Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 370917, 15 pages
http://dx.doi.org/10.1155/2014/370917

Research Article

An Efficient Biobjective Heuristic for Scheduling Workflows on
Heterogeneous DVS-Enabled Processors

Pengji Zhou and Wei Zheng

School of Information Science and Technology, Xiamen University, Xiamen 361005, China

Correspondence should be addressed to Wei Zheng; zhengw@xmu.edu.cn

Received 5 December 2013; Accepted 12 June 2014; Published 8 July 2014

Academic Editor: Aderemi Oluyinka Adewumi

Copyright © 2014 P. Zhou and W. Zheng. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Energy consumption has recently become a major concern to multiprocessor computing systems, of which the primary
performance goal has traditionally been reducing execution time of applications. In the context of scheduling, there have been
increasing research interests on algorithms using dynamic voltage scaling (DVS), which allows processors to operate at lower voltage
supply levels at the expense of sacrificing processing speed, to acquire a satisfactory trade-off between quality of schedule and energy
consumption. The problem considered in this paper is to find a schedule for a workflow, which is normally a precedence constrained
application, on a bounded number of heterogeneous DVS-enabled processors, so as to minimize both makespan (overall execution
time of the application) and energy consumption. A fast and efficient heuristic is proposed and evaluated using simulation with

two real-world applications as well as randomly generated ones.

1. Introduction

During the last few decades, explosions in the volume of com-
putation and/or data have stimulated a variety of researches
on multiprocessor platforms (such as grids and clouds) to
host complicated applications such as workflows [1, 2], which
are widely used in the engineering, business, and science
fields. It is not difficult to imagine that these powerful plat-
forms, with a large (and still increasing) group of comput-
ing, storage, and connection equipment, must consume an
enormous amount of energy. It has been estimated that the
annual data center energy consumption in 2011 in the United
States is over 100 billion kWh and at a cost of $7.4 billion [3].
According to [4], in the United States, energy consumed by
the information and communication technology equipment
is roughly 8% of the total and will increase 50% within
a decade. This, undoubtedly, will further deteriorate the
environment with increasing CO, emission.

The increasingly challenging energy problem urges grow-
ing need in developing energy-efficient solutions for multi-
processor platforms. However, most of the current researches
on resource management of these platforms (e.g., Condor
[5], Pegasus [6], etc.) mainly focus on achieving performance

goals like high performance, high throughput, high reliability,
and/or high availability to cater to users’ requirements. As a
result, most existing multiprocessor platforms generally lack
capability on energy saving. This renders energy consump-
tion problem an urgent and crucial issue to address.

Recent advancement in hardware technologies [7] (in-
cluding dynamic voltage and frequency scaling, resource
hibernation, memory optimization, solid state drives, energy-
efficient computer monitors, etc.) have dealt with the energy
consumption issues to some extent. However, it still remains
a serious concern for software techniques such as schedul-
ing algorithms (especially in a multiprocessor platform) to
achieve substantial energy saving.

In this paper we consider workflow scheduling based on
DVS, as it has demonstrated to be a promising technique in
an abundance of literatures [8-12]. DVS enables processors
to dynamically adjust voltage supply levels (VSLs) and CPU
frequencies aiming to reduce power consumption, while an
acceptable amount of performance sacrifice is paid as the
expense.

With the aim at simultaneously minimizing makespan
and energy consumption, the general form of the problem we
considered here boils down to biobjective DAG scheduling,

http://dx.doi.org/10.1155/2014/370917

as we assume every workflow application is represented by a
directed acyclic graph (DAG). In particular, we focus on DAG
scheduling for admission control of service- and market-
oriented computing environments such as clouds, where a
user and a service provider need to reach an agreement
before the execution of the user application, and users are
free to choose among different service providers. In such
a scenario, a service provider needs the DAG scheduling
return a competitive makespan (to attract customers) and
a low energy consumption (for energy saving). Moreover,
the scheduling should be performed in short time as users
normally require a real-time response. There have been a
few biobjective DAG scheduling heuristics in the literature.
Some of these heuristics may provide quick response, but
their performance leaves a considerable space to improve.
Other heuristics may exhibit satisfactory performance but
the scheduling cost is extremely high, and therefore not
particularly suitable for the scenario discussed above. The
need for fast and efficient DAG scheduling heuristics, suitable
for real admission control of clouds, motivates the work
presented in this paper.

This paper presents a new biobjective heuristic with
the objective to simultaneously provide effective DVS-based
DAG scheduling and fast scheduling time. Our heuristic is
an enhancement of energy conscious scheduling heuristic
(ECS) [11], which could make a quick scheduling decision,
whereas the scheduling performance is often limited due
to local optimum. With deliberation, we refine the core of
ECS, namely, propose a novel objective function used by
the RS (relative superiority) and a new criteria used by the
MCER (makespan-conservative energy reduction technique)
phases of ECS, to derive a new heuristic. The comparison
results obtained from our extensive evaluation show that
our approach can make significant improvement on both
makespan optimization and energy reduction while still
meeting real-time response requirement. This indicates that
our approach can be easily applied to admission control of
service- and market-oriented computing systems.

The remainder of the paper is organized as follows.
Section 2 describes the background and related work.
Section 3 describes the models used in our study and specifies
the problem to be addressed. The proposed scheduling
approach is presented in Section 4 with an illustrative exam-
ple. The results of our comparative evaluation are shown in
Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

Dozens of static DAG scheduling heuristics aiming at mini-
mizing makespan for heterogeneous multiprocessor systems
have been presented in the literature. These heuristics are
designed following different design principles. We hereby
roughly classify these heuristics into list-scheduling algo-
rithms [13-16], duplication-based algorithms [17-19], cluster-
ing algorithms [20, 21], and guided random search methods
[22, 23]. Apparently, all these heuristics are different with
our study in that their scheduling does not take energy
consumption into account.

Journal of Applied Mathematics

As DVS is a promising energy saving technique that
can be incorporated into scheduling, a large number of
scheduling algorithms based on DVS have been proposed for
diverse applications and computing platforms. The majority
of these DVS-based scheduling heuristics are conducted on
homogeneous computing systems [9, 10, 24, 25], or single-
processor systems [3, 26, 27], or focused on independent
tasks [28-30]. These heuristics cannot address issues like
task dependency and processor heterogeneity, which are
addressed in our study.

There are also DVS-based scheduling heuristics focusing
on DAG applications as well as heterogeneous systems.
Huang et al. [12] proposed an enhanced energy-efficient
scheduling algorithm to reduce energy consumption while
meeting performance-based service level agreement (e.g.,
deadline constraint). This algorithm exploited the slack
room between initially scheduled tasks and reallocated them
in a global manner to achieve power saving. Unlike this
work, applications considered in our study are not deadline-
constrained, and the evaluation of the quality of schedules
should be measured on both makespan and energy consump-
tion.

Evolutionary techniques (i.e., genetic algorithm) have
been widely applied to various problems (i.e., energy supply
[31], space allocation [32], and multiobjective scheduling
[33], etc.). Mezmaz et al. [34] proposed a hybrid genetic
algorithm using DVS to simultaneously minimize makespan
and energy consumption. Algorithms based on evolutionary
techniques normally perform well on optimization. However,
these algorithms usually require significantly high scheduling
costs, even though modification may be applied to improve
their efficiency [35]. As a result, these algorithms are naturally
too time-consuming for admission control of clouds where a
real-time response is required.

Energy-conscious scheduling heuristic (ECS) [11] is a list-
scheduling algorithm aiming at simultaneously minimizing
makespan and energy consumption with a low complexity.
The heuristic consists of two phases. In the first phase, the
heuristic applies bottom-level ranking to prioritize tasks, and
then, in turn, selects the processor and the VSL for the
current task so that the devised objective function, which
is defined as relative superiority (RS), can be maximized.
After the first phase, a temporary schedule is generated.
In the second phase, a new criterion is used, which is
defined as makespan-conservative energy reduction tech-
nique (MCER). That is, for each prioritized task in the current
schedule, all of other combinations of task, processor, and
VSL are checked to see whether any of these combina-
tions reduces the energy consumption of the task without
increasing the current makespan. If so, such a combination
is applied to obtain a new schedule. After the second phase,
the newest schedule is returned as the scheduling result.
Evaluation results demonstrate that ECS significantly outper-
forms energy unconscious heuristics on energy consumption.
However, the RS and MCER used by ECS, which are the cores
of the algorithm, consider only local optimality. As a result,
the scheduling decisions made by ECS tend to be confined to
a local optimum. This motivates our work to propose novel
objective function and criteria and devise a new heuristic.

Journal of Applied Mathematics

FIGURE 1: A simple DAG G.

The experimental results presented in Section 5 clearly show
that our approach obtains schedules which are better than
those found by ECS on both makespan optimization and
energy reduction.

3. Problem Description

In this section, we describe the application model, the system
model, and the energy model that used in our work and then
specify the problem we are going to address.

3.1. Application Model. We use a directed acyclic graph
(DAG) to represent an application to be scheduled (shown in
Figure 1 with its details in Table 3). In a DAG, nodes denote
tasks and edges that represent data transmission between
tasks. In our work, we use G = (N, E) to represent a DAG,
which consists of a set of nodes N and a set of edges E. A
node i € N represents the corresponded task and an edge
(i, j) € E represents the intercommunication and precedence
constraint between node i and j. For an edge (i,), i is called a
parent node of j, and j is called a child node of i. A child node
cannot start execution until all of its parents have finished
and all the required data transmission has arrived. Parentless
nodes are called source nodes; childless node are called sink
node. Apparently, an entry node of G must be a source node
and an exit node a sink node. For standardization, we specify
in this paper that a DAG has only a single entry node and
a single exit node. One can easily see that all DAGs with
multiple entry or exit nodes can be equivalently transformed
to this standardization [36]. For illustration, a simple example
DAG is shown in Figure 1, where the weight attached to each
edge denotes the amount of data to be transmitted.

In order to meet precedence constraint, the start time and
the finish time of task j on processor q € N are computed by

ST (j,q) = max {FT (",q9) , max {FT (k, px)
J

+TC((k, pi), (j-9))} }

FT (j,q) = ST (j,q) + EC(j.q),
@

where EC(j,q) represents the execution time of task j on
processor g; FT(I*, q) denotes the finish time of task I* which
is the currently last task on processor g; Par; represents the
set of all parent tasks of task j; p, denotes the processor
which task k is assigned to, and if there is no task assigned
to processor g, FT(I*, q) is equal to zero. In the case of the
entry task, we hav

ST (entrynode, pemrynode) =0. (2)

After the scheduling is completed, the makespan of the
schedule, is defined as

k = FT (k, .
makespan = maxFT (k, p, ®)

3.2. System Model. We consider a set of DVS-enabled het-
erogeneous processors which are fully interconnected and
equally capable of running any applications. All the pro-
cessors can run at different voltage and frequency levels.
While the processor is in idle, it stays at its lowest voltage
and lowest frequency level for the maximal energy saving
[37]. Hereby we assume a set of DVS-enabled processors
(denoted by P) that are fully connected. It is assumed that
the time needed to transmit per unit of data from one
processor to another, named transmission rate, is constant
and preknown (as illustrated in Table 2). Therefore, the time
needed to transmit data from one processor to another,
named transmission latency, is computed by

TC((i,p)(j9)) = TD (i, j) x TR (p.q), (4)

where TD(i, j) denotes the amount of transmitted data from
taskito jand TR(p, q) if task i and j are allocated to the same
processor, the transmission latency is zero. It is also assumed
that one processor can only run one task at a time and no
preemption is considered.

Each processor can operate in a set of voltage supply levels
(VSL, denoted by V), each of which is corresponded to a
specific relative speed (as illustrated in Table 1). For task ;, we
assume its execution time on a processor p, which operates
on VSL 0 (denoted by EC(i, p,v,)), is preknown; thereby,
the execution time of #; on a different VSL j (denoted by
EC(, p, vp’j)) can be obtained by the ratio of EC(i, p, vp)o) and
the relative speed of VSL j.

3.3. Energy Consumption Model. We adopt the energy model
used in [11], which is derived from the power consump-
tion model in complementary metal-oxide semiconductor
(CMOS) logic circuits. Since we assume the processors
consume a certain amount of energy while idling, the total
energy consumption of the execution for a DAG is comprised
of direct and indirect energy consumption. The direct energy
consumption is defined as

n
E; = Y aViAt, (5)
i=1

where n is the number of tasks, « is a device related
constant, V; is the voltage on which the processor operates

4 Journal of Applied Mathematics
P pc P& P PG pc P< pc 1253
R T e R S S el e s B S T it T -
20— 1 | A Y S R A R 20
0 : : / 0 : : 40 : : 1 0 \ : : : : : L/’I/ \
— ! N\ — ! N 40 — e N 40
60 TN 60 TN IRt s !
— [— “ [60 — 1 g) \ 60 — [
80 — :\\ 1 ",/,/ 80 — o 1 b, i k 80 — :\ /1/,) S : 80 — |/ i :
1 1\ s | 1 | /A | ! LY ! | ! |
100 |— i ! \\\ //’g/’i 1100 ! :‘:\\ e \‘,/ i 100 |- >Y, v i 1100 (— \‘/I i !
» AR 1 2 | 1 V/ 1 1 1
120 — /:. K ! ! 120 — ,'I):\ ! ! ! 120 — ‘ \\‘_I,I i ! 120 |— " i :
140 |- / oL a0 P ol S 3 SRR I SRR O S
\ L—1, | \ — L ! | 1 [\ 1
) T T S Ul e O A T e e O A L R R
\ 1 1 \ ! 1 1 1 [1 1
B0 P L b L so b aso = LA sy
[| ! [! | 1 1 [- 1
o e) S R T S A 0 I) S I B
[I [7 [[[[[
220 — : : \ 7 / : : 220 — : : : : 220 — : : i : 220 — i : i :
| -
2401 1| T S N BT 7 N 7] S S S R A A
! I ! | 1 I I 1 1 | ! I 1 ! I ! I ! I ! I
! I ! | [I [I [| ! I ! I ! I ! I ! I ! I
260 — : | — : 260 — | 1 | 1 . 260 — : | : | : | 260 — : 1 : 1 : 1
1 1 1
g0l Lol Ll Lol agol Lo Lol Ll pgol Lo L Lo gl Lo Log Lol
(a) Result of RS of ECS (b) Result of MCER of ECS (c) Result of PCS of EECS (d) Result of GES of EECS
FIGURE 2: Schedules of G with EECS and ECS algorithms.
TABLE 1: Voltage relative speed pairs.
Level PG PG pc,
Voltage (v;) Speed (%) Voltage (v;) Speed (%) Voltage (v;.) Speed (%)
0 1.60 100 1.20 100 2.00 100
1 1.40 85 1.10 90 1.70 80
2 1.20 70 1.00 80 1.40 60
3 1.00 55 0.90 70 1.10 40
4 0.80 40 0.80 60
5 0.70 50

TABLE 2: Transmission rate between different processors.

Connected processors Transmission rate

pc, and pc, 1.27

p¢, and pc, 1.53

pc, and pc, 110

TaBLE 3: Computation cost with VSL 0.

Task pc, pc, pe, Task P<, pe, pe,
0 36 24 16 4 8 35 6
1 27 36 41 5 25 15 36
2 1 33 48 6 21 21 33
3 30 6 5 7 34 39 31

when executing task 7, and At; is the amount of time taken
for n;’s execution. On the other hand, the indirect energy
consumption is defined as

M~

2
Ei = Z “Vj,lowij,k’ (6)

ld;eD;

J

where p is the number of processors, D; is the set of
idling slots (between time 0 and the makespan) on processor
Pj» Vjlow is the lowest supply voltage on p;, and Aw; is
the amount of idling time for d;;. Then, the total energy
consumption is defined as

Etotal = Ed + Ei' (7)

3.4. Scheduling Problem. The scheduling problem in this
study is allocating 7 tasks in a DAG to p DVS-enabled hetero-
geneous processors, to simultaneously minimize makespan
and energy consumption while still meeting precedence con-
straints between tasks. We assume all DAGs start execution
at time 0 and the makespan is defined as the latest finish time
of n tasks after the scheduling is completed.

4. Methodology

In this section, we present the proposed new heuristic
enhanced energy conscious scheduling heuristic (EECS), as
well as a simple example for illustration purpose.

Journal of Applied Mathematics

5.
451 -
44
354 -
3.
254 -
24

Average MR

154 -

0.2 1 5
CCR

(a) Low heterogeneity (MR)

Average ER
(=}

. 0.6 -
SN RN SEEan o 05 -
02 - . e o 2.
0.1-- - . e o 14

. 0.2 1 5 10

Average MR

0.2 1 5
CCR

(b) High heterogeneity (MR)

Average ER

0.2 1 5
CCR CCR
| ECS B ECS
B EECS B EECS
(c) Low heterogeneity (ER) (d) High heterogeneity (ER)
FIGURE 3: Laplace, 49 nodes (different heterogeneities of processors).
TABLE 4: Task priorities of G.
n; 0 1 2 4 5 6 7
b-level 178.50 138.87 127.63 125.67 128.00 87.30 76.57 34.67
TaBLE 5: The schedule results of EECS and ECS for G. TABLE 6: Experimental parameters.
Result of RS Result of Result of Result of Parameter Value
of ECS MCER of PCS of GES of The number of tasks U(20, 200)
ECS EECS EECS
Mak 264.42 242.8 243.32 2321 CeR 04,021,510}
B akespan : : ’ ’ The number of processors {3, 5, 8}
nergy 25946.87 23915.8 23967.02 22861.85 Processors heterogeneity {low; high}

4.1. Proposed Heuristic. As presented in Algorithm 1, our
heuristic first prioritizes tasks based on bottom-level ranking
(denoted by b-level), which is computed by adding the
average computation and communication costs along the

longest path of the exit node in the DAG. Next, Algorithm 2 is
applied to the prioritized tasks to generate an initial schedule.
However, scheduling decisions made in Algorithm 2 are

Average MR

0.2 1 5

CCR
(a) Three processors (MR)

0.2 1 5

CCR

2.5
2 4
€ 15,
&b
5
14
z

(c) Eight processors (MR)

Average ER
e e oo 9 2 9 9
NS} w S~ v [o)} N e} el
N

0.14-

0.2 1 5
CCR

m ECS
m EECS

(e) Five processors (ER)

Journal of Applied Mathematics

Average MR

0.2 1 5
CCR

(b) Five processors (MR)

0.2 1 5

CCR

0.7 1

0.6 1 -

0.5+ -

Average ER

(d) Three processors (ER)

0.2 1 5

CCR

09 -
0.8 1 -

Average ER

m ECS
m EECS

(f) Eight processors (ER)

FIGURE 4: Laplace, 49 nodes (different sizes of processors).

inevitably limited by local greed. Therefore, the generated
schedule is adjusted by Algorithm 3 for further optimization.

Algorithm 2 explains how the scheduling decision is
made for each task in the initial schedule. We make schedul-
ing decisions for tasks in turn. In each turn, one task is
assigned a specific processor with a specific VSL, which

is picked up from all possible combinations of processor
and VSL, for optimum. Note that our scheduling aims at
minimization on two objectives (i.e., makespan and energy
consumption), which normally conflict with each other. This
indicates the evaluation of a processor-VSL combination is
not straightforward. In order to make a comparison between

Journal of Applied Mathematics

0.2 1 5

CCR

:’=
v W
L]

Average MR
—_ 8] w
[, I SRS B SV S BN
1 1 1 1 1 1

(a) Low heterogeneity (MR)

0.1 02 1 5

Average ER
o o o o o
S} [*N) W~ (53} (=)}
1 1 1 1 1

(=]
—_
L

[
v W
L]

Average MR
— o w
[SRS, BN SURE S BN
1 1 1 1 1 1

0.2 1 5

CCR

(b) High heterogeneity (MR)

0.2 1 5

Average ER

10
CCR CCR
W ECS B ECS
W EECS B EECS
(c) Low heterogeneity (ER) (d) High heterogeneity (ER)
FIGURE 5: LIGO, 77 nodes (different heterogeneities of processors).
TaBLE 7: Comparative results of different sizes of processors.
Improvement by EECS over ECS
3 5 8
Makespan Energy Makespan Energy Makespan Energy
Random 10.2% 6.1% 11.01% 7.52% 15.12% 11.81%
LIGO 10.54% 7.25% 12.18% 8.01% 14.28% 9.67%
Laplace 15.73% 8.34% 14.98% 7.49% 16.26% 9.88%
Average 12.16% 7.23% 12.73% 7.67% 15.22% 10.45%

two combinations, we devise substitution score (SUBS). For
task n;, SUBS(n;, p',v', p>v) quantifies the score gained if
a processor-VSL combination (p,v) is replaced by (p',v').
SUBS deliberately takes into account the trade-off between
makespan minimization and energy reduction. As defined in
(8), SUBS is a sum of three factors. The first factor is local
energy factor, which is the difference of energy caused by

the substitution with normalization by the energy consump-
tion of current task. The second factor is local execution time
factor, which is the difference of task execution time caused
by the substitution with normalization by the execution time
of current task. The third factor is makespan factor, which is
the difference of task finish time caused by the substitution
with normalization by the execution time of current task.

Journal of Applied Mathematics

Output: A schedule S of G onto P.

Input: A DAG G(N, E) and a set P of DVS-enabled processors.

(1) Compute the weights of nodes and edges averaged over differen processors.

(2) Compute the bottom-level ranking for each node.

(3) Sort all tasks in the no-ascending order of bottom-level and put them into list L.

(4) Generate an initial schedule with consideration on makespan-energy tradeoft (by Algorithm 2).
(5) Adjust the schedule for global energy saving. (by Algorithm 3).

ALGoriTHM 1: EECS heuristic outline.

(1) for each sorted task »; in L do
(2) let p,, be py.

(8) if S

stay

(10) end if
11) end for
(12) end for

(14) end for

(3) letvy, bev, o

(4) for each processor p; in P do

(5) for each voltage VpkinV do

(6) Compute S, = SUBS(1;, Pops Vop> P ij,k) as defined in (8).
(7) Compute S.pynge = SUBS(1;, pj» Vp. k> Pops Vop) @s defined in (8).

is greater than S
9) Assign p; and Vp.k 1O Doyt and v,,,, respectively.

change

(13) Allocate task 1; on p,, with v,

then

ALGORITHM 2: Pairwise comparison and selection.

As defined in (8), in the case of p = p’, the makespan
factor is ignored, as the sign of makespan factor is always in
accordance with the sign of local execution time factor:

SUBS (ni, p', v, ps v)

Ed (ni’ P,’ V,) - Ed (ni’ ps V)
Ey (n; p,v)
EC (ni, r, V’) —EC(n;, p,v)
EC (n;, p,v)
s) O
EC (;, p,v) e
E, (n,», r, V’) ~ E; (n;, p,v)
E4 (. p,v)
EC (ni, i V’) ~EC(n;, p,v)
otherwise,
EC (n;, p,v)

where, for task #n; on processor p with VSL v, E;(n;, p,v)
denotes the directed energy consumption of n;, EC(n;, p, v)
the execution time of »;, and FT(r;, p, v) the finish time of ;.

In Algorithm 3, for each scheduled task, we check
whether there exists another processor-VSL combination,
which, by replacing the currently scheduled combination,
can reduce the total energy consumption (different with
the MCER technique used in ECS, which consider only the
energy consumption of the current task) without increasing
the makespan. If so, the replacement will be enforced.

TaBLE 8: Comparative results of different heterogeneities of proces-
SOrSs.

Improvement by EECS over ECS

Low High
Makespan Energy Makespan Energy
Random 11.0% 7.25% 14.14% 9.49%
LIGO 10.83% 7.66% 14.42% 10.1%
Laplace 13.51% 7.52% 17.84% 9.75%
Average 11.78% 7.48% 15.47% 9.78%

Based on the above description, it is not difficult to
compute that the complexity of our heuristic is O(nlogn +
2((e + n)pv)), where n is the number of DAG nodes, e the
number of DAG edges, p the number of processors, and v the
number of VSLs.

4.2. An Example. A simple DAG with 8 nodes is used here
for illustration purpose. Figure 1 shows the DAG structure
and the size of data to transmit between two interdependent
tasks. Three processors (as depicted in Table 1) are assumed
to run the DAG, and the execution time of each task on
each processor is provided in Table 3. Additionally, Table 2
provides the data transmission rates among these processors.

Table 4 provides the b-level results computed for each
node of the DAG example. According to these results, the
tasks are sorted as follows: {0, 1,4, 2, 3,5, 6, 7}.

Journal of Applied Mathematics

(1) for each task n; sorted in L do

(2) let p,, be the processor on which #; is currently scheduled.

(3) letv,, be the VSL to which #; is currently assigned.

(4) for each processor p;inP do

(5) for each voltage Vpik inV do

(6) Tentatively reallocate n; onto p; with Vp,-

(7) Recompute the makespan.

(8) Recompute the total energy consumption E,, as defined in (7).
) if no increase in makespan and the total energy consumption is reduced then
(10) Assign p;, Vpk 10 PopisVopts respectively.

1) Update the makespan and the total energy consumption.

12) end if

(13) end for

(14) end for

(15) Allocate n; on p,, with v,

(16) end for

AvrGoriTHM 3: Global energy saving.

TAaBLE 9: Comparative results of Figure 5: LIGO, 77 nodes (different heterogeneities of processors).

ECS EECS
Low heterogeneity High heterogeneity Low heterogeneity High heterogeneity
MR (%) ER (%) MR (%) ER (%) MR (%) ER (%) MR (%) ER (%)
0.1 4.47 0.37 4.53 0.41 4.02 0.35 3.93 0.38
0.2 4.42 0.38 4.44 0.41 3.98 0.36 3.85 0.38
1 4.0 0.39 3.81 0.40 3.59 0.36 3.32 0.38
5 3.53 0.43 3.43 0.44 3.12 0.39 2.93 0.39
10 3.28 0.49 3.52 0.54 2.85 0.44 2.85 0.46

Figure 2(a) depicts the schedule generated by the first
phase (i.e., RS) of ECS, and Figure 2(b) is the schedule finally
obtained by ECS after applying MCER. Figures 2(c) and 2(d)
show the schedules generated by the PCS phase and the GES
phases of EECS, respectively. The corresponding makespan
and energy consumption for each schedule is provided in
Table 5.

In this specific example, the PCS phase of EECS generates
a better schedule (with shorter makespan and less energy
consumption) than the one obtained by the RS phase of
ECS. By comparing Figures 2(c) and 2(d), we clearly see the
effectiveness of GES on energy reduction without increasing
the makespan. Although for ECS, MCER can also improve the
schedule quality obtained by RS. However, the final schedule
of ECS is still 4.41% down on makespan minimization
and 4.60% down on energy reduction, in comparison with
the result obtained by EECS. This implies that EECS can
outperform ECS on both minimizing makespan and reducing
energy. We verify this implication in the next section.

5. Performance Evaluation

In this section, we compare our algorithm (EECS) with
ECS. We consider DAGs derived from real-world workflow
applications and a simulated heterogeneous system, which
consists of processors with DVS parameter setting derived

from real CPU models. Simulation results demonstrate
the significant improvement our algorithm makes both on
makespan optimization and energy saving.

5.1. Experimental Setting. In our evaluation, we considered
randomly generated DAGs and two real-world applications,
which are LIGO [38] with 77 nodes and Laplace equation
solver [39] with 49 nodes. When generating random DAGs,
we followed the method presented in [40]. Figure 1 illustrates
how a random DAG looks like. Note that the node number
of LIGO and Laplace is fixed, while the node number of a
random DAG randomly selected from the range of [20, 200].

We also considered different numbers of resources: 3, 5,
and 8. All processors are DVS-enabled and the VSL parameter
is randomly selected from Table 1. In order to model task
execution times, we adopted the method presented in [41].
In this method, in brief, two values are selected from a
uniform distribution in a certain interval. The product of
the two selected values is computed and adopted as a
generation of one task execution time. We classified the task
execution times generated from the interval [10, 50] into low
heterogeneity, those from [10, 1000] into high heterogeneity.

The computation and communication ratio (CCR) is a
measure that indicates whether the DAG is communication
intensive, computation intensive, or moderate. The definition

10

Average MR

0.2 1 5

CCR
(a) Three processors (MR)

0.2 1 5

CCR

Average MR

(c) Eight processors (MR)

0.2 1 5

CCR

Average ER

m ECS
B EECS

(e) Five processors (ER)

Journal of Applied Mathematics

0.2 1 5

CCR

(b) Five processors (MR)

0.2 1 5

CCR

0.45 -
04+ -
0.35 1 -

o
w
L

025+ -

Average ER
S
)

(d) Three processors (ER)

0.2 1 5

CCR

Average ER

B ECS
m EECS

(f) Eight processors (ER)

FIGURE 6: LIGO, 77 nodes (different sizes of processors).

of CCR is the ratio between the average communication
cost and the average computation cost on the target system.
We considered five specific CCR values: 0.1, 0.2, 1.0, 5,
and 10. With a set of generated task execution times, the
communication costs of the tasks were randomly generated
to keep consistency with the given CCR.

For every competing heuristic (ECS and EECS), the
number of experiments conducted is 45000. Table 6 summa-
rized the parameters used in our experiments. Specifically,
for each type of DAG, the base DAG set consists of 500
random samples. This figure is combined with 5 different
CCRes, 3 different numbers of processors, 2 different types

Journal of Applied Mathematics

0.2 1 5

CCR

Average MR

(a) Low heterogeneity (MR)

06 -
0.5 4 - v
(S w1
=4
23}
L
@ 034 - N e
g
<
02 - N e
014 - N e
[
0.1 0.2 1 5
CCR
m ECS
B EECS

(c) Low heterogeneity (ER)

1

Average MR

0.2 1 5

CCR
(b) High heterogeneity (MR)

0.7 - -
0.6 1 -
0.5 - e
[
L
[=T9]
I
E | I I I |
0.2 1 5

CCR

B ECS
B EECS

(d) High heterogeneity (ER)

FIGURE 7: Random DAGs (different heterogeneities of processors).

of heterogeneity, and 3 different DAG types, which leads to
the result of 45000. In each experiment, every algorithm
is used to generate a schedule with makespan and energy
consumption. Hence, the total number of experiments in our
evaluation is 90000 (two algorithms were evaluated).

Finally, all the experiments were implemented by Java and
run on a PC with AMD A6 CPU running at 2.20 GHz with
4 GB memory.

5.2. Comparison Metrics. In our evaluation, we consider
makespan and energy consumption are equally performance
metrics. For a given schedule, its makespan is normalized
to a lower bound, which is the sum of the execution and
communication costs of tasks along the critical path (denoted
by M_,), while its energy consumption is normalized to a
upper bound, which is the total energy consumption of the
schedule in which every task is scheduled so that the energy
consumption is maximized (denoted by E,,,).

Specifically, for each experiment, the performance of each
heuristic (ECS and EECS) is normalized to MR (makespan
ratio) and ER (energy ratio) defined as follows:

M E
MR=—, ER=_——, ©)
MCP Emax

where M is the makespan of the schedule and E the energy
consumption of the schedule.

5.3. Experimental Results. The results for each of the two dif-
ferent scheduling heuristics on the three different types of
DAGs (note that for each DAG, results impacted by number
of processors and results impacted by heterogeneity are both
considered; this results in 6 pairs) are shown in Figures 3, 4,
5, 6, 7, and 8. Particularly, the actual comparative results of
Figures 5 and 6 are shown in Tables 9 and 10, respectively.
The results are normalized to MR and ER, respectively, as

12

Average MR

CCR

(a) Three processors (MR)

0.2 1 5

Average MR

CCR

(c) Eight processors (MR)
0.7 -
0.6 1 -
054 -

Average ER

0.2 1 5

CCR

m ECS
m EECS

(e) Five processors (ER)

0.2 1 5

Journal of Applied Mathematics

0.2 1 5

CCR

Average MR

(b) Five processors (MR)

0.2 1 5

CCR

Average ER

(d) Three processors (ER)

0.2 1 5

CCR

Average ER

m ECS
m EECS

(f) Eight processors (ER)

FIGURE 8: Random DAGs (different sizes of processors).

presented in Section 5.2. Recall that for each heuristic, all
results are averaged over 500 runs.

In all cases depicted in the result figures, it is clear
that EECS always obtained a MR and a ER less than their
counterpart that ECS achieved. This indicates that EECS

outperforms ECS in all cases on both makespan optimization
and energy reduction.

It is interesting to see that the makespan improvement
of EECS over ECS is somehow correlated with CCR. When
Laplace is used, for both low and high heterogeneities, the
MR difference between EECS and ECS is decreased, as CCR
increases from 0.1 to 5. Then, this difference significantly
increases, as CCR changes from 5 to 10. Such a variation of
MR difference can also be observed when LIGO and random

Journal of Applied Mathematics 13
TaBLE 10: Comparative results of Figure 6: LIGO, 77 nodes (different sizes of processors).
ECS EECS
3 5 8 3 5 8

MR (%) ER(%) MR(%) ER(%) MR(%) ER(%) MR(%) ER(%) MR(%) ER(%) MR(%) ER(%)

0.1 6.48 0.36 4.38 0.40 2.40 0.41 5.81 0.34 3.90 0.38 2.08 0.38

0.2 6.47 0.36 4.33 0.41 2.32 0.42 5.82 0.34 3.84 0.38 2.01 0.38

1 6.30 0.37 3.86 0.41 1.82 0.41 5.62 0.35 3.43 0.39 1.59 0.38

5 5.27 0.38 3.42 0.44 1.75 0.46 4.72 0.33 3.02 0.40 1.45 0.44

10 5.20 0.41 3.32 0.53 1.70 0.62 4.64 0.37 2.78 0.43 1.43 0.51
8000 - From Tables 7 and 8, we can see that ECS may obtain
2000 - - a makespan up to 17.84% and energy consumption 10.1%
> more than EECS. Averagely, EECS significantly outperforms
E 6000 - : / ECS by 12% on makespan minimization and 8% on energy

& reduction.
g 5000 1 Aside from the comparison of scheduling performance,
"5 4000 4 we assessed the running times of ECS and EECS for DAGs
% with different sizes. The results are shown in Figure9.
g 3000 1 Although EECS and ECS are both based on list-scheduling,
2 5000 - 1 EECS needs a bit more running time than ECS as the com-
& = putation involved in EECS is more complicated. However,
1000 - P as can be seen in the graph, when scheduling a DAG with
200 nodes, EECS only needs around 7 seconds on average.
0 20 40 60 80 100 120 140 160 180 200 This suggests that EECS can still cope well with the real-time
The size of DAG requirement of workflow scheduling for admission control of
market-oriented systems.
—— ECS
—=— EECS

FIGURE 9: The actual execution time of compared heuristics.

is used with high heterogeneity. The ER difference between
EECS and ECS varies little when CCR is not more than
5.0. However, a significant increase of ER difference can be
seen when CCR changes from 5 to 10. These observations
imply EECS may perform particularly better than ECS in the
scenario where CCR is high.

Table 7 summarized the comparative results between ECS
and EECS in terms of the change of number of processors.
As the size of LIGO and Laplace is fixed, different settings
of processor number may correspond to a specific scenario.
Here, using 3 processors indicate a “resource-hungry” situ-
ation, 8 processors indicate a “resource-rich” situation, and
5 processors indicate a medium. When LIGO is used, the
improvement of EECS over ECS, on both makespan and
energy, increases as the number of processors grows. In the
case of Laplace, such an improvement hits the lowest when
5 processors are used, while reaching the highest when 8
processors are used. So, it seems that EECS may obtain a
greater improvement over ECS in a “resource-rich” scenario.

The comparative results between ECS and EECS in terms
of different processor heterogeneities are summarized in
Table 8. It is clearly suggested that the advantage of EECS over
ECS may be magnified as the heterogeneity of processor turns
from low to high.

6. Conclusion

This paper proposed EECS, a novel efficient biobjective
DAG scheduling heuristic based on the enhancement to the
energy conscious scheduling heuristic ECS. The proposed
heuristic aims at simultaneously minimizing makespan and
energy consumption with alow complexity. The experimental
results suggest that EECS can significantly outperform the
existing approach (i.e., ECS) on both makespan optimization
and energy reduction. It also appears that EECS has a low
execution time cost and thus is able to produce a schedule
as a real-time response to users in market-oriented systems.

Based on the work in this paper, further work could
try to examine the performance of EECS in an uncertain
environment. Further study could investigate how EECS can
cope with significant overestimation or underestimation of
task execution time and assess its robustness against such
uncertainties.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The work is supported by National Natural Science Founda-
tion of China (NSFC, Grant no. 61202361).

14

References

(1]

(3]

(4]

(5]

(8]

[9]

(10]

(15]

(16]

E.Deelman, D. Gannon, M. S. Shields, and I. Taylor, “Workflows
and e-Science: an overview of workflow system features and
capabilities,” Future Generation Computer Systems, vol. 25, no.
5, pp. 528-540, 2009.

G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and P.
Maechling, “An evaluat ion of the cost and performance of sci-
entific workflows on Amazon EC2,” Journal of Grid Computing,
vol. 10, no. 1, pp. 5-21, 2012.

R. Bianchini and R. Rajamony, “Power and energy management
for server systems,” Computer, vol. 37, no. 11, pp. 68-76, 2004.
R. Brown, Report to Congress on Server and Data Center Energy
Efficiency: Public Law 109-431, Lawrence Berk eley National
Laboratory, 2008.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,
“Condor-G: a computation management agent for multi-
institutional grids,” Cluster Computing, vol. 5, no. 3, pp. 237-246,
2002.

K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. A. Fer-
nandes, and G. Mehta, “Adaptive workflow processing and
execution in pegasus,” Concurrency Computation Practice and
Experience, vol. 21, no. 16, pp. 1965-1981, 2009.

V. Venkatachalam and M. Franz, “Power reduction techniques
for microprocessor systems,” ACM Computing Surveys, vol. 37,
no. 3, pp. 195-237, 2005.

K. Q. Li, “Energy efficient scheduling of parallel tasks on mul-
tiprocessor computers,” The Journal of Supercomputing, vol. 60,
no. 2, pp. 223-247, 2012.

K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling
of bag-of-tasks applications with deadline constraints on DVS-
enabled clusters,” in Proceedings of the 7th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid *07),
pp. 541-548, May 2007.

L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards
energy aware scheduling for precedence constrained parallel
tasks in a cluster with DVFS) in Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid ’10), pp. 368-377, May 2010.

Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under different operating
conditions,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 8, pp. 1374-1381, 2011.

Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang,
“Enhanced energy-efficient scheduling for parallel applications
in cloud,” in Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid ’12),
pp. 781-786, Ottawa, Canada, May 2012.

Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiproces-
sors,” IEEE Transactions on Parallel and Distributed Systems, vol.
7, no. 5, pp. 506-521, 1996.

R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG
scheduling on heterogeneous systems,” in Proceedings of the 18th
International Parallel and Distributed Processing Symposium
(IPDPS *04), pp. 111-124, Santa Fe, NM, USA, April 2004.

G. C. Sih and E. A. Lee, “Compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor
architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 2, pp. 175-187,1993.

H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”

(18]

(20]

(21]

[22]

[26]

(27]

(28]

(31]

Journal of Applied Mathematics

IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260-274, 2002.

D. Bozdag, U. Catalyurek, and F. Ozguner, “A task duplication
based bottom-up scheduling algorithm for heterogeneous envi-
ronments,” in Proceedings of the 20th International Parallel and
Distributed Processing Symposium (IPDPS °06), 2006.

S. Ranaweera and D. P. Agrawal, “A scalable task duplication
based scheduling algorithm for heterogeneous systems,” in
Proceedings of the 14th International Parallel and Distributed
Processing Symposium, pp. 383-390, 2000.

S. Ranaweera and D. P. Agrawal, “A task duplication based
scheduling algorithm for heterogeneous systems,” in Proceed-
ings of the 14th International Parallel and Distributed Processing
Symposium, pp. 445-450, 2000.

B. Cirou and E. Jeannot, “Triplet: a clustering scheduling
algorithm for heterogeneous systems,” in Processings of the
Internatioanl Conference on Parallel Processing Workshops, pp.
231-236, 2001.

J. C. Liou and M. A. Palis, “An efficient task clustering heuristic
for scheduling DAGs on multiprocessors,” in Proceedings of the
Workshop on Scheduling and Resource Management for Parallel
and Distributed Processing, pp. 152-156, 1996.

T. D. Braun, H. J. Siegel, N. Beck et al., “A Comparison study of
static mapping heuristics for a class of meta-tasks on heteroge-
neous computing systems,” in Proceedings of the 8th Heteroge-
neous Computing Workshop (HCW *99), pp. 15-29, April 1999.
M. Coli and P. Palazzari, “Real time pipelined system design
through simulated annealing,” Journal of Systems Architecture,
vol. 42, no. 6-7, pp. 465-475,1996.

R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained
distributed DVS scheduling for scientific applications on
power-aware clusters,” in Proceedings of the ACM/IEEE confer-
ence on Supercomputing, p. 34, November 2005.

D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with
dynamic voltage/speed adjustment using slack reclamation
in multiprocessor real-time systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 14, no. 7, pp. 686-700,
2003.

S. S. Zhang and A. Chatha, “Approximation algorithm for the
temperature-aware scheduling problem,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD °07), pp. 281-288, November 2007.

X. L. Zhong and C. Z. Xu, “Energy-aware modeling and
scheduling for dynamic voltage scaling with statistical real-time
guarantee,” IEEE Transactons on Computers, vol. 56, no. 3, pp.
358-372, 2007.

Y. Yu and V. K. Prasanna, “Power-aware resoure allocation
for independent tasks in heterogeneous real-time system,” in
Proceedings of the 9th International Conference on Parallel and
Distributed Systems, pp. 341-348, 2002.

X. Zhu and P. Lu, “A two-phase scheduling strategy for real-
time applications with security requirements on heterogeneous
clusters,” Computers and Electrical Engineering, vol. 35, no. 6, pp.
980-993, 2009.

X. Zhu, C. He, K. Li, and X. Qin, “Adaptive energy-efficient
scheduling for real-time tasks on DVS-enabled heterogeneous
clusters,” Journal of Parallel and Distributed Computing, vol. 72,
no. 6, pp. 751-763, 2012.

W. FE Sacco, C. A. M. N. A. Pereira, P. P. M. Soares, and R.
Schirru, “Genetic algorithms applied to turbine extraction
optimization of a pressurized-water reactor,” Applied Energy,
vol. 73, no. 3-4, pp. 217-222, 2002.

Journal of Applied Mathematics

(32]

(33]

(34]

(35]

(36]

(37]

(38]

A. O. Adewumi and M. M. Ali, “A multi-level genetic algorithm
for a multi-stage space allocation problem,” Mathematical and
Computer Modelling, vol. 51, no. 1-2, pp. 109-126, 2010.

A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, “Multiobjec-
tive differential evolution for scheduling workflow applications
on global Grids,” Concurrency and Computation: Practice and
Experience, vol. 21, no. 13, pp. 1742-1756, 2009.

M. Mezmaz, N. Melab, Y. Kessaci et al., “A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems,” Journal of Parallel and Distributed Com-
puting, vol. 71, no. 11, pp. 1497-1508, 2011.

M. M. Ali and A. Torn, “Population set-based global optimiza-
tion algorithms: some modifications and numerical studies,”
Computers and Operations Research, vol. 31, no. 10, pp. 1703-
1725, 2004.

W. Zheng and R. Sakellariou, “Stochastic DAG scheduling using
a Monte Carlo approach,” Journal of Parallel and Distributed
Computing, vol. 73, no. 12, pp- 1673-1689, 2013.

R. Min, T. Furrer, and A. Chandrakasan, “Dynamic voltage
scaling techniques for distributed microsensor networks,” in
Proceedings of the IEEE Computer Society Workshop on Very
Large Scale Integration, pp. 92-99, 2000.

D. Brown, P. Brady, A. Dietz,]. Cao, B. Johnson, and J. McNabb,
“A ca se study on the use of workflow technologies for scientific
analysis: gravitational wave data analysis,” in Workflows for e-
Science: Science Workflows for Grids, pp. 39-59, 2006.

M. Wu and D. D. Gajski, “Hypertool: a programming aid for
message-passing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 1, no. 3, pp. 330-343, 1990.

W. Zheng, Explorations in grid workflow scheduling [Ph.D.
thesis], The University of Manchester, 2010.

S. Alj, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Task exe-
cution time modeling for heterogeneous computing systems,” in
Proceedings of the 9th Heterogeneous Computing Workshop, pp.
185-199, 2000.

15

