3−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

𝑥
1
=
1

𝑓
𝑛

−
3

𝑓
𝑛

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

+
1

𝑓
𝑛

𝑛−3

∑

𝑖=1

F
𝑛−2−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
.

(28)

Let 𝐶(𝑗)
𝑛

= ∑
𝑗

𝑖=1
(F
𝑗+1−𝑖

(−F
𝑛
)
𝑖−1

/(F
1
−F
𝑛+1
)
𝑖

) (𝑗 = 1,

2, . . . , 𝑛 − 2); we have

𝐶
(2)

𝑛
− 3𝐶
(1)

𝑛

= −
3F
1

F
1
−F
𝑛+1

+

2

∑

𝑖=1

F
3−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

=
−F
𝑛

(F
1
−F
𝑛+1
)
2
,

− 3𝐶
(𝑛−2)

𝑛
+ 𝐶
(𝑛−3)

𝑛

= −3

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
+

𝑛−3

∑

𝑖=1

F
𝑛−𝑖−2

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

=
(−3F

1
) (−F

𝑛
)
𝑛−3

(F
1
−F
𝑛+1
)
𝑛−2

+

𝑛−3

∑

𝑖=1

−F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

=

𝑛−2

∑

𝑖=1

−F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

𝐶
(𝑗+2)

𝑛
− 3𝐶
(𝑗+1)

𝑛
+ 𝐶
(𝑗)

𝑛

=

𝑗+2

∑

𝑖=1

F
𝑗+3−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
− 3

𝑗+1

∑

𝑖=1

F
𝑗+2−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

+

𝑗

∑

𝑖=1

F
𝑗+1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖

=
F
2
(−F
𝑛
)
𝑗

(F
1
−F
𝑛+1
)
𝑗+1

+
F
1
(−F
𝑛
)
𝑗+1

(F
1
−F
𝑛+1
)
𝑗+2

−
3F
1
(−F
𝑛
)
𝑗

(F
1
−F
𝑛+1
)
𝑗+1
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+

𝑗

∑

𝑖=1

(F
𝑗+3−𝑖

− 3F
𝑗+2−𝑖

+F
𝑗+1−𝑖

) (−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑗+1

=
(−F
𝑛
)
𝑗+1

(F
1
−F
𝑛+1
)
𝑗+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(29)

We obtain

A
−1

𝑛
= Circ(

1 − 3𝐶
(𝑛−2)

𝑛
+ 𝐶
(𝑛−3)

𝑛

𝑓
𝑛

,
𝐶
(𝑛−2)

𝑛
− 3

𝑓
𝑛

,

𝐶
(1)

𝑛

𝑓
𝑛

,
𝐶
(2)

𝑛
− 3𝐶
(1)

𝑛

𝑓
𝑛

,
𝐶
(3)

𝑛
− 3𝐶
(2)

𝑛
+ 𝐶
(1)

𝑛

𝑓
𝑛

, . . . ,

𝐶
(𝑛−2)

𝑛
− 3𝐶
(𝑛−3)

𝑛
+ 𝐶
(𝑛−4)

𝑛

𝑓
𝑛

)

=
1

𝑓
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

− 3 +

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

1

F
1
−F
𝑛+1

,

−F
𝑛

(F
1
−F
𝑛+1
)
2
,

(−F
𝑛
)
2

(F
1
−F
𝑛+1
)
3
, . . . ,

(−F
𝑛
)
𝑛−3

(F
1
−F
𝑛+1
)
𝑛−2

) .

(30)

3. Determinant and Inverse of a Circulant
Matrix with the Sum of the Fibonacci and
Lucas Numbers

In this section, let B
𝑛
= Circ(L

1
,L
2
, . . . ,L

𝑛
) be a circulant

matrix. Firstly, we give an explicit determinant formula of
matrix B

𝑛
. Afterwards, we prove that B

𝑛
is an invertible

matrix for any positive integer 𝑛, and then we find its inverse.

Theorem 12. Let B
𝑛
= Circ(L

1
,L
2
, . . . ,L

𝑛
) be a circulant

matrix; then one has

detB
𝑛
= 2[(2 −L

𝑛+1
)
𝑛−1

+ (L
𝑛
− 2)
𝑛−2

×

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

2 −L
𝑛+1

L
𝑛
− 2

)

𝑘−1

] ,

(31)

whereL
𝑛
is the 𝑛th 𝐹

𝑛
+ 𝐿
𝑛
number.

Proof. Obviously,B
1
= 2 satisfies (31), when 𝑛 > 1. Let

Σ =

(
(
(
(
(
(

(

1

−2 1

−1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)
)
)
)
)
)

)𝑛×𝑛

,

Ω
1
=

(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...

0
L
𝑛
− 2

L
1
−L
𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)

)𝑛×𝑛

.

(32)

Then

ΣB
𝑛
Ω
1

=
(
(

(

L
1
𝑙
󸀠

𝑛
L
𝑛−1

⋅ ⋅ ⋅ L
3

L
2

0 𝑙
𝑛
−2L
𝑛−1

+L
𝑛
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2L

2
+L
3

0 0 L
1
−L
𝑛+1

0 0 2 −L
𝑛

...
... d

0 0 2 −L
𝑛

L
1
−L
𝑛+1

)
)

)

,

(33)

where

𝑙
𝑛
=L
1
− 2L
𝑛
+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

,

(34)

𝑙
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

L
𝑘+1
(

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

. (35)

We can obtain

detΣ detB
𝑛
detΩ
1

=L
1
[L
1
− 2L
𝑛

+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

]

× (L
1
−L
𝑛+1
)
𝑛−2
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=L
1
[L
1
−L
𝑛+1

+

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

]

× (L
1
−L
𝑛+1
)
𝑛−2

= 2[(2 −L
𝑛+1
)
𝑛−1

+ (L
𝑛
− 2)
𝑛−2

×

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

2 −L
𝑛+1

L
𝑛
− 2

)

𝑘−1

] ,

(36)

while

detΣ = detΩ
1
= (−1)

(𝑛−1)(𝑛−2)/2

. (37)

We have

detB
𝑛

= 2[(2 −L
𝑛+1
)
𝑛−1

+ (L
𝑛
− 2)
𝑛−2

×

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

2 −L
𝑛+1

L
𝑛
− 2

)

𝑘−1

] .

(38)

Theorem 13. Let B
𝑛
= Circ(L

1
,L
2
, . . . ,L

𝑛
) be a circulant

matrix; thenB
𝑛
is invertible for any positive integer 𝑛.

Proof. SinceL
𝑛
= (𝛼
𝑛

−𝛽
𝑛

)/(𝛼−𝛽)+ 𝛼
𝑛

+ 𝛽
𝑛, where𝛼+𝛽 = 1,

𝛼 ⋅ 𝛽 = −1. We have

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑗=1

L
𝑗
(𝜔
𝑘

)
𝑗−1

=

𝑛

∑

𝑗=1

(
𝛼
𝑗

− 𝛽
𝑗

𝛼 − 𝛽
+ 𝛼
𝑗

+ 𝛽
𝑗

)(𝜔
𝑘

)
𝑗−1

=

𝑛

∑

𝑗=1

(
𝛼
𝑗

− 𝛽
𝑗

𝛼 − 𝛽
) (𝜔
𝑘

)
𝑗−1

+

𝑛

∑

𝑗=1

(𝛼
𝑗

+ 𝛽
𝑗

) (𝜔
𝑘

)
𝑗−1

=
1

𝛼 − 𝛽
[
𝛼 (1 − 𝛼

𝑛

)

1 − 𝛼𝜔𝑘
−
𝛽 (1 − 𝛽

𝑛

)

1 − 𝛽𝜔𝑘
]

+
𝛼 (1 − 𝛼

𝑛

)

1 − 𝛼𝜔𝑘
+
𝛽 (1 − 𝛽

𝑛

)

1 − 𝛽𝜔𝑘

=
1 − 𝐹
𝑛+1

− 𝐹
𝑛
𝜔
𝑘

1 − 𝜔𝑘 − 𝜔2𝑘
+
1 − 𝐿
𝑛+1

+ (2 − 𝐿
𝑛
) 𝜔
𝑘

1 − 𝜔𝑘 − 𝜔2𝑘

=
2 − (𝐹

𝑛+1
+ 𝐿
𝑛+1
) − (𝐹

𝑛
+ 𝐿
𝑛
− 2) 𝜔

𝑘

1 − 𝜔𝑘 − 𝜔2𝑘

=
2 −L

𝑛+1
− (L
𝑛
− 2) 𝜔

𝑘

1 − 𝜔𝑘 − 𝜔2𝑘
(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(39)

If there exist 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙) = 0,
we obtain 2 −L

𝑛+1
− (L
𝑛
− 2)𝜔
𝑙

= 0 for 1 −𝜔𝑙 −𝜔2𝑙 ̸= 0; 𝜔𝑙 =
(2−L

𝑛+1
)/(L
𝑛
−2) is a real number, while𝜔𝑙 = exp(2𝑙𝜋𝑖/𝑛) =

cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛).
Hence, sin(2𝑙𝜋/𝑛) = 0, so we have 𝜔𝑙 = −1 for 0 <

2𝑙𝜋/𝑛 < 2𝜋. But 𝑥 = −1 is not the root of the equation
2 − L

𝑛+1
− (L
𝑛
− 2)𝑥 = 0 for any positive integer 𝑛. We

obtain 𝑓(𝜔𝑘) ̸= 0 for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 1), while 𝑓(1) =
∑
𝑛

𝑗=1
L
𝑗
= L
𝑛+1

+ L
𝑛
− 4 ̸= 0. By Lemma 4, the proof is

completed.

Lemma 14. Let matrixH = [ℎ
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1

be of the form

ℎ
𝑖𝑗
=

{{

{{

{

L
1
−L
𝑛+1
, 𝑖 = 𝑗,

2 −L
𝑛
, 𝑖 = 𝑗 + 1,

0, otherwise,
(40)

and then inverseH−1 = [ℎ󸀠
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1

of the matrixH is equal to

ℎ
󸀠

𝑖𝑗
=

{{

{{

{

(L
𝑛
− 2)
𝑖−𝑗

(L
1
−L
𝑛+1
)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(41)

Proof. Let 𝑟
𝑖𝑗
= ∑
𝑛−2

𝑘=1
ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
. Obviously, 𝑟

𝑖𝑗
= 0 for 𝑖 < 𝑗. In the

case 𝑖 = 𝑗, we obtain

𝑟
𝑖𝑖
= ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑖
= (L
1
−L
𝑛+1
) ⋅

1

L
1
−L
𝑛+1

= 1. (42)

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑟
𝑖𝑗
=

𝑛−2

∑

𝑘=1

ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
= ℎ
𝑖,𝑖−1

ℎ
󸀠

𝑖−1,𝑗
+ ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑗

= (2 −L
𝑛
) ⋅

(L
𝑛
− 2)
𝑖−𝑗−1

(L
1
−L
𝑛+1
)
𝑖−𝑗

+ (L
1
−L
𝑛+1
) ⋅

(L
𝑛
− 2)
𝑖−𝑗

(L
1
−L
𝑛+1
)
𝑖−𝑗+1

= 0.

(43)

We verify HH−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is the (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verifyH−1H = 𝐼

𝑛−2
. Thus,

the proof is completed.
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Theorem 15. Let B
𝑛
= Circ(L

1
,L
2
, . . . ,L

𝑛
) be a circulant

matrix; then one has

B
−1

𝑛
=
1

𝑙
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

− 2 −

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

2

L
1
−L
𝑛+1

,
2 (L
𝑛
− 2)

(L
1
−L
𝑛+1
)
2
,

2(L
𝑛
− 2)
2

(L
1
−L
𝑛+1
)
3
, . . . ,

2(L
𝑛
− 2)
𝑛−3

(L
1
−L
𝑛+1
)
𝑛−2

) ,

(44)

where
𝑙
𝑛
= L
1
− 2L
𝑛

+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

.

(45)

Proof. Let

Ω
2
=

(
(
(
(
(

(

1 −
𝑙
󸀠

𝑛

2
𝜔
13

𝜔
14

⋅ ⋅ ⋅ 𝜔
1𝑛

0 1 𝜔
23

𝜔
24

⋅ ⋅ ⋅ 𝜔
2𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)

)

, (46)

where

𝜔
1𝑖
=
1

2
[
𝑙
󸀠

𝑛
(L
𝑛+3−𝑖

− 2L
𝑛+2−𝑖

)

𝑙
𝑛

−L
𝑛+2−𝑖

] ,

𝜔
2𝑖
=
2L
𝑛+2−𝑖

−L
𝑛+3−𝑖

𝑙
𝑛

, 𝑖 = 3, 4, . . . , 𝑛,

𝑙
𝑛
= L
1
− 2L
𝑛

+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

,

𝑙
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

L
𝑘+1
(

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

.

(47)

We have

ΣB
𝑛
Ω
1
Ω
2
= D
2
⊕H, (48)

whereD
2
= diag(L

1
, 𝑙
𝑛
) is a diagonal matrix andD

2
⊕H is

the direct sum of D
2
and H. If we denote Ω = Ω

1
Ω
2
, then

we obtain

B
−1

𝑛
= Ω(D

−1

2
⊕H
−1

) Σ. (49)

Since the last row elements of the matrix Ω are

0, 1,
2L
𝑛−1

−L
𝑛

𝑙
𝑛

,
2L
𝑛−2

−L
𝑛−1

𝑙
𝑛

, . . . ,
2L
2
−L
3

𝑙
𝑛

. (50)

By Lemma 14, if we letB−1
𝑛
= Circ(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
), then its

last row elements are given by the following equations:

𝑦
2
= −

2

𝑙
𝑛

−
1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

𝑦
3
=
1

𝑙
𝑛

2L
2
−L
3

(L
1
−L
𝑛+1
)
,

𝑦
4
= −

1

𝑙
𝑛

2L
2
−L
3

(L
1
−L
𝑛+1
)

+
1

𝑙
𝑛

2

∑

𝑖=1

(2L
4−𝑖
−L
5−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

𝑦
5
= −

1

𝑙
𝑛

2L
2
−L
3

(L
1
−L
𝑛+1
)

−
1

𝑙
𝑛

2

∑

𝑖=1

(2L
4−𝑖
−L
5−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

+
1

𝑙
𝑛

3

∑

𝑖=1

(2L
5−𝑖
−L
6−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

...

𝑦
𝑛
=
1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

−
1

𝑙
𝑛

𝑛−3

∑

𝑖=1

(2L
𝑛−𝑖−1

−L
𝑛−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

−
1

𝑙
𝑛

𝑛−4

∑

𝑖=1

(2L
𝑛−𝑖−2

−L
𝑛−𝑖−1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

𝑦
1
=
1

𝑙
𝑛

[1 −

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

−

𝑛−3

∑

𝑖=1

(2L
𝑛−𝑖−1

−L
𝑛−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

] .

(51)

Let 𝐷
(𝑗)

𝑛
= ∑

𝑗

𝑖=1
((2L
𝑗+2−𝑖

− L
𝑗+3−𝑖

)(L
𝑛
− 2)
𝑖−1

/

(L
1
−L
𝑛+1
)
𝑖

) (𝑗 = 1, 2, . . . , 𝑛 − 2); we have

𝐷
(2)

𝑛
− 𝐷
(1)

𝑛

= −
2L
2
−L
3

L
1
−L
𝑛+1

+

2

∑

𝑖=1

(2L
4−𝑖
−L
5−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖
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=
2 (L
𝑛
− 2)

(L
1
−L
𝑛+1
)
2
,

𝐷
(𝑛−3)

𝑛
+ 𝐷
(𝑛−2)

𝑛

=

𝑛−3

∑

𝑖=1

(2L
𝑛−𝑖−1

−L
𝑛−𝑖
) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

+

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

=
(2L
2
−L
3
) (L
𝑛
− 2)
𝑛−3

(L
1
−L
𝑛+1
)
𝑛−2

+

𝑛−3

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

=

𝑛−2

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

𝐷
(𝑗+2)

𝑛
− 𝐷
(𝑗+1)

𝑛
− 𝐷
(𝑗)

𝑛

=

𝑗+2

∑

𝑖=1

(2L
𝑗−𝑖+4

−L
𝑗−𝑖+5

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

−

𝑗+1

∑

𝑖=1

(2L
𝑗−𝑖+3

−L
𝑗−𝑖+4

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

−

𝑗

∑

𝑖=1

(2L
𝑗−𝑖+2

−L
𝑗−𝑖+3

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

=
(2L
2
−L
3
) (L
𝑛
− 2)
𝑗+1

(L
1
−L
𝑛+1
)
𝑗+2

+
(2L
3
−L
4
) (L
𝑛
− 2)
𝑗

(L
1
−L
𝑛+1
)
𝑗+1

−
(2L
2
−L
3
) (L
𝑛
− 2)
𝑗

(L
1
−L
𝑛+1
)
𝑗+1

=
2(L
𝑛
− 2)
𝑗+1

(L
1
−L
𝑛+1
)
𝑗+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(52)

We obtain

B
−1

𝑛

= Circ(
1 − 𝐷

(𝑛−2)

𝑛
− 𝐷
(𝑛−3)

𝑛

𝑙
𝑛

,
−2 − 𝐷

(𝑛−2)

𝑛

𝑙
𝑛

,

𝐷
(1)

𝑛

𝑙
𝑛

,
𝐷
(2)

𝑛
− 𝐷
(1)

𝑛

𝑙
𝑛

,
𝐷
(3)

𝑛
− 𝐷
(2)

𝑛
− 𝐷
(1)

𝑛

𝑙
𝑛

, . . . ,

𝐷
(𝑛−2)

𝑛
− 𝐷
(𝑛−3)

𝑛
− 𝐷
(𝑛−4)

𝑛

𝑙
𝑛

)

=
1

𝑙
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

− 2 −

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

2

L
1
−L
𝑛+1

,
2 (L
𝑛
− 2)

(L
1
−L
𝑛+1
)
2
,
2(L
𝑛
− 2)
2

(L
1
−L
𝑛+1
)
3
, . . . ,

2(L
𝑛
− 2)
𝑛−3

(L
1
−L
𝑛+1
)
𝑛−2

) .

(53)

4. Determinant and Inverse of a Left Circulant
Matrix with F

𝑛
and L

𝑛
Numbers

In this section, let A󸀠
𝑛
= LCirc(F

1
,F
2
, . . . ,F

𝑛
) and B󸀠

𝑛
=

LCirc(L
1
,L
2
, . . . ,L

𝑛
) be left circulant matrices. By using the

obtained conclusions, we give a determinant formula for
the matrix A󸀠

𝑛
and B󸀠

𝑛
. Afterwards, we prove that A󸀠

𝑛
is an

invertible matrix for 𝑛 > 2 andB󸀠
𝑛
is an invertible matrix for

any positive integer 𝑛.The inverses of thematricesA󸀠
𝑛
andB󸀠

𝑛

are also presented.
According to Lemma 5 andTheorems 8, 9, and 11, we can

obtain the following theorems.

Theorem 16. Let A󸀠
𝑛
= LCirc(F

1
,F
2
, . . . ,F

𝑛
) be a left

circulant matrix; then one has

detA󸀠
𝑛
= (−1)

(𝑛−1)(𝑛−2)/2

× [(1 +F
𝑛+1
)
𝑛−1

+ (−F
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

1 +F
𝑛+1

−F
𝑛

)

𝑘−1

] ,

(54)

whereF
𝑛
is the 𝑛th 𝐹

𝑛
⋅ 𝐿
𝑛
number.

Theorem 17. LetA󸀠
𝑛
= LCirc(F

1
,F
2
, . . . ,F

𝑛
) be a left circu-

lant matrix; if 𝑛 > 2, thenA󸀠
𝑛
is an invertible matrix.

Theorem 18. Let A󸀠
𝑛
= LCirc(F

1
,F
2
, . . . ,F

𝑛
) (𝑛 > 2) be a

left circulant matrix; then one has

A
󸀠−1

𝑛
=
1

𝑓
𝑛

LCirc(1 −
𝑛−2

∑

𝑖=1

F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

(−F
𝑛
)
𝑛−3

(F
1
−F
𝑛+1
)
𝑛−2

, . . . ,
(−F
𝑛
)
2

(F
1
−F
𝑛+1
)
3
,
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−F
𝑛

(F
1
−F
𝑛+1
)
2
,

1

F
1
−F
𝑛+1

,

− 3 +

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
) ,

(55)

where

𝑓
𝑛
= F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

. (56)

By Lemma 5 and Theorems 12, 13, and 15, the following
conclusions can be attained.

Theorem 19. LetB󸀠
𝑛
= LCirc(L

1
,L
2
, . . . ,L

𝑛
) be a left circu-

lant matrix; then one has

detB󸀠
𝑛
= 2(−1)

(𝑛−1)(𝑛−2)/2

× [(2 −L
𝑛+1
)
𝑛−1

+ (L
𝑛
− 2)
𝑛−2

×

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

2 −L
𝑛+1

L
𝑛
− 2

)

𝑘−1

] ,

(57)

whereL
𝑛
is the 𝑛th 𝐹

𝑛
+ 𝐿
𝑛
number.

Theorem20. LetB󸀠
𝑛
= LCirc(L

1
,L
2
, . . . ,L

𝑛
) be a left circu-

lant matrix; thenB󸀠
𝑛
is invertible for any positive integer 𝑛.

Theorem 21. LetB󸀠
𝑛
= LCirc(L

1
,L
2
, . . . ,L

𝑛
) be a left circu-

lant matrix; then one can obtain

B󸀠−1
𝑛

=
1

𝑙
𝑛

LCirc(1 −
𝑛−2

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

2(L
𝑛
− 2)
𝑛−3

(L
1
−L
𝑛+1
)
𝑛−2

, . . . ,
2(L
𝑛
− 2)
2

(L
1
−L
𝑛+1
)
3
,

2 (L
𝑛
− 2)

(L
1
−L
𝑛+1
)
2
,

2

L
1
−L
𝑛+1

,

− 2 −

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

) ,

(58)

where

𝑙
𝑛
= L
1
− 2L
𝑛

+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

.

(59)

5. Determinant and Inverse of 𝑔-Circulant
Matrix with F

𝑛
and L

𝑛
Numbers

In this section, let A
𝑔,𝑛

= 𝑔-Circ(F
1
,F
2
, . . . ,F

𝑛
) and

B
𝑔,𝑛

= 𝑔-Circ(L
1
,L
2
, . . . ,L

𝑛
) be 𝑔-circulant matrices.

By using the obtained conclusions, we give a determinant
formula for thematricesA

𝑔,𝑛
andB

𝑔,𝑛
. Afterwards, we prove

that A
𝑔,𝑛

is an invertible matrix for 𝑛 > 2 and B
𝑔,𝑛

is an
invertible matrix if (𝑛, 𝑔) = 1. The inverse of the matrices
A
𝑔,𝑛

andB
𝑔,𝑛

are also presented.
From Lemmas 6 and 7 and Theorems 8, 9, and 11, we

deduce the following results.

Theorem 22. LetA
𝑔,𝑛

= 𝑔-Circ(F
1
,F
2
, . . . ,F

𝑛
) be a 𝑔-cir-

culant matrix; then one has

detA
𝑔,𝑛
= detQ

𝑔
[(1 +F

𝑛+1
)
𝑛−1

+ (−F
𝑛
)
𝑛−2

×

𝑛−1

∑

𝑘=1

(−F
𝑘
) (

1 +F
𝑛+1

−F
𝑛

)

𝑘−1

] ,

(60)

whereF
𝑛
is the 𝑛th 𝐹

𝑛
⋅ 𝐿
𝑛
number.

Theorem 23. Let A
𝑔,𝑛

= 𝑔-Circ(F
1
,F
2
, . . . ,F

𝑛
) be a 𝑔-cir-

culantmatrix and (𝑔, 𝑛) = 1; if 𝑛 > 2, thenA
𝑔,𝑛

is an invertible
matrix.

Theorem 24. LetA
𝑔,𝑛

= 𝑔-Circ(F
1
,F
2
, . . . ,F

𝑛
) (𝑛 > 2) be

a 𝑔-circulant matrix and (𝑔, 𝑛) = 1; then

A
−1

𝑔,𝑛

= [
1

𝑓
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

F
𝑛−𝑖
(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

− 3 +

𝑛−2

∑

𝑖=1

F
𝑛−1−𝑖

(−F
𝑛
)
𝑖−1

(F
1
−F
𝑛+1
)
𝑖
,

1

F
1
−F
𝑛+1

,
−F
𝑛

(F
1
−F
𝑛+1
)
2
,

(−F
𝑛
)
2

(F
1
−F
𝑛+1
)
3
, . . . ,

(−F
𝑛
)
𝑛−3

(F
1
−F
𝑛+1
)
𝑛−2

)]Q
𝑇

𝑔
,

(61)

where

𝑓
𝑛
= F
1
− 3F
𝑛
+

𝑛−2

∑

𝑘=1

(−F
𝑘
) (

−F
𝑛

F
1
−F
𝑛+1

)

𝑛−(𝑘+1)

. (62)

Taking Lemmas 6 and 7 andTheorems 12, 13, and 15 into
account, one has the following theorems.
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Theorem 25. Let B
𝑔,𝑛

= 𝑔-Circ(L
1
,L
2
, . . . ,L

𝑛
) be a 𝑔-

circulant matrix; then one has

detB
𝑔,𝑛
= 2 detQ

𝑔

× [(2 −L
𝑛+1
)
𝑛−1

+ (L
𝑛
− 2)
𝑛−2

×

𝑛−1

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

2 −L
𝑛+1

L
𝑛
− 2

)

𝑘−1

] ,

(63)

whereL
𝑛
is the 𝑛 𝐹

𝑛
+ 𝐿
𝑛
number.

Theorem 26. LetB
𝑔,𝑛

= 𝑔-Circ(L
1
,L
2
, . . . ,L

𝑛
) be a 𝑔-cir-

culant matrix and (𝑔, 𝑛) = 1; then B
𝑔,𝑛

is invertible for any
positive integer 𝑛.

Theorem 27. LetB
𝑔,𝑛

= 𝑔-Circ(L
1
,L
2
, . . . ,L

𝑛
) be a 𝑔-cir-

culant matrix and (𝑔, 𝑛) = 1; then

B
−1

𝑔,𝑛

= [
1

𝑙
𝑛

Circ(1 −
𝑛−2

∑

𝑖=1

L
𝑛−𝑖−1

(L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

− 2 −

𝑛−2

∑

𝑖=1

(2L
𝑛−𝑖
−L
𝑛−𝑖+1

) (L
𝑛
− 2)
𝑖−1

(L
1
−L
𝑛+1
)
𝑖

,

2

L
1
−L
𝑛+1

,
2 (L
𝑛
− 2)

(L
1
−L
𝑛+1
)
2
,

2(L
𝑛
− 2)
2

(L
1
−L
𝑛+1
)
3
, . . . ,

2(L
𝑛
− 2)
𝑛−3

(L
1
−L
𝑛+1
)
𝑛−2

)]Q
𝑇

𝑔
,

(64)

where

𝑙
𝑛
= L
1
− 2L
𝑛

+

𝑛−2

∑

𝑘=1

(L
𝑘+2

− 2L
𝑘+1
) (

L
𝑛
− 2

L
1
−L
𝑛+1

)

𝑛−(𝑘+1)

.

(65)
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