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A direct approach of designingweighted fusion robust steady-state Kalman filters with uncertain noise variances is presented. Based
on the steady-state Kalman filtering theory, using the minimax robust estimation principle and the unbiased linear minimum
variance (ULMV) optimal estimation rule, the six robust weighted fusion steady-state Kalman filters are designed based on
the worst-case conservative system with the conservative upper bounds of noise variances. The actual filtering error variances
of each fuser are guaranteed to have a minimal upper bound for all admissible uncertainties of noise variances. A Lyapunov
equation method for robustness analysis is proposed. Their robust accuracy relations are proved. A simulation example verifies
their robustness and accuracy relations.

1. Introduction

The multisensor information fusion (multisource informa-
tion fusion or multisensor data fusion) has been applied
widely in many fields including guidance, defense, robotics,
target tracking, signal processing, GPS positioning, unman-
ned aerial vehicle (UAV), communication, command, con-
trol, computer, and intelligent systems (C4I) and has attracted
significant interest in recent years. Over the past two decades,
many fused Kalman filtering algorithms have been developed
to handle the state and signal estimation problems for the
multisensor systems. The aim is how to combine the local
estimators or local measurements obtained from each sensor
to obtain a fused estimator, whose accuracy is higher than
that of each local estimator [1]. The basic fused filtering
algorithms include the centralized and distributed algorithms
depending on whether the measurements’ information is
directly communicated to the fusion center or not [2].
For the centralized fusion algorithm, all the measurement
data from local sensor are carried to the fusion center
which can give the globally optimal fused state estimation,
but its disadvantage is requiring a larger computation and
communication burden. The distributed fusion algorithms
can give the globally optimal or suboptimal state estimation
by combing or weighting the local state estimators, whose

advantages are that they can reduce the communication
burden, and is more robust and reliable, and also has
stronger fault tolerance. Under the ULMV rule, there are
three optimal distributed fusion algorithms weighted by
matrices, diagonal matrices, and scalars, respectively [3–5].
The optimal weighted measurement fusion algorithms can
give the global optimal state estimation by weighting the local
measurements to obtain a fusion measurement equation,
accompanied with the state equation; based on a single
Kalman filter, two optimal weighted measurements fusion
algorithms were presented in [6–8].

The classical Kalman filtering is only suitable to han-
dle the state estimation problems for the systems that the
model parameters and noises variances are precisely known.
However, in many application problems, the uncertainties
of model parameters and noise variances are widely found.
In the presence of uncertainties, the filter performance is
degraded and may yield the filter divergence. In order to
solve the filtering problems for uncertain systems, in recent
years, several results have been derived on the design of
robust Kalman filters. The so-called robust Kalman filtering
is to design a filter to guarantee a minimal upper bound
of the actual filtering error variances for all admissible
uncertainties. There are two basic approaches to solve this
problem, which are the Riccati equation approach [9–15] and
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the linear matrix inequality (LMI) approach [16–20]. These
two methods have been applied to design the robust Kalman
filter for uncertain systems with the uncertainties of model
parameters [9–20], where the noise variances are assumed to
be exactly known. However, the design of the robust Kalman
filters with uncertain noise variances is seldom reported [21–
24].

Several robust Kalman filters only consider the stochastic
systems with single sensor, while the design of the multi-
sensor information fusion robust Kalman filters is seldom
considered and the robustness of the fused Kalman filters was
not proved [25–27].

The robust Kalman filters design includes the finite-
horizon (time-varying) robust Kalman filters design and the
infinite-horizon (steady-state) robust Kalman filters design.
The steady-state robust Kalman filters can be designed by
taking the limits for the time-varying robust Kalman filters
[9, 10, 14], and this is called the indirect design method.
However, it is seldom reported that applying the steady-state
Kalman filtering theory can directly design the steady-state
robust Kalman filters, and this is called the direct design
method.

For the systems with uncertain model parameters and/or
noise variances, the covariance intersection (CI) fusion
robust filtering method was presented in [28–31]. Its basic
principle is that the robust CI fusion filter can be obtained
by the convex combination of the robust local filters. Its
advantage is that the cross-covariance of the local filtering
errors is avoided, and it is suitable to handle the systems with
unknown cross-covariance. Its disadvantage is that the local
robust filters are assumed to be known, and the upper bound
of the actual fused estimates has larger conservativeness
because the information of cross-covariance is ignored. The
geometric principle of theCI fusion is that the variance ellipse
of the upper bound of actual fusion estimation error variance
tightly encloses the intersection region of all variances ellipses
of the upper bounds of actual local estimation error variances
[32]. Recently, the ellipsoidal intersection (EI) fusionmethod
with the cross-covariance information was presented in
[33], which improves the robust accuracy of the CI fusion
estimate. The comparison of the CI fusion method with
several weighted fusion methods was given in [5]. The CI
fusion method has been applied to many fields including
remote sensing [34], simultaneous localization and mapping
(SLAM) [35], rocket tracking and prediction [36], and vehicle
localization [37].

Recently, the robust weighted fusion Kalman filters for
multisensor time-varying systems with uncertain noise vari-
anceswere presented by our team in [24], where the Lyapunov
equation method of designing robust Kalman filters, the five
robust weighted fusion time-varying Kalman filters based on
the minimax robust estimation principle, and the concept of
robust accuracy have been presented. By taking the limits
for the time-varying robust weighted fusion Kalman filters,
the corresponding robust steady-state Kalman filters have
been also presented. However, based on the steady-state
Kalman filtering theory, the problem to design directly the
robust steady-state Kalman filters is not solved, and, based
on the cross-covariance information, the problem to reduce

the conservativeness of the upper bound of the CI fusion
estimate is not solved. In addition, only one robust weighted
measurement fuser was presented in [24].

In this paper, based on the steady-state Kalman filtering
theory [38, 39], for the multisensor time-invariant system
with noise variances uncertainties, using the minimax robust
estimation principle, for the worst-case conservative system
with the conservative upper bound of noise variances, three
weighted state fusion robust steady-state Kalman filters will
be presented. In order to improve the robust accuracy of
the CI fuser and to reduce its conservativeness, a modified
robust CI fuser with the cross-covariance information will
be presented. In addition, two weighted measurement fusion
robust steady-state Kalman filters will be presented. The pro-
posed robust weighted fusion steady-state Kalman filtering
approach is different from that in [24]. Our approach avoids
finding the time-varying robust weighted fusers and their
limits.

Finally, the robustness of the local and weighting fused
robust Kalman filters is proved based on the Lyapunov
equation method, which is completely different from the
Riccati equation method and LMI method [9–20]. Their
robust accuracy relations are strictly proved. In order to verify
the correctness of theoretical accuracy relations, a Monte-
Carlo simulation example for a three-sensor tracking system
with uncertain noise variances is given.

The remainder of the paper is organized as follows.
The problem formulation is given in Section 2. The local
robust steady-state Kalman filters and their robustness anal-
ysis are presented in Section 3. Six weighted fusion robust
steady-state Kalman filters and their robustness analysis
are proposed in Section 4. The comparison of the robust
accuracies of the local and fused robust Kalman filters is
given in Section 5. Section 6 gives a simulation example. The
conclusions are presented in Section 7.

2. Problem Formulation

Consider the multisensor time-invariant system with uncer-
tain noise variances

𝑥 (𝑡 + 1) = Φ𝑥 (𝑡) + Γ𝑤 (𝑡) , (1)

𝑦
𝑖
(𝑡) = 𝐻

𝑖
𝑥 (𝑡) + V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝐿, (2)

where 𝑡 is the discrete time, 𝑥(𝑡) ∈ 𝑅
𝑛 is the state to be

estimated, 𝐿 is the number of sensors, 𝑦
𝑖
(𝑡) ∈ 𝑅

𝑚𝑖 and V
𝑖
(𝑡) ∈

𝑅
𝑚𝑖 are the measurement and measurement noise of the 𝑖th

subsystem, and 𝑤(𝑡) ∈ 𝑅
𝑟 is the input noise. Φ, Γ, and𝐻

𝑖
are

known constant matrices with appropriate dimensions.

Assumption 1. 𝑤(𝑡) and V
𝑖
(𝑡) are uncorrelated white noises

with zero mean and unknown uncertain actual variances 𝑄
and 𝑅

𝑖
, and 𝑄 and 𝑅

𝑖
are known conservative upper bounds

of 𝑄 and 𝑅
𝑖
, respectively; that is,

𝑄 ≤ 𝑄, 𝑅
𝑖
≤ 𝑅
𝑖
, 𝑖 = 1, . . . , 𝐿, (3)

in the sense that 𝐴 ≤ 𝐵 means that 𝐵 − 𝐴 ≥ 0 is a positive
semidefinite matrix.
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Assumption 2. (Φ, Γ) is a completely controllable pair and
(Φ,𝐻
𝑖
) is a completely observable pair.

The problem is to design the local or fused robust steady-
state Kalman filter 𝑥(𝑡 | 𝑡) such that the variances of
actual filtering errors are guaranteed to have aminimal upper
bound 𝑆 for all admissible uncertain noise variances 𝑄 and
𝑅
𝑖
satisfying (3); that is, the actual filtering error variance

satisfies

𝐸 [(𝑥 (𝑡) − 𝑥 (𝑡 | 𝑡)) (𝑥 (𝑡) − 𝑥 (𝑡 | 𝑡))
𝑇
] ≤ 𝑆, (4)

where 𝐸 is the mathematical expectation operator and the
superscript 𝑇 is the transpose.

Definition 3. The measurements 𝑦
𝑖
(𝑡) generated from the

systems (1) and (2) with unknown actual noise variances 𝑄
and 𝑅

𝑖
, 𝑖 = 1, . . . , 𝐿, are called the actual measurements 𝑦

𝑖
(𝑡),

which are obtained via the sensors, and are available (known).

Definition 4. The measurements 𝑦
𝑖
(𝑡) generated from the

systems (1) and (2) with the conservative upper bounds𝑄 and
𝑅
𝑖
of noise variances are called the conservativemeasurement

which are unavailable (unknown).

Definition 5. The Kalman filters with conservative mea-
surements 𝑦

𝑖
(𝑡) are called the conservative Kalman filter

which is unrealizable. The Kalman filters with the actual
measurements 𝑦

𝑖
(𝑡) are called the actual Kalman filters.

3. Local Robust Steady-State Kalman Filters

According to the minimax robust optimal estimation princi-
ple [40], consider the worst-case conservative systems (1) and
(2) with Assumptions 1–2 and with the conservative upper
bounds 𝑄 and 𝑅

𝑖
of noise variances; the conservative local

steady-state Kalman filters are given as [38, 39]

𝑥
𝑖
(𝑡 | 𝑡) = Ψ

𝑖
𝑥
𝑖
(𝑡 − 1 | 𝑡 − 1) + 𝐾

𝑖
𝑦
𝑖
(𝑡) , 𝑖 = 1, . . . , 𝐿, (5)

Ψ
𝑖
= [𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
]Φ, 𝐾

𝑖
= Σ
𝑖
𝐻
𝑇

𝑖
(𝐻
𝑖
Σ
𝑖
𝐻
𝑇

𝑖
+ 𝑅
𝑖
)

−1

, (6)

where 𝐼
𝑛
is an 𝑛 × 𝑛 identity matrix, Ψ

𝑖
is a stable matrix,

and 𝐾
𝑖
is the steady-state filtering gain matrix. Here, the

measurements 𝑦
𝑖
(𝑡) are unavailable as in Definition 4.

The conservative one-step prediction error variances Σ
𝑖

satisfy the Riccati equations

Σ
𝑖
= Φ[Σ

𝑖
− Σ
𝑖
𝐻
𝑇

𝑖
(𝐻
𝑖
Σ
𝑖
𝐻
𝑇

𝑖
+ 𝑅
𝑖
)

−1

𝐻
𝑖
Σ
𝑖
]Φ
𝑇
+ Γ𝑄Γ

𝑇
. (7)

The conservative local steady-state filtering error vari-
ances satisfy the Lyapunov equations

𝑃
𝑖
= Ψ
𝑖
𝑃
𝑖
Ψ
𝑇

𝑖
+ [𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
]
𝑇

+ 𝐾
𝑖
𝑅
𝑖
𝐾
𝑇

𝑖
,

(8)

and the conservative local steady-state filtering error cross-
covariances also satisfy the Lyapunov equations [4]

𝑃
𝑖𝑗
= Ψ
𝑖
𝑃
𝑖𝑗
Ψ
𝑇

𝑗
+ [𝐼
𝑛
− 𝐾
𝑗
𝐻
𝑗
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
𝑗
𝐻
𝑗
]

𝑇

. (9)

Notice that the conservative local Kalman filters (5)
are unrealizable, because the conservative measurements
𝑦
𝑖
(𝑡) given in Definition 4 are unavailable. Only the actual

measurements𝑦
𝑖
(𝑡)measured via sensors are available, which

are generated from systems (1) and (2) with the actual noise
variances𝑄 and 𝑅

𝑖
, 𝑖 = 1, . . . , 𝐿. Therefore, replacing the con-

servative measurements 𝑦
𝑖
(𝑡) with the actual measurements

𝑦
𝑖
(𝑡) in (5), we obtain the actual local Kalman filters 𝑥

𝑖
(𝑡 | 𝑡).

Define the actual local steady-state filtering error variance
as

𝑃
𝑖
= 𝐸 [𝑥

𝑖
(𝑡 | 𝑡) 𝑥

Τ

𝑖
(𝑡 | 𝑡)] , 𝑥

𝑖
(𝑡 | 𝑡) = 𝑥 (𝑡) − 𝑥

𝑖
(𝑡 | 𝑡) .

(10)

Substituting (1) and (5) into 𝑥
𝑖
(𝑡 | 𝑡) = 𝑥(𝑡) − 𝑥

𝑖
(𝑡 | 𝑡), we

obtain that

𝑥
𝑖
(𝑡 | 𝑡) = Φ𝑥 (𝑡 − 1) + Γ𝑤 (𝑡 − 1)

− Ψ
𝑖
𝑥 (𝑡 − 1 | 𝑡 − 1) − 𝐾

𝑖
𝑦
𝑖
(𝑡) .

(11)

Substituting the actual measurements (2) into (11) yields

𝑥
𝑖
(𝑡 | 𝑡) = Ψ

𝑖
𝑥 (𝑡 − 1 | 𝑡 − 1)

+ (𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
) Γ𝑤 (𝑡 − 1) − 𝐾

𝑖
V
𝑖
(𝑡) .

(12)

Substituting (12) into (10) yields the actual steady-state
filtering error variances as

𝑃
𝑖
= Ψ
𝑖
𝑃
𝑖
Ψ
𝑇

𝑖
+ [𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
]
𝑇

+ 𝐾
𝑖
𝑅
𝑖
𝐾
𝑇

𝑖
.

(13)

Applying (12), the actual steady-state filtering error cross-
covariances are obtained as

𝑃
𝑖𝑗
= Ψ
𝑖
𝑃
𝑖𝑗
Ψ
𝑇

𝑗
+ [𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
𝑗
𝐻
𝑗
]

𝑇

, 𝑖 ̸= 𝑗.

(14)

Lemma 6 (see [38]). Consider the Lyapunov equation with 𝑈
being a symmetric matrix,

𝑃 = Ψ𝑃Ψ
𝑇
+ 𝑈. (15)

If Ψ is a stable matrix (all its eigenvalues are inside the unit
circle) and 𝑈 ≥ 0, then 𝑃 is unique and symmetric and 𝑃 ≥ 0.

Theorem 7. Formultisensor uncertainsystems (1) and (2)with
Assumptions 1–2, the actual local Kalman filters (5) with
conservative upper bounds 𝑄 and 𝑅

𝑖
of noise variances are

robust in the sense that, for all admissible actual variances 𝑄
and 𝑅

𝑖
satisfying (3), one has

𝑃
𝑖
≤ 𝑃
𝑖
, 𝑖 = 1, . . . , 𝐿, (16)

and they are called the local robust steady-state Kalman filters,
and 𝑃

𝑖
is the minimal upper bound of 𝑃

𝑖
.

Proof. DefiningΔ𝑃
𝑖
= 𝑃
𝑖
−𝑃
𝑖
, subtracting (13) from (8) yields

the Lyapunov equation

Δ𝑃
𝑖
= Ψ
𝑖
Δ𝑃
𝑖
Ψ
𝑇

𝑖
+ 𝑈
𝑖
, (17)
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where

𝑈
𝑖
= [𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
] Γ (𝑄 − 𝑄) Γ

𝑇
[𝐼
𝑛
− 𝐾
𝑖
𝐻
𝑖
]
𝑇

+ 𝐾
𝑖
(𝑅
𝑖
− 𝑅
𝑖
)𝐾
𝑇

𝑖
.

(18)

Applying (3) and (18) yields 𝑈
𝑖
≥ 0, and noting that Ψ

𝑖
is

a stable matrix and applying Lemma 6, we have Δ𝑃
𝑖
≥ 0; that

is 𝑃
𝑖
≤ 𝑃
𝑖
holds. Taking 𝑄 = 𝑄, 𝑅

𝑖
= 𝑅
𝑖
, then the constraints

(3) are satisfied, and 𝑈
𝑖
= 0. Applying Lemma 6 to (17) yields

Δ𝑃
𝑖
= 0; that is, 𝑃

𝑖
= 𝑃
𝑖
. For arbitrary other upper bound 𝑃

∗

𝑖
,

we have 𝑃
𝑖
= 𝑃
𝑖
≤ 𝑃
∗

𝑖
, which yields that 𝑃

𝑖
is the minimal

upper bound of 𝑃
𝑖
. The proof is completed.

4. Weighted Fusion Robust Steady-State
Kalman Filters

4.1. Four Robust Weighted State Fusion Steady-State Kalman
Filters. For the worst-case conservative multisensor systems
(1) and (2) with Assumptions 1–2, and with conservative
upper bounds 𝑄 and 𝑅

𝑖
, under the ULMV fusion rule,

the four conservative steady-state optimal weighted fusion
Kalman filters are given by [3–5]

𝑥
𝜃
(𝑡 | 𝑡) =

𝐿

∑

𝑖=1

Ω
𝜃

𝑖
𝑥
𝑖
(𝑡 | 𝑡) , 𝜃 = 𝑚, 𝑠, 𝑑,CI (19)

with the constraint of unbiasedness

𝐿

∑

𝑖=1

Ω
𝜃

𝑖
= 𝐼
𝑛
, (20)

where 𝜃 = 𝑚, 𝑠, 𝑑 and CI denote the fusers weighted
by matrices, scalars, diagonal matrices, and the CI fuser,
respectively.

The optimal weighted matrices are computed as [3–5]

[Ω
𝑚

1
⋅ ⋅ ⋅ Ω
𝑚

𝐿
] = (𝑒

𝑇
𝑃
−1
𝑒)

−1

𝑒
𝑇
𝑃
−1
, 𝑒 = [𝐼

𝑛
⋅ ⋅ ⋅ 𝐼
𝑛
]
𝑇

, (21)

𝑃 = (𝑃
𝑖𝑗
)
𝑛𝐿×𝑛𝐿

(22)

with the definition 𝑃
𝑖𝑖
= 𝑃
𝑖
.

The conservative fused filtering error variance is given as

𝑃
𝑚
= (𝑒
𝑇
𝑃
−1
𝑒)

−1

. (23)

The optimal scalars weights are computed as

[𝜔
1
, . . . , 𝜔

𝐿
] = (𝑒

𝑇
𝑃
−1

tr 𝑒)
−1

𝑒
𝑇
𝑃
−1

tr , (24)

Ω
𝑠

𝑖
= 𝜔
𝑖
𝐼
𝑛
, 𝑖 = 1, . . . , 𝐿, (25)

where 𝑒 = [1 ⋅ ⋅ ⋅ 1]
𝑇 and the 𝐿 × 𝐿matrix 𝑃tr(𝑡 | 𝑡) is defined

as

𝑃tr = (tr𝑃
𝑖𝑗
)
𝐿×𝐿

, (26)

where tr𝑃
𝑖𝑗
denotes the trace of 𝑃

𝑖𝑗
. The conservative fused

error variance is given as

𝑃
𝑠
=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝜔
𝑖
𝜔
𝑗
𝑃
𝑖𝑗
. (27)

The optimal diagonal matrix weights are computed as

Ω
𝑑

𝑖
= diag (𝜔

𝑖1
, . . . , 𝜔

𝑖𝑛
) ,

[𝜔
1𝑖
⋅ ⋅ ⋅ 𝜔
𝐿𝑖
] = (𝑒

𝑇
(𝑃
𝑖𝑖
)

−1

𝑒)

−1

𝑒
𝑇
(𝑃
𝑖𝑖
)

−1

, 𝑖 = 1, . . . , 𝑛,

𝑒 = [1 ⋅ ⋅ ⋅ 1]
𝑇
, 𝑃

𝑖𝑖
= (𝑃
𝑖𝑖

𝑠𝑘
)
𝐿×𝐿

,

(28)

where𝑃𝑖𝑖
𝑠𝑘
is the (𝑖, 𝑖)th diagonal element of 𝑃

𝑠𝑘
, 𝑠, 𝑘 = 1, . . . , 𝐿.

The conservative fused error variance is given as

𝑃
𝑑
=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

Ω
𝑑

𝑖
𝑃
𝑖𝑗
Ω
𝑑𝑇

𝑗
. (29)

The CI fusion weights are computed as [5, 31, 32]

ΩCI = [Ω
CI
1
, . . . , Ω

CI
𝐿
] , Ω

CI
𝑖

= 𝜔
𝑖
𝑃
∗

CI𝑃
−1

𝑖
, 𝑖 = 1, . . . , 𝐿,

(30)

𝑃
∗

CI = [

𝐿

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
]

−1

. (31)

The optimal weighting coefficients 𝜔
𝑖
are obtained by

minimizing the performance index

min
𝜔𝑖

tr𝑃∗CI = min
𝜔𝑖∈[0,1]

𝜔1+⋅⋅⋅+𝜔𝐿=1

tr
{

{

{

[

𝐿

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
]

−1

}

}

}

. (32)

This needs to solve L-dimension nonlinear convex opti-
mization problem, which can be solved by “fmincon” func-
tion in MATLAB toolbox.

Define

Ω
𝜃
= [Ω
𝜃

1
, . . . , Ω

𝜃

𝐿
] , 𝜃 = 𝑚, 𝑠, 𝑑,CI. (33)

From (20), we have

𝑥 (𝑡) =

𝐿

∑

𝑖=1

Ω
𝜃

𝑖
𝑥 (𝑡) , 𝜃 = 𝑚, 𝑠, 𝑑,CI. (34)

Subtracting (19) from (34) yields the conservative fused
filtering errors as

𝑥
𝜃
(𝑡 | 𝑡) =

𝐿

∑

𝑖=1

Ω
𝜃

𝑖
𝑥
𝑖
(𝑡 | 𝑡) , 𝜃 = 𝑚, 𝑠, 𝑑,CI. (35)

Applying (34) and (35) yields the conservative fused filtering
error variances having a unified form

𝑃
𝜃
= Ω
𝜃
𝑃Ω
𝑇

𝜃
, 𝜃 = 𝑚, 𝑠, 𝑑,CI (36)
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with 𝑃 defined in (22). Replacing the conservative local
Kalman filters 𝑥

𝑖
(𝑡 | 𝑡) in (19) by the actual local Kalman

filters 𝑥
𝑖
(𝑡 | 𝑡), we obtain the actual weighted fusion Kalman

filters.
Define the actual weighted fusion filtering error variance

𝑃
𝜃
(𝑡 | 𝑡) as

𝑃
𝜃
(𝑡 | 𝑡) = 𝐸 [𝑥

𝜃
(𝑡 | 𝑡) 𝑥

Τ

𝜃
(𝑡 | 𝑡)] , 𝜃 = 𝑚, 𝑠, 𝑑,CI, (37)

where 𝑥
𝜃
(𝑡 | 𝑡) = 𝑥(𝑡) − 𝑥

𝜃
(𝑡 | 𝑡) and 𝑥

𝜃
(𝑡 | 𝑡) is the actual

fused filters (19) with 𝑥
𝑖
(𝑡 | 𝑡) (𝑖 = 1, . . . , 𝐿) being the actual

local Kalman filters. From (35) and (37), we obtain the actual
fused filtering error variances as

𝑃
𝜃
= Ω
𝜃
𝑃Ω
𝑇

𝜃
, 𝜃 = 𝑚, 𝑠, 𝑑,CI, (38)

with the definition

𝑃 = (𝑃
𝑖𝑗
)
𝑛𝐿×𝑛𝐿

. (39)

In particular, from (30), (36), and (38), taking 𝜃 = CI,
the CI fuser has the conservative and actual steady-state fused
error variances as

𝑃CI = 𝑃
∗

CI
[

[

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝜔
𝑖
𝑃
−1

𝑖
𝑃
𝑖𝑗
𝑃
−1

𝑗
𝜔
𝑗
]

]

𝑃
∗

CI, (40)

𝑃CI = 𝑃
∗

CI
[

[

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝜔
𝑖
𝑃
−1

𝑖
𝑃
𝑖𝑗
𝑃
−1

𝑗
𝜔
𝑗
]

]

𝑃
∗

CI. (41)

Notice that 𝑃CI is defined with the conservative cross-
covariance 𝑃

𝑖𝑗
.

Lemma 8 (see [24]). Let Λ be the 𝑟 × 𝑟 positive semidefinite
matrix; that is, Λ ≥ 0; then the following 𝑟𝐿 × 𝑟𝐿matrix Λ

𝛿
is

also positive semidefinite; that is,

Λ
𝛿
=
[

[

[

Λ ⋅ ⋅ ⋅ Λ

... d
...

Λ ⋅ ⋅ ⋅ Λ

]

]

]𝑟𝐿×𝑟𝐿

≥ 0. (42)

Lemma9 (see [24]). Let𝑅
𝑖
be the𝑚

𝑖
×𝑚
𝑖
positive semidefinite

matrix; that is, 𝑅
𝑖
≥ 0; the following 𝑚 × 𝑚 block-diagonal

matrix 𝑅
𝛿
is also positive semidefinite; that is,

𝑅
𝛿
= diag (𝑅

1
, . . . , 𝑅

𝐿
) ≥ 0 (43)

with𝑚 = 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝐿
.

Theorem 10. For multisensor uncertain systems (1) and (2)
with Assumptions 1–2 and with conservative upper bounds 𝑄
and 𝑅

𝑖
of noise variances, the actual four steady-state weighted

Kalman fusers are robust in the sense that, for all admissible
actual variances 𝑄 and 𝑅

𝑖
satisfying (3), one has

𝑃
𝜃
≤ 𝑃
𝜃
, 𝜃 = 𝑚, 𝑠, 𝑑, 𝐶𝐼, (44)

and they are called the robust weighted fusion steady-state
Kalman filters, and 𝑃

𝜃
is the minimal upper bound of 𝑃

𝜃
.

Proof. Defining Δ𝑃
𝜃
= 𝑃
𝜃
− 𝑃
𝜃
, subtracting (36) from (38)

yields

Δ𝑃
𝜃
= Ω
𝜃
(𝑃 − 𝑃)Ω

𝑇

𝜃
. (45)

In order to prove the robustness Δ𝑃
𝜃
= 𝑃
𝜃
− 𝑃
𝜃
≥ 0, we only

need to prove that the inequality 𝑃 − 𝑃 ≥ 0 holds.
Applying (8) and (9) yields the following Lyapunov

equation

𝑃 = Ψ𝑃Ψ
𝑇
+ 𝑈𝑄
𝑎
𝑈
𝑇
+ 𝐾𝑅𝐾

𝑇
, (46)

where we define

Ψ =
[

[

Ψ
1

0

d
0 Ψ

𝐿

]

]

,

𝑈 =
[

[

(𝐼
𝑛
− 𝐾
1
𝐻
1
) Γ 0

d
0 (𝐼

𝑛
− 𝐾
𝐿
𝐻
𝐿
) Γ

]

]

,

𝑄
𝑎
=

[

[

𝑄 𝑄

d
𝑄 𝑄

]

]

,

𝐾 =
[

[

𝐾
1

0

d
0 𝐾

𝐿

]

]

,

𝑅 =
[

[

𝑅
1

0

d
0 𝑅

𝐿

]

]

.

(47)

Similarly, applying (13) and (14), 𝑃 can be expressed as

𝑃 = Ψ𝑃Ψ
𝑇
+ 𝑈𝑄

𝑎
𝑈
𝑇
+ 𝐾𝑅𝐾

𝑇
. (48)

with the definitions

𝑄
𝑎
=
[

[

[

𝑄 𝑄

... d
...

𝑄 𝑄

]

]

]

, 𝑅 =
[

[

𝑅
1

0

d
0 𝑅

𝐿

]

]

. (49)

Since Ψ
𝑖
is a stable matrix, then the eigenvalues of the matrix

Ψ
𝑖
are all within the unit circle and are determined from its

characteristic equation det(𝜆𝐼
𝑛
− Ψ
𝑖
) = 0. The eigenvalues of

thematrixΨ are determined from the characteristic equation

det (𝜆𝐼
𝑛𝐿

− Ψ) = det (𝜆𝐼
𝑛
− Ψ
1
) ⋅ ⋅ ⋅ det (𝜆𝐼

𝑛
− Ψ
𝐿
) = 0, (50)

which yields that Ψ is also a stable matrix, because the
eigenvalues of Ψ

𝑖
are also the eigenvalues of Ψ.

Denoting Δ𝑃 = 𝑃 − 𝑃, subtracting (48) from (46) yields
the Lyapunov equation

Δ𝑃 = ΨΔ𝑃Ψ
𝑇
+ 𝑈 (𝑄

𝑎
− 𝑄
𝑎
)𝑈
𝑇
+ 𝐾(𝑅 − 𝑅)𝐾

𝑇
. (51)

Noting that 𝑄 ≤ 𝑄, 𝑅
𝑖
≤ 𝑅
𝑖
, applying Lemmas 8 and 9

yields 𝑄
𝑎
≤ 𝑄
𝑎
, 𝑅 ≤ 𝑅; therefore 𝑈(𝑄

𝑎
− 𝑄
𝑎
)𝑈
𝑇
+ 𝐾(𝑅 −
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𝑅)𝐾
𝑇

≥ 0. Noting that Ψ is a stable matrix and applying
Lemma 6 to (51), we have Δ𝑃 ≥ 0; that is,

𝑃 ≤ 𝑃. (52)

From (45) and (52), we have Δ𝑃
𝜃
≥ 0, so (44) holds. If

𝑃
∗

𝜃
is other upper bound of 𝑃

𝜃
, taking 𝑄 = 𝑄, 𝑅

𝑖
= 𝑅
𝑖
, we

have 𝑄
𝑎
= 𝑄
𝑎
, 𝑅 = 𝑅, so applying Lemma 6 to (51) yields

Δ𝑃 = 0; that is, 𝑃 = 𝑃. Hence, applying (45) yields Δ𝑃
𝜃
= 0,

so 𝑃
𝜃
= 𝑃
𝜃
≤ 𝑃
∗

𝜃
, which yields that 𝑃

𝜃
is the minimal upper

bound of 𝑃
𝜃
. The proof is completed.

Remark 11. From (19) and (30), the CI fusion Kalman filter
can be rewritten as

𝑥CI (𝑡 | 𝑡) = 𝑃
∗

CI

𝐿

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
𝑥
𝑖
(𝑡 | 𝑡) , (53)

which can be reviewed as a special fuser weighted bymatrices
with weightsΩCI

𝑖
= 𝜔
𝑖
𝑃
∗

CI𝑃
−1

𝑖
.

From (31) and (53), the CI fuser has the convex combina-
tion form as

(𝑃
∗

CI)
−1

𝑥CI (𝑡 | 𝑡) =
𝐿

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
𝑥
𝑖
(𝑡 | 𝑡) , (54)

(𝑃
∗

CI)
−1

=

𝐿

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
, (55)

and it is proved [5] that 𝑃∗CI is a conservative upper bound of
𝑃CI,

𝑃CI ≤ 𝑃
∗

CI. (56)

From (31) or (55), the upper bound 𝑃
∗

CI is defined without
the cross-covariance information and is only determined by
the conservative local variances 𝑃

𝑖
, so that 𝑃∗CI has certain

conservativeness; that is, 𝑃∗CI is not a minimal upper bound of
𝑃CI for all admissible uncertainties of noise variances. From
Theorem 10, we have the robustness

𝑃CI ≤ 𝑃CI (57)

and 𝑃CI defined by (40) with the conservative cross-
covariance 𝑃

𝑖𝑗
, is the minimal upper bound of 𝑃CI. Hence, we

have

𝑃CI ≤ 𝑃
∗

CI; (58)

that is, the upper bound 𝑃CI has less conservativeness than
𝑃
∗

CI.

4.2. Two Robust Weighted Measurement Fusion Steady-State
Kalman Filters. For the worst-case conservative systems (1)
and (2) with Assumptions 1–2, and with the conservative
upper bounds 𝑄 and 𝑅

𝑖
of noise variances, if 𝐻

𝑖
have the

common𝑚 × 𝑛 right factor𝐻, that is,

𝐻
𝑖
= 𝑀
𝑖
𝐻, 𝑖 = 1, . . . , 𝐿, (59)

where 𝑀
𝑖
is 𝑚
𝑖
× 𝑛 matrix, and the matrix 𝑀

(0)𝑇
𝑅
(0)−1

𝑀
(0)

or 𝐻
(0)𝑇

𝑅
(0)−1

𝐻
(0) is assumed to be invertible, with the

definition

𝑀
(0)

= [𝑀
𝑇

1
, . . . ,𝑀

𝑇

𝐿
]

𝑇

, 𝐻
(0)

= [𝐻
𝑇

1
, . . . , 𝐻

𝑇

𝐿
]

𝑇

, (60)

we have the conservative centralized fusion measurement
equation

𝑦
(0)

(𝑡) = 𝐻
(0)
𝑥 (𝑡) + V(0) (𝑡) , (61)

𝑦
(0)

(𝑡) = [𝑦
𝑇

1
(𝑡) , . . . , 𝑦

𝑇

𝐿
(𝑡)]

𝑇

,

V(0) (𝑡) = [V𝑇
1
(𝑡) , . . . , V𝑇

𝐿
(𝑡)]

𝑇

,

(62)

Where, according to Assumption 1, the fused noise V(0)(𝑡) has
the conservative variance matrix

𝑅
(0)

= diag (𝑅
1
, . . . , 𝑅

𝐿
) . (63)

If (59) holds, then (61) becomes

𝑦
(0)

(𝑡) = 𝑀
(0)
𝐻𝑥 (𝑡) + V(0) (𝑡) . (64)

If 𝑀(0)𝑇𝑅(0)−1𝑀(0) is invertible, applying the weighted least
squares (WLS) method [34],𝐻𝑥(𝑡) has the WLS estimate

𝑦
(1)

(𝑡) = [𝑀
(0)𝑇

𝑅
(0)−1

𝑀
(0)
]

−1

𝑀
(0)𝑇

𝑅
(0)−1

𝑦
(0)

(𝑡) . (65)

Substituting (64) into (65) yields the first conservative
weighted measurement fusion equation

𝑦
(1)

(𝑡) = 𝐻
(1)
𝑥 (𝑡) + V(1) (𝑡) , 𝐻

(1)
= 𝐻, (66)

V(1) (𝑡) = [𝑀
(0)𝑇

𝑅
(0)−1

𝑀
(0)
]

−1

𝑀
(0)𝑇

𝑅
(0)−1V(0) (𝑡) , (67)

Where, from (67), the fused noise V(1)(𝑡) has the variance
matrix

𝑅
(1)

= [𝑀
(0)𝑇

𝑅
(0)−1

𝑀
(0)
]

−1

. (68)

If 𝐻(0)𝑇𝑅(0)−1𝐻(0) is invertible, from (61), 𝑥(𝑡) has the WLS
estimate

𝑦
(2)

(𝑡) = [𝐻
(0)𝑇

𝑅
(0)−1

𝐻
(0)
]

−1

𝐻
(0)𝑇

𝑅
(0)−1

𝑦
(0)

(𝑡) . (69)

Substituting (61) into (69) yields the second conservative
measurement fusion equation

𝑦
(2)

(𝑡) = 𝐻
(2)
𝑥 (𝑡) + V(2) (𝑡) , 𝐻

(2)
= 𝐼
𝑛
, (70)

V(2) (𝑡) = [𝐻
(0)𝑇

𝑅
(0)−1

𝐻
(0)
]

−1

𝐻
(0)𝑇

𝑅
(0)−1V(0) (𝑡) , (71)

where from (71) the fused noise V(2)(𝑡) has the variancematrix

𝑅
(2)

= [𝐻
(0)𝑇

𝑅
(0)−1

𝐻
(0)
]

−1

. (72)

Hence, the centralized fusion system and two measurement
fusion systems have a unified form as

𝑥 (𝑡 + 1) = Φ𝑥 (𝑡) + Γ𝑤 (𝑡) ,

𝑦
(𝑗)

(𝑡) = 𝐻
(𝑗)
𝑥 (𝑡) + V(𝑗) (𝑡) , 𝑗 = 0, 1, 2.

(73)
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Theorem 12. For the worst-case multisensor uncertain system
with Assumptions 1–2, and with the conservative upper bounds
𝑄 and 𝑅

𝑖
of noise variances, the robust centralized fusion

Kalman filter and two robust weighted measurement fusion
Kalman filters have a unified form as

𝑥
(𝑗)

(𝑡 | 𝑡) = Ψ
(𝑗)
𝑥
(𝑗)

(𝑡 − 1 | 𝑡 − 1) + 𝐾
(𝑗)
𝑦
(𝑗)

(𝑡) , 𝑗 = 0, 1, 2

Ψ
(𝑗)

= [𝐼
𝑛
− 𝐾
(𝑗)
𝐻
(𝑗)
]Φ,

𝐾
(𝑗)

= Σ
(𝑗)
𝐻
(𝑗)𝑇

[𝐻
(𝑗)
Σ
(𝑗)
𝐻
(𝑗)𝑇

+ 𝑅
(𝑗)
]

−1

Σ
(𝑗)

= Φ[Σ
(𝑗)

− Σ
(𝑗)
𝐻
(𝑗)𝑇

(𝐻
(𝑗)
Σ
(𝑗)
𝐻
(𝑗)𝑇

+ 𝑅
(𝑗)
)

−1

× 𝐻
(𝑗)
Σ
(𝑗)
]Φ
𝑇
+ Γ𝑄Γ

𝑇
,

(74)

and the conservative and actual fused error variances are,
respectively, given as

𝑃
(𝑗)

= Ψ
(𝑗)
𝑃
(𝑗)
Ψ
(𝑗)𝑇

+ [Ι
𝑛
− 𝐾
(𝑗)
𝐻
(𝑗)
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
(𝑗)
𝐻
(𝑗)
]

𝑇

+ 𝐾
(𝑗)
𝑅
(𝑗)
𝐾
(𝑗)𝑇

,

𝑃

(𝑗)

= Ψ
(𝑗)
𝑃

(𝑗)

Ψ
(𝑗)𝑇

+ [Ι
𝑛
− 𝐾
(𝑗)
𝐻
(𝑗)
] Γ𝑄Γ

𝑇
[𝐼
𝑛
− 𝐾
(𝑗)
𝐻
(𝑗)
]

𝑇

+ 𝐾
(𝑗)
𝑅

(𝑗)

𝐾
(𝑗)𝑇

.

(75)

From (62), (67), and (71), applying Assumption 1 yields

𝑅

(0)

= diag (𝑅
1
, . . . , 𝑅

𝐿
) ,

𝑅

(1)

= [𝑀
(0)𝑇

𝑅

(0)−1

𝑀
(0)
]

−1

𝑀
(0)𝑇

𝑅
(0)−1

× 𝑅

(0)−1

𝑅
(0)−1

𝑀
(0)
[𝑀
(0)𝑇

𝑅

(0)−1

𝑀
(0)
]

−1

,

𝑅

(2)

= [𝐻
(0)𝑇

𝑅

(0)−1

𝐻
(0)
]

−1

𝐻
(0)𝑇

𝑅
(0)−1

× 𝑅

(0)−1

𝑅
(0)−1

𝐻
(0)
[𝐻
(0)𝑇

𝑅

(0)−1

𝐻
(0)
]

−1

.

(76)

We have three equivalent robust Kalman filters

𝑥
(0)

(𝑡 | 𝑡) = 𝑥
(1)

(𝑡 | 𝑡) = 𝑥
(2)

(𝑡 | 𝑡) (77)

with the robustness

𝑃

(𝑗)

≤ 𝑃
(𝑗)
, 𝑗 = 0, 1, 2, (78)

and we have the accuracy relations

𝑃
(0)

= 𝑃
(1)

= 𝑃
(2)
, 𝑃

(0)

= 𝑃

(1)

= 𝑃

(2)

, (79)

tr𝑃(0) = tr𝑃(1) = tr𝑃(2), tr𝑃(0) = tr𝑃(1) = tr𝑃(2).
(80)

Proof. The robust Kalman filters (74) have the equivalent
information filter form [38]

𝑥
(𝑗)

(𝑡 | 𝑡)=Ψ
(𝑗)
𝑥
(𝑗)

(𝑡 − 1 | 𝑡 − 1) + 𝐾
(𝑗)
𝑦
(𝑗)

(𝑡) , 𝑗 = 0, 1, 2,

Ψ
(𝑗)

= 𝑃
(𝑗)
Σ
(𝑗)
Φ,

𝐾
(𝑗)

= 𝑃
(𝑗)
𝐻
(𝑗)𝑇

𝑅
(𝑗)−1

,

Σ
(𝑗)

= Φ𝑃
(𝑗)
Φ
𝑇
+ Γ𝑄Γ

𝑇
,

𝑃
(𝑗)

= Σ
(𝑗)−1

+ 𝐻
(𝑗)
𝑅
(𝑗)−1

𝐻
(𝑗)𝑇

.

(81)

From (81), we see that, in order to prove (77) and (79), we only
need to prove

𝐻
(0)𝑇

𝑅
(0)−1

𝐻
(0)

= 𝐻
(1)𝑇

𝑅
(1)−1

𝐻
(1)

= 𝐻
(2)𝑇

𝑅
(2)−1

𝐻
(2)
,

𝐻
(0)𝑇

𝑅
(0)−1

𝑦
(0)

(𝑡)=𝐻
(1)𝑇

𝑅
(1)−1

𝑦
(1)

(𝑡) = 𝐻
(2)𝑇

𝑅
(2)−1

𝑦
(2)

(𝑡) .

(82)

Applying (59), (60), (63), (65), (68), (69), and (72), we easily
verify that (82) hold. In order to prove (78), from (79), we
only need to prove 𝑃(0) ≤ 𝑃

(0); that is, the centralized fusion
Kalman filter is robust. In fact, applying (3) and Lemma 9
yields 𝑅

(0)

≤ 𝑅
(0), so applying the derivation similar to

Theorem 7 yields 𝑃(0) ≤ 𝑃
(0). The proof is completed.

5. Robust Accuracy Analysis

Theorem 13. For multisensor uncertain systems (1) and (2)
with Assumptions 1–2, the local and fused Kalman filters have
the following accuracy relations:

𝑃
𝜃
≤ 𝑃
𝜃
, 𝜃 = 1, . . . , 𝐿, 𝑚, 𝑠, 𝑑, 𝐶𝐼, (83)

𝑃

(𝑗)

≤ 𝑃
(𝑗)
, 𝑗 = 0, 1, 2, (84)

𝑃
(0)

= 𝑃
(1)

= 𝑃
(2)
, 𝑃

(0)

= 𝑃

(1)

= 𝑃

(2)

, (85)

𝑃
(0)

≤ 𝑃
𝑚
, 𝑃
𝑚
≤ 𝑃
𝜃
, 𝜃 = 1, . . . , 𝐿, 𝑚, 𝑠, 𝑑, (86)

𝑃
𝐶𝐼

≤ 𝑃
∗

𝐶𝐼
, 𝑃

𝐶𝐼
≤ 𝑃
∗

𝐶𝐼
, (87)

tr𝑃
𝜃
≤ tr𝑃
𝜃
, 𝜃 = 1, . . . , 𝐿, 𝑚, 𝑠, 𝑑, 𝐶𝐼, (88)

tr𝑃(𝑗) ≤ tr𝑃(𝑗), 𝑗 = 0, 1, 2, (89)

tr𝑃(0) = tr𝑃(1) = tr𝑃(2), tr𝑃(0) = tr𝑃(1) = tr𝑃(2),
(90)

tr𝑃(0) ≤ tr𝑃
𝑚
, tr𝑃

𝑚
≤ tr𝑃
𝜃
, 𝜃 = 1, . . . , 𝐿, 𝑚, 𝑠, 𝑑,

(91)

tr𝑃
𝐶𝐼

≤ tr𝑃∗
𝐶𝐼
, tr𝑃

𝐶𝐼
≤ tr𝑃∗
𝐶𝐼
, (92)

tr𝑃
𝑚
≤ tr𝑃
𝑑
≤ tr𝑃
𝑠
≤ tr𝑃
𝑖
, 𝑖 = 1, . . . , 𝐿. (93)
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Table 1: The actual and conservative filtering error variances of the local and fused robust Kalman filters.

𝑃
1

𝑃
2

𝑃
3

𝑃
𝑚

𝑃
𝑑

[

0.2492 0.1855

0.1855 0.3046

] [

0.4035 0.0645

0.0645 0.121

] [

0.2087 0.1642

0.1642 0.2865

] [

0.0775 0.0416

0.0416 0.1167

] [

0.1039 0.0438

0.0438 0.1173

]

𝑃
1

𝑃
2

𝑃
3

𝑃
𝑚

𝑃
𝑑

[

0.2019 0.1497

0.1497 0.2447

] [

0.2922 0.0448

0.0448 0.0892

] [

0.1742 0.1353

0.1353 0.2327

] [

0.0607 0.03

0.03 0.0878

] [

0.0828 0.0337

0.0337 0.0883

]

𝑃
𝑠

𝑃
∗

CI 𝑃CI 𝑃
(0)

𝑃
(1)

= 𝑃
(2)

[

0.1172 0.0614

0.0614 0.1554

] [

0.2449 0.0882

0.0882 0.1573

] [

0.1161 0.0487

0.0487 0.1199

] [

0.0689 0.0414

0.0414 0.1106

] [

0.0689 0.0414

0.0414 0.1106

]

𝑃
𝑠

𝑃CI 𝑃

(0)

𝑃

(1)

= 𝑃

(2)

[

0.0896 0.0485

0.0485 0.1235

] [

0.0902 0.036

0.036 0.0914

] [

0.0537 0.0304

0.0304 0.0830

] [

0.0537 0.0304

0.0304 0.0830

]

Proof. The relations (83)–(85) were proved in Theorems 7–
12. The relation (86) was proved in [5]. The relation (87) was
proved in Remark 11. Taking the trace operations for (83)–
(87) yields (88)–(92).The relation (93) was proved in [5].The
proof is completed.

Remark 14. The trace of the error variance matrix is used to
represent the filtering accuracy which is equal to the sum of
the filtering error variances for the components of state. The
smaller trace means the higher accuracy and the larger trace
means the lower accuracy. The accuracy relations (88) and
(89) mean that, for any admissible𝑄 and 𝑅

𝑖
satisfying (3), the

actual accuracy tr𝑃
𝜃
or tr𝑃(𝑗) of the local or fused filters𝑥

𝜃
(𝑡 |

𝑡), 𝜃 = 1, . . . , 𝐿, 𝑚, 𝑑, 𝑠,CI, 𝑗 = 0, 1, 2, is globally controlled
by tr𝑃

𝜃
or tr𝑃(𝑗), and tr𝑃

𝜃
or tr𝑃(𝑗) is independent of all

admissible 𝑄 and 𝑅
𝑖
satisfying (3). Therefore, tr𝑃

𝜃
or tr𝑃(𝑗)

is called robust accuracy of 𝑥
𝜃
(𝑡 | 𝑡) and is also called global

accuracy [24], and tr𝑃
𝜃
or tr𝑃(𝑗)is called its actual accuracy.

Notice that, for different 𝑄 and 𝑅
𝑖
, the corresponding actual

accuracies are also different; that is, tr𝑃
𝜃
or tr𝑃(𝑗)is related

to admissible 𝑄 and 𝑅
𝑖
. From (88) and (89), we see that the

robust accuracy is the admissible lowest actual accuracy; that
is, it is the lowest bound of the actual accuracies. The smaller
tr𝑃
𝜃
or tr𝑃(𝑗) means the higher robust accuracy, and the

larger tr𝑃
𝜃
or tr𝑃(𝑗) means the lower robust accuracy.

Remark 15. FromTheorem 10, we see that 𝑃CI with the cross-
covariance information is aminimal upper bound of𝑃CI, and,
from (57) and (58), we have the robust accuracy relation

tr𝑃CI ≤ tr𝑃CI ≤ tr𝑃∗CI. (94)

This means that the robust accuracy of the CI fuser is tr𝑃CI
rather than tr𝑃∗CI, so that the modified robust accuracy tr𝑃CI
is higher than the original robust accuracy tr𝑃∗CI in [24], and
it also develops and extends the ellipsoidal intersection (EI)
fuser with the cross-covariance information [33].

6. Simulation Example

Consider a three-sensor tracking systemwith uncertain noise
variances

𝑥 (𝑡 + 1) = Φ𝑥 (𝑡) + Γ𝑤 (𝑡) ,

𝑦
𝑖
(𝑡) = 𝐻

𝑖
𝑥 (𝑡) + V

𝑖
(𝑡) , 𝑖 = 1, 2, 3,

Φ = [

1 𝑇
0

0 1
] , Γ = [

0.5𝑇
2

0

𝑇
0

] ,

𝐻
1
= [1 0] , 𝐻

2
= 𝐼
2
, 𝐻

3
= [1 0] ,

(95)

where 𝑇
0
= 0.25 is the sampled period, 𝑥(𝑡) = [𝑥

1
(𝑡), 𝑥
2
(𝑡)]
𝑇

is the state, 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are the position and velocity of

target at time 𝑡𝑇
0
⋅ 𝑤(𝑡), and V

𝑖
(𝑡) are independent Gaussian

white noises with zeromean and unknown actual variances𝑄
and 𝑅

𝑖
, respectively. Taking the conservative noise variances

𝑄 and 𝑅
𝑖
satisfies 𝑄 ≤ 𝑄 and 𝑅

𝑖
≤ 𝑅
𝑖
. In the simulation, we

take 𝑄 = 1, 𝑅
1
= 0.8, 𝑅

2
= diag(8, 0.36), 𝑅

3
= 0.64,𝑄 = 0.8,

𝑅
1
= 0.65, 𝑅

2
= diag(6, 0.25), and 𝑅

3
= 0.54.

Applying the local and fused robust steady-state Kalman
filters, the actual and conservative filtering error variances are
obtained in Table 1.

Table 1 verifies the accuracy relations (83)–(87), and it
is easy to be verified that 𝑃CI ≤ 𝑃

∗

CI is satisfied. The traces
of the error variances of the local and fused Kalman filters
are compared in Table 2, which verify the accuracy relations
(88)–(93).

In order to give a geometric interpretation of the matrix
accuracy relations, the covariance ellipse is defined as the
locus of points {𝑥 : 𝑥

𝑇
𝑃
−1
𝑥 = 𝑐}, where 𝑃 is the variance

matrix and 𝑐 is a constant. Generally, we select 𝑐 = 1. It has
been proved [32] that 𝑃

1
≤ 𝑃
2
is equivalent to the covariance

ellipse form 𝑃
1
by contains that form by 𝑃

2
.

From Figures 1 and 2, we see that the ellipse of 𝑃(𝑗) (𝑗 =

0, 1, 2) is enclosed in these of 𝑃
𝑚
, 𝑃
𝑑
, 𝑃
𝑠
, and 𝑃

𝑖
(𝑖 = 1, 2, 3)

which verifies the matrix accuracy relations (85)–(87). From
Figure 3, we see that the ellipses of 𝑃(𝑗) (𝑗 = 0, 1, 2) or
𝑃
𝜃
(𝜃 = 1, 2, 3, 𝑚, 𝑠, 𝑑,CI) are enclosed in these of the
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Table 2: The accuracy comparison of local and fused robust Kalman filters.

tr𝑃
1

tr𝑃
2

tr𝑃
3

tr𝑃
𝑚

tr𝑃
𝑑

tr𝑃
𝑠

tr𝑃∗CI, tr𝑃CI
0.5538 0.5245 0.4952 0.1942 0.2212 0.2725 0.4022, 0.2360
tr𝑃
1

tr𝑃
2

tr𝑃
3

tr𝑃
𝑚

tr𝑃
𝑑

tr𝑃
𝑠

tr𝑃CI

0.4465 0.3815 0.4069 0.1485 0.1711 0.2131 0.1817

tr𝑃(0) tr𝑃(0) tr𝑃(1) = tr𝑃(2) tr𝑃(1) = tr𝑃(2)

0.1795 0.1367 0.1795 0.1367
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Figure 1: The ellipses of the conservative upper bounds of actual
filtering error variances.
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Figure 2: The ellipses of the actual filtering error variances.

conservative upper bound 𝑃
(𝑗) or 𝑃

𝜃
, respectively, which

verify the robustness (83)–(87).
In order to verify the above theoretical accuracy relations,

taking 𝜌 = 200 Monte-Carlo simulation runs, the mean
square error (MSE) value at time 𝑡 of local or fused Kalman
filters is defined as

MSE
𝜃
(𝑡) =

1

𝜌

𝜌

∑

𝑘=1

(𝑥
(𝑘)

(𝑡) − 𝑥
(𝑘)

𝜃
(𝑡 | 𝑡))

𝑇

× (𝑥
(𝑘)

(𝑡) − 𝑥
(𝑘)

𝜃
(𝑡 | 𝑡)) ,

𝜃 = 1, 2, 3, 𝑚, 𝑠, 𝑑,CI,
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Figure 3: The ellipses of the actual and conservative filtering error
variances.

MSE
𝑗
(𝑡) =

1

𝜌

𝜌

∑

𝑘=1

(𝑥
(𝑘)

(𝑡) − 𝑥
(𝑘)(𝑗)

(𝑡 | 𝑡))

𝑇

× (𝑥
(𝑘)

(𝑡) − 𝑥
(𝑘)(𝑗)

(𝑡 | 𝑡)) , 𝑗 = 0, 1, 2,

(96)

where 𝑥(𝑘)(𝑡) or 𝑥(𝑘)
𝜃
(𝑡 | 𝑡) denotes the 𝑘th realization of 𝑥(𝑡)

or 𝑥
𝜃
(𝑡 | 𝑡) and 𝑥

(𝑘)(0)
(𝑡 | 𝑡) denotes the 𝑘th realization of

the centralized fuser. 𝑡 = 1, . . . , 𝑡
𝑓
are the recursive steps, the

final step is 𝑡
𝑓
= 500, and the MSE curves of the local and

weighted fusion robust Kalman filters are shown in Figure 4,
where the straight lines denote the traces of the theoretical
error variances, respectively, the curves denote the values of
the MSE

𝜃
(𝑡) or MSE

𝑗
(𝑡), and tr𝑃(0) = tr𝑃(1) = tr𝑃(2),

tr𝑃(0) = tr𝑃(1) = tr𝑃(2).
According to the consistency of the sampled variance, we

have

MSE
𝜃
(𝑡) 󳨀→ tr𝑃

𝜃
, as 𝑡 󳨀→ ∞,

𝜌 󳨀→ ∞, (𝜃 = 1, 2, 3, 𝑚, 𝑠, 𝑑,CI) ,

MSE
𝑗
(𝑡) 󳨀→ tr𝑃(𝑗), as 𝑡 󳨀→ ∞,

𝜌 󳨀→ ∞, (𝑗 = 0, 1, 2) .

(97)

From Figure 4, we see that when 𝑡 is sufficiently large, the
values of MSE

𝑖
(𝑡) (𝑖 = 𝜃, 𝑗) are close to the corresponding
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Figure 4:TheMSE curves for local and fused robust Kalman filters.

theoretical values tr𝑃
𝑖
, which verifies the consistency (97).

We also see that MSE
𝑖
(𝑡) ≤ tr𝑃

𝑖
, which verifies the accuracy

relations (88) and (89).

7. Conclusions

For the multisensor time-invariant uncertain systems with
uncertainties of noise variances, according to the minimax
robust estimation principle, based on the worst-case con-
servative system with conservative upper bound of noise
variances, using the ULMV optimal estimation rule and the
steady-state Kalman filtering theory, the six robust weighted
fusion steady-state Kalman filters have been presented. Their
robustness was proved by using the Lyapunov equation
method and their robust accuracy relations were proved.
Compared with the method and results in [24], the main new
contributions are as follows.

(1) Reference [24] presented an indirect design method
for obtaining the robust weighted fusion steady-state
Kalman filters which are obtained by taking the
limit operations for the proposed time-varying robust
Kalman fusers. This paper presented a simple direct
design method based on the steady-state Kalman
filtering theory, which can directly obtain the same
steady-state results in [24], and avoided finding the
time-varying robust Kalman fusers.

(2) A modified CI fusion method has been presented. A
minimal upper bound of actual CI fusion error vari-
ances was presented based on the cross-covariance
information. It reduces the conservativeness of the
original upper bound without the cross-covariance
information, and it improves and increases the robust
accuracy of the CI fuser as shown in Remark 15. The
ellipsoidal intersection (EI) fuser [33] with the cross-
covariance information was developed and extended.

(3) Two robust weightedmeasurement fusion algorithms
and the robust centralized fusion algorithmhave been

presented in a unified framework, their equivalence
was proved, and they have the highest robust accuracy
than the above other fusers. Only one weighted
measurement fusion algorithmwas presented in [24].

This paper is limited to the multisensor systems with
uncertain noise variances; the extension of the proposed
results to the multisensor systems with both the uncertain
model parameters and noise variances is in the investigation.
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