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We introduce the notions of (𝛼 − 𝜙 − 𝜓)-weaker Meir-Keeler contractive mappings and (𝛼 − 𝜑)-stronger Meir-Keeler contractive
mappings.We discuss the existence of periodic points in the setting of generalized quasi-metric spaces. Our results improve, extend,
and generalize several results in the literature.

1. Introduction and Preliminaries

Very recently, Lin et al. [1] introduced the notion of gener-
alized quasi-metric inspired from the notion of generalized
metric, defined by Branciari [2]. It is a very well-known fact
that the concept of generalizedmetric can be derived from the
definition ofmetric by replacing the triangle inequality with a
weaker condition, namely, quadrilateral inequality. In spite of
the analogy between the definitions ofmetric and generalized
metric, the topological structure of these spaces is completely
different. It was proved that the topologies of these two spaces
are incomparable [3].

In what follows that we recall the basic definitions and
results on the topics for the sake of completeness.Throughout
the paper, the symbolsR,N, andN

0
denote the real numbers,

the natural numbers, and the positive integers, respectively.
A quite natural generalization of the notion of a metric

was introduced by Branciari [2] in 2000 by replacing the
triangle inequality assumption of a metric with a weaker
condition, quadrilateral inequality.

Definition 1 (see [2]). Let 𝑋 be a nonempty set and let 𝑑 :

𝑋×𝑋 → [0,∞) be a mapping such that for all 𝑥, 𝑦 ∈ 𝑋 and
for all distinct point 𝑢, V ∈ 𝑋 each of them different from 𝑥

and 𝑦, one has
(d1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦) (quadrilateral

inequality).

Then (𝑋, 𝑑) is called a generalized metric space (or shortly
g.m.s).

The following example illustrates that not every general-
ized metric on a set 𝑋 is a metric on 𝑋.

Example 2 (see e.g. [1, 4]). Let𝑋 = {𝑡, 2𝑡, 3𝑡, 4𝑡, 5𝑡} with 𝑡 > 0

is a constant, and we define 𝑑 : 𝑋 × 𝑋 → [0,∞) by

(1) 𝑑(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝑋;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑡, 2𝑡) = 3𝛾;
(4) 𝑑(𝑡, 3𝑡) = 𝑑(2𝑡, 3𝑡) = 𝛾;
(5) 𝑑(𝑡, 4𝑡) = 𝑑(2𝑡, 4𝑡) = 𝑑(3𝑡, 4𝑡) = 2𝛾;
(6) 𝑑(𝑡, 5𝑡) = 𝑑(2𝑡, 5𝑡) = 𝑑(3𝑡, 5𝑡) = 𝑑(4𝑡, 5𝑡) = (3/2)𝛾,

where 𝛾 > 0 is a constant. Then (𝑋, 𝑑) is a generalized metric
space, but it is not a metric space, because

𝑑 (𝑡, 2𝑡) = 3𝛾 > 𝑑 (𝑡, 3𝑡) + 𝑑 (3𝑡, 2𝑡) = 2𝛾. (1)
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Now, we will mention that some standard properties can not
be possesed by generalized metric: more precisely,

(P1) open ball need not be open set,
(P2) a convergent sequence in generalized metric space

needs not to be Cauchy,
(P3) generalized metric needs not to be continuous,
(P4) generalized metric space needs not to be Hausdorff,

and hence the uniqueness of limits can not be guar-
anteed.

Several authors noticed these weak points of the generalized
metric space and inserted some additional assumptions to get
the analog of celebrated fixed point theorems in the context
of generalized metric space. In particular, generalized metric
space assumed Hausdorff. Later, several authors proved that
this assumption is superfluous; see for example [5–9].

Example 3 (see [10], Example 1.1). Let 𝑋 = 𝐴 ∪ 𝐵 where 𝐴 =

{0, 2} and 𝐴 = {1/𝑛 : 𝑛 ∈ N}. Define 𝑑 : 𝑋 × 𝑋 → [0,∞) in
the following way:

𝑑 (𝑥, 𝑦) =

{{

{{

{

0, if 𝑥 = 𝑦,

1, if 𝑥 ̸= 𝑦, [{𝑥, 𝑦} ⊂ 𝐴 or {𝑥, 𝑦} ⊂ 𝐵] ,

𝑦, if 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

(2)

Notice that 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) = 𝑏 whenever 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
Furthermore, (𝑋, 𝑑) is a complete generalized metric space.
Clearly, we have (P1)–(P4). Indeed, the sequence {1/𝑛 : 𝑛 ∈

N} converges to both 0 and 2. There is no 𝑟 > 0 such that
𝐵
𝑟
(0) ∩𝐵

𝑟
(2) = 0 and hence it is not Hausdorff. It is clear that

the ball𝐵
2/3

(1/3) = {0, 1/3, 2} since there is no 𝑟 > 0 such that
𝐵
𝑟
(=) ⊂ 𝐵

2/3
(1/3); that is, open balls may not be an open set.

The function 𝑑 is not continuous since lim
𝑛→∞

𝑑(1/𝑛, 1/2) ̸=

𝑑(0, 1/2) although lim
𝑛→∞

(1/𝑛) = 0. For more details see,
for example, [4, 8, 10].

Regarding the weakness of the topology of generalized
metric space, mentioned above, the authors add some addi-
tional conditions to get the analog of existing fixed point
results in the literature; see, for example, [11–17].

The following is the definition of the notion of generalized
quasi-metric space defined by Lin et al. [1].

Definition 4. Let 𝑋 be a nonempty set and let 𝑑 : 𝑋 × 𝑋 →

[0,∞) be a mapping such that, for all 𝑥, 𝑦 ∈ 𝑋 and for all
distinct point 𝑢, V ∈ 𝑋 each of them different from 𝑥 and 𝑦,
one has

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦).

Then (𝑋, 𝑑) is called a generalized quasi-metric space (or
shortly g.q.m.s).

It is evident that any generalized metric space is a
generalized quasi-metric space, but the converse is not true
in general. We give an example to show that not every

generalized quasi-metric on a set 𝑋 is a generalized metric
on 𝑋.

Example 5 (see [1]). Let 𝑋 = {𝑡, 2𝑡, 3𝑡, 4𝑡, 5𝑡} with 𝑡 > 0 being
a constant, and we define 𝑑 : 𝑋 × 𝑋 → [0,∞) by

(1) 𝑑(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝑋;
(2) 𝑑(𝑡, 2𝑡) = 𝑑(2𝑡, 𝑡) = 3𝛾;
(3) 𝑑(𝑡, 3𝑡) = 𝑑(2𝑡, 3𝑡) = 𝑑(3𝑡, 𝑡) = 𝑑(3𝑡, 2𝑡) = 𝛾;
(4) 𝑑(𝑡, 4𝑡) = 𝑑(2𝑡, 4𝑡) = 𝑑(3𝑡, 4𝑡) = 𝑑(4𝑡, 𝑡) = 𝑑(4𝑡, 2𝑡) =

𝑑(4𝑡, 3𝑡) = 2𝛾;
(5) 𝑑(𝑡, 5𝑡) = 𝑑(2𝑡, 5𝑡) = 𝑑(3𝑡, 5𝑡) = 𝑑(4𝑡, 5𝑡) = (3/2)𝛾;
(6) 𝑑(5𝑡, 𝑡) = 𝑑(5𝑡, 2𝑡) = 𝑑(5𝑡, 3𝑡) = 𝑑(5𝑡, 4𝑡) = (5/4)𝛾,

where 𝛾 > 0 is a constant. Then (𝑋, 𝑑) is a generalized quasi-
metric space, but it is not a generalized metric space, because

𝑑 (𝑡, 5𝑡) =
3

2
𝛾 ̸= 𝑑 (5𝑡, 𝑡) =

5

4
𝛾. (3)

We next give the definitions of convergence and com-
pleteness on generalized quasi-metric spaces.

Definition 6 (see [1]). Let (𝑋, 𝑑) be a g.q.m.s, and let {𝑥
𝑛
}

be a sequence in 𝑋 and 𝑥 ∈ 𝑋. We say that {𝑥
𝑛
} is g.q.m.s

convergent to 𝑥 if and only if

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = lim

𝑛→∞
𝑑 (𝑥, 𝑥

𝑛
) = 0. (4)

Definition 7 (see [1]). Let (𝑋, 𝑑) be a g.q.m.s and let {𝑥
𝑛
} be a

sequence in 𝑋. We say that {𝑥
𝑛
} is left-Cauchy if and only if

for every 𝜀 > 0 there exits 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for

all 𝑛 ≥ 𝑚 > 𝑘.

Definition 8 (see [1]). Let (𝑋, 𝑑) be a g.q.m.s and let {𝑥
𝑛
} be a

sequence in𝑋. We say that {𝑥
𝑛
} is right-Cauchy if and only if

for every 𝜀 > 0 there exits 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for

all 𝑚 ≥ 𝑛 > 𝑘.

Definition 9 (see [1]). Let (𝑋, 𝑑) be a g.q.m.s and let {𝑥
𝑛
} be

a sequence in 𝑋. We say that {𝑥
𝑛
} is Cauchy if and only if for

every 𝜀 > 0 there exits 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for all

𝑚, 𝑛 > 𝑘.

Remark 10. A sequence {𝑥
𝑛
} in a g.q.m.s is Cauchy if and only

if it is left-Cauchy and right-Cauchy.

Definition 11 (see [1]). Let (𝑋, 𝑑) be a g.q.m.s. We say that
(1) (𝑋, 𝑑) is left-complete if and only if each left-Cauchy

sequence in 𝑋 is convergent;
(2) (𝑋, 𝑑) is right-complete if and only if each right-

Cauchy sequence in 𝑋 is convergent;
(3) (𝑋, 𝑑) is complete if and only if each Cauchy sequence

in 𝑋 is convergent.

In this paper, we examine the existence of (𝛼 − 𝜓)-
contractive mappings in the context of generalized quasi-
metric space without the assumption of being a Hausdorff.
Consequently, our results extend, improve, and generalize
several results in the literature.
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2. Periodic Points of Weaker Meir-Keeler
Contractive Mappings

In this section, we recall the weakerMeir-Keeler function and
a weaker Meir-Keeler function, as follows.

Definition 12 (see [18]). A function 𝜓 : [0,∞) → [0,∞) is
said to be aMeir-Keeler type function, if, for each 𝜂 ∈ [0,∞),
there exists 𝛿 > 0 such that for 𝑡 ∈ [0,∞) with 𝜂 ≤ 𝑡 < 𝜂 + 𝛿,
we have 𝜓(𝑡) < 𝜂.

Definition 13. We call 𝜙 : [0,∞) → [0,∞) a weaker Meir-
Keeler function if the function 𝜙 satisfies the following
condition:

∀𝜂 > 0, ∃𝛿 > 0, ∀𝑡 ∈ [0,∞) ,

(𝜂 ≤ 𝑡 < 𝛿 + 𝜂 ⇒ ∃𝑛
0
∈ N, 𝜙(𝑡)

𝑛0 < 𝜂) .
(5)

In the sequel, we need the following classes of auxil-
iary functions. Let Φ denote the set of the nondecreasing
functions 𝜙 : [0,∞) → [0,∞) satisfying the following
conditions:

(𝜙
1
) 𝜙 : [0,∞) → [0,∞) is a weaker Meir-Keeler func-
tion;

(𝜙
2
) 𝜙(𝑡) > 0 for 𝑡 > 0 and 𝜙(0) = 0;

(𝜙
3
) for all 𝑡 ∈ (0,∞), {𝜙𝑛(𝑡)}

𝑛∈N is decreasing;

(𝜙
4
) for 𝑡 > 0, if lim

𝑛→∞
𝜙𝑛(𝑡) = 0, then

lim
𝑛→∞

∑
𝑚

𝑖=𝑛
𝜙𝑖(𝑡) = 0, where 𝑚 > 𝑛.

Furthermore, let Ψ denote the set of functions 𝜓 :

[0,∞) → [0,∞) satisfying the following conditions:

(𝜓
1
) 𝜓 is continuous;

(𝜓
2
) 𝜓(𝑡) > 0 for 𝑡 > 0 and 𝜓(0) = 0.

The following lemma plays a crucial role in the proof of
the main result that were inspired from [5, 8], proved first in
[4].

Lemma 14 (see [4]). Let (𝑋, 𝑑) be a generalized quasi-metric
space and let {𝑥

𝑛
} be a Cauchy sequence in𝑋 such that 𝑥

𝑚
̸= 𝑥
𝑛

whenever 𝑚 ̸= 𝑛. Then the sequence {𝑥
𝑛
} can converge to at

most one point.

Proof. Given 𝜀 > 0. Since {𝑥
𝑛
} is a Cauchy sequence, there

exists 𝑘
0
∈ N such that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) < 𝜀, ∀𝑚, 𝑛 > 𝑘

0
. (6)

We use themethod of Reductio ad absurdum. Suppose, on the
contrary, that there exist two distinct points𝑥 and𝑦 in𝑋 such
that the sequence {𝑥

𝑛
} converges to 𝑥 and 𝑦, that is,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = lim

𝑛→∞
𝑑 (𝑥, 𝑥

𝑛
) = 0,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦) = lim

𝑛→∞
𝑑 (𝑦, 𝑥

𝑛
) = 0.

(7)

By assumption for any 𝑛 ∈ N, 𝑥
𝑛

̸= 𝑥
𝑚
and since 𝑥 ̸= 𝑦, there

exists 𝑘
1
∈ N such that 𝑥

𝑛
̸= 𝑥 and 𝑥

𝑛
̸= 𝑦 for any 𝑛 > 𝑘

1
≥ 𝑘
0
.

Due to quadrilateral inequality, we have

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑚
) + 𝑑 (𝑥

𝑚
, 𝑦) . (8)

Letting 𝑛,𝑚 → ∞, we can obtain that 𝑑(𝑥, 𝑦) = 0 by
regarding (6) and (7). Hence, we get 𝑥 = 𝑦 which is a
contradiction.

In this study, we also recall the following notions of 𝛼-
admissible mappings.

Definition 15 (see [19]). Let 𝑓 : 𝑋 → 𝑋 be a self-mapping of
a set𝑋 and 𝛼 : 𝑋×𝑋 → R+. Then 𝑓 is called a 𝛼-admissible
if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑓𝑥, 𝑓𝑦) ≥ 1. (9)

We now introduce the notion of (𝛼−𝜙−𝜓)-weakerMeir-
Keeler contractive mappings in the following way.

Definition 16. Let (𝑋, 𝑑) be a g.q.m.s, let 𝛼 : 𝑋 × 𝑋 → R+,
and let 𝑓 : 𝑋 → 𝑋 be a function satisfying

𝛼 (𝑥, 𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) − 𝜓 (𝑑 (𝑥, 𝑦)) , (10)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 is said to be a (𝛼 − 𝜙 − 𝜓)-weaker
Meir-Keeler contractive mapping.

We state twomain periodic point theorems of (𝛼−𝜙−𝜓)-
weaker Meir-Keeler contractive mapping, as follow.

Theorem 17. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝛼 : 𝑋 ×

𝑋 → R+. Suppose 𝑓 is a (𝛼 − 𝜙 − 𝜓)-weaker Meir-Keeler
contractive mapping which satisfies

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1 and 𝛼(𝑥

0
, 𝑓2𝑥
0
) ≥ 1, 𝛼(𝑓2𝑥

0
, 𝑥
0
) ≥ 1;

(iii) 𝑓 is continuous.

Then 𝑓 has a periodic point in 𝑋.

Proof. Regarding the assumption (ii) of theorem, we let 𝑥
0
∈

𝑋 be an arbitrary point such that 𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1. We will construct a sequence {𝑥

𝑛
} in 𝑋 by

𝑥
𝑛+1

= 𝑓𝑥
𝑛
= 𝑓𝑛+1𝑥

0
for all 𝑛 ≥ 0. If we have 𝑥

𝑛0
= 𝑥
𝑛0+1

for
some 𝑛

0
, then 𝑢 = 𝑥

𝑛0
is a fixed point of 𝑓. Hence, for the rest

of the proof, we presume that

𝑥
𝑛

̸= 𝑥
𝑛+1

∀𝑛. (11)

Since 𝑓 is 𝛼-admissible, we have

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑓𝑥
0
) ≥ 1

⇒ 𝛼 (𝑓𝑥
0
, 𝑓𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1.

(12)

Utilizing the expression above, we obtain that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (13)
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By repeating the same stepswith startingwith the assumption
𝛼(𝑥
1
, 𝑥
0
) = 𝛼(𝑓𝑥

0
, 𝑥
0
) ≥ 1, we conclude that

𝛼 (𝑥
𝑛+1

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . . (14)

In a similar way, we derive that

𝛼 (𝑥
0
, 𝑥
2
) = 𝛼 (𝑥

0
, 𝑓
2
𝑥
0
) ≥ 1

⇒ 𝛼 (𝑓𝑥
0
, 𝑓𝑥
2
) = 𝛼 (𝑥

1
, 𝑥
3
) ≥ 1.

(15)

Recursively, we get that
𝛼 (𝑥
𝑛
, 𝑥
𝑛+2

) ≥ 1, ∀𝑛 = 0, 1, . . . . (16)
Analogously, we can easily derive that

𝛼 (𝑥
𝑛+2

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . . (17)

In the sequel, we prove that the sequence {𝑥
𝑛
} is Cauchy; that

is, {𝑥
𝑛
} is both right-Cauchy and left-Cauchy.

Step 1.We will prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (18)

Since 𝑓 is a (𝛼 − 𝜙 − 𝜓)-weaker Meir-Keeler contractive
mapping, we have that, for each 𝑛 ∈ N ∪ {0},

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

≤ 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜓 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
))

≤ 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) .

(19)

Since𝜙 is nondecreasing, by iteration, we derive the following
inequality:

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜙
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) . (20)

Due to fact that 𝜙 is weak Meir-Keeler function, we find that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (21)

Since {𝜙𝑛(𝑑(𝑥
0
, 𝑥
1
))}
𝑛∈N is decreasing, it must converge to

some 𝜂 ≥ 0. We claim that 𝜂 = 0. Suppose, on the contrary,
that 𝜂 > 0. Then by the definition of weaker Meir-Keeler
function 𝜙, corresponding to the given 𝜂, there exists 𝛿 > 0

such that for 𝑥
0
, 𝑥
1
∈ 𝑋with 𝜂 ≤ 𝑑(𝑥

0
, 𝑥
1
) < 𝛿+𝜂, and 𝑛

0
∈ N

such that 𝜙𝑛0(𝑑(𝑥
0
, 𝑥
1
)) < 𝜂. Since lim

𝑛→∞
𝜙𝑛(𝑑(𝑥

0
, 𝑥
1
)) = 𝜂,

there exists 𝑝
0
∈ N such that 𝜂 ≤ 𝜙𝑝(𝑑(𝑥

0
, 𝑥
1
)) < 𝛿+𝜂, for all

𝑝 ≥ 𝑝
0
. Thus, we conclude that 𝜙𝑝0+𝑛0(𝑑(𝑥

0
, 𝑥
1
)) < 𝜂, which

is a contradiction. Therefore lim
𝑛→∞

𝜙𝑛(𝑑(𝑥
0
, 𝑥
1
)) = 0, that

is,
lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (22)

Step 2.We will prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 0. (23)

Since 𝑓 is a (𝛼 − 𝜙 − 𝜓)-weaker Meir-Keeler contractive
mapping, we have that, for each 𝑛 ∈ N ∪ {0},

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

≤ 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)) − 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

))

≤ 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)) .

(24)

Inductively, we find that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) ≤ 𝜙
𝑛
(𝑑 (𝑥
0
, 𝑥
2
)) , (25)

by using the fact that 𝜙 is nondecreasing. Since
{𝜙𝑛(𝑑(𝑥

0
, 𝑥
2
))}
𝑛∈N is decreasing, it must converge to some

𝜂 ≥ 0. We claim that 𝜂 = 0. Suppose, on the contrary, that
𝜂 > 0. Then by the definition of weaker Meir-Keeler function
𝜙, corresponding to the given 𝜂, there exists 𝛿 > 0 such that
for 𝑥
0
, 𝑥
2

∈ 𝑋 with 𝜂 ≤ 𝑑(𝑥
0
, 𝑥
2
) < 𝛿 + 𝜂, and 𝑛

0
∈ N such

that 𝜙𝑛0(𝑑(𝑥
0
, 𝑥
2
)) < 𝜂. Since lim

𝑛→∞
𝜙
𝑛
(𝜑(𝑑(𝑥

0
, 𝑥
2
))) = 𝜂,

there exists 𝑝
0
∈ N such that 𝜂 ≤ 𝜙𝑝(𝑑(𝑥

0
, 𝑥
2
)) < 𝛿+𝜂, for all

𝑝 ≥ 𝑝
0
. Thus, we conclude that 𝜙𝑝0+𝑛0(𝑑(𝑥

0
, 𝑥
2
)) < 𝜂, which

is a contradiction. Therefore lim
𝑛→∞

𝜙𝑛(𝑑(𝑥
0
, 𝑥
2
)) = 0; that

is,
lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 0. (26)

Step 3. We will prove that the sequence {𝑥
𝑛
} is right-Cauchy

by standard technique. For this purpose, it is sufficient to
examine two cases.

Case (I). Suppose that 𝑘 > 2 and 𝑘 is odd. Let 𝑘 = 2𝑚 + 1,
𝑘 ≥ 1. Then, by using the quadrilateral inequality, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+2𝑚+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+3

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+2𝑚

, 𝑥
𝑛+2𝑚+1

)

= 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) + 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

)

+ 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+2

) + ⋅ ⋅ ⋅

+ 𝑑 (𝑓𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) + 𝛼 (𝑥

𝑛
, 𝑥
𝑛+1

)

× 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) + 𝛼 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

× 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+2

) + ⋅ ⋅ ⋅

+ 𝛼 (𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

) 𝑑 (𝑓𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

)

≤ ⋅ ⋅ ⋅

≤ 𝜙
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) + 𝜙

𝑛+1
(𝑑 (𝑥
0
, 𝑥
1
))

+ 𝜙
𝑛+2

(𝑑 (𝑥
0
, 𝑥
1
)) + ⋅ ⋅ ⋅ + 𝜙

𝑛+2𝑚
(𝑑 (𝑥
0
, 𝑥
1
))

≤

2𝑚

∑
𝑖=0

𝜙
𝑛+𝑖

(𝑑 (𝑥
0
, 𝑥
1
)) .

(27)
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Letting 𝑛 → ∞, then, by using the condition (𝜙
4
), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0. (28)

Case (II). Suppose that 𝑘 > 2 and 𝑘 is even. Let 𝑘 = 2𝑚, 𝑘 ≥ 1.
Then, by using the quadrilateral inequality, we also have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+4

) + 𝑑 (𝑥
𝑛+4

, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+4

) + 𝑑 (𝑥
𝑛+4

, 𝑥
𝑛+6

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+2𝑚−2

, 𝑥
𝑛+2𝑚

)

= 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

) + 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+3

)

+ 𝑑 (𝑓𝑥
𝑛+3

, 𝑓𝑥
𝑛+5

) + ⋅ ⋅ ⋅

+ 𝑑 (𝑓𝑥
𝑛+2𝑚−3

, 𝑓𝑥
𝑛+2𝑚−1

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

+ 𝛼 (𝑥
𝑛+1

, 𝑥
𝑛+3

) 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+3

)

+ 𝛼 (𝑥
𝑛+3

, 𝑥
𝑛+5

) 𝑑 (𝑓𝑥
𝑛+3

, 𝑓𝑥
𝑛+5

) + ⋅ ⋅ ⋅

+ 𝛼 (𝑥
𝑛+2𝑚−3

, 𝑥
𝑛+2𝑚−1

) 𝑑 (𝑓𝑥
𝑛+2𝑚−3

, 𝑓𝑥
𝑛+2𝑚−1

)

≤ ⋅ ⋅ ⋅

≤ 𝜙
𝑛
(𝑑 (𝑥
0
, 𝑥
2
)) + 𝜙

𝑛+2
(𝑑 (𝑥
0
, 𝑥
2
))

+ 𝜙
𝑛+4

(𝑑 (𝑥
0
, 𝑥
2
)) + ⋅ ⋅ ⋅ + 𝜙

𝑛+2𝑚
(𝑑 (𝑥
0
, 𝑥
2
))

≤

𝑚

∑
𝑖=0

𝜙
𝑛+2𝑖

(𝑑 (𝑥
0
, 𝑥
2
)) .

(29)

Letting 𝑛 → ∞. Then, by using the condition (𝜙
4
), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0. (30)

By above argument, we get that {𝑥
𝑛
} is a right-Cauchy

sequence.
Analogously, we derive that the sequence {𝑥

𝑛
} is left-

Cauchy. Consequently, the sequence {𝑥
𝑛
} is Cauchy. Since 𝑋

is a complete g.q.m.s, there exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = lim

𝑛→∞
𝑑 (𝑢, 𝑥

𝑛
) = 0. (31)

Step 4. We claim that 𝑓 has a periodic point in 𝑋. Suppose,
on the contrary, that 𝑓 has no periodic point. Since 𝑓 is
continuous, we obtain from (31) that

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑓𝑢) = lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑢) = 0,

lim
𝑛→∞

𝑑 (𝑓𝑢, 𝑥
𝑛+1

) = lim
𝑛→∞

𝑑 (𝑓𝑢, 𝑓𝑥
𝑛
) = 0.

(32)

From (31) and (32), we get immediately that lim
𝑛→∞

𝑓𝑛𝑥
0
=

lim
𝑛→∞

𝑓𝑥
𝑛

= 𝑓𝑢. Due to Lemma 14, we conclude that 𝑢 =

𝑓𝑢 which contradicts the assumption that 𝑓 has no periodic
point. Therefore, there exists 𝑢 ∈ 𝑋 such that 𝑢 = 𝑓𝑝(𝑢) for
some 𝑝 ∈ N. So 𝑓 has a periodic point in 𝑋.

Theorem 18. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝛼 : 𝑋×

𝑋 → R+. Suppose 𝑓 is a (𝛼 − 𝜙 − 𝜓)-weaker Meir-Keeler
contractive mapping which satisfies

(i) 𝑓 is 𝛼-admissible;

(ii) there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1 and 𝛼(𝑥

0
, 𝑓2𝑥
0
) ≥ 1, 𝛼(𝑓2𝑥

0
, 𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1,
𝛼(𝑥
𝑛+1

, 𝑥
𝑛
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞,

then 𝛼(𝑥
𝑛
, 𝑥) ≥ 1, 𝛼(𝑥, 𝑥

𝑛
) ≥ 1 for all 𝑛.

Then 𝑓 has a periodic point in 𝑋.

Proof. Following the proof of Theorem 17, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑓𝑥
𝑛
for all 𝑛 ≥ 0, converges

for some 𝑢 ∈ 𝑋. From (31) and condition (iii), there exists a
subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘.

Applying (10), for all 𝑘, we get that

𝑑 (𝑥
𝑛(𝑘)+1

, 𝑓𝑢) = 𝑑 (𝑓𝑥
𝑛(𝑘)

, 𝑓𝑢) ≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢)

× 𝑑 (𝑓𝑥
𝑛(𝑘)

, 𝑓𝑢) ≤ 𝜙 (𝑑 (𝑥
𝑛(𝑘)

, 𝑢)) ,

𝑑 (𝑓𝑢, 𝑥
𝑛(𝑘)+1

) = 𝑑 (𝑓𝑢, 𝑓𝑥
𝑛(𝑘)

) ≤ 𝛼 (𝑢, 𝑥
𝑛(𝑘)

)

× 𝑑 (𝑓𝑢, 𝑓𝑥
𝑛(𝑘)

) ≤ 𝜙 (𝑢, 𝑑 (𝑥
𝑛(𝑘)

)) .

(33)

Letting 𝑘 → ∞ in the above equality, we find that

𝑑 (𝑥
𝑛(𝑘)+1

, 𝑓𝑢) = lim
𝑘→∞

𝑑 (𝑓𝑥
𝑛(𝑘)

, 𝑓𝑢) = 0,

𝑑 (𝑓𝑢, 𝑥
𝑛(𝑘)+1

) = lim
𝑘→∞

𝑑 (𝑓𝑢, 𝑓𝑥
𝑛(𝑘)

) = 0.
(34)

Therefoe, we have lim
𝑘→∞

𝑓𝑛(𝑘)𝑥
0

= lim
𝑘→∞

𝑓𝑥
𝑛(𝑘)

= 𝑓𝑢.
Owing to Lemma 14, we conclude that 𝑢 = 𝑓𝑢 which
contradicts the assumption that 𝑓 has no periodic point.
Thus, there exists 𝑢 ∈ 𝑋 such that 𝑢 = 𝑓

𝑝(𝑢) for some 𝑝 ∈ N.
So 𝑓 has a periodic point in 𝑋.

3. Periodic Points of Stronger Meir-Keeler
Contractive Mappings

In this section, we recall the notion of stronger Meir-Keeler
function, as follows.

Definition 19. We call 𝜑 : [0,∞) → [0, 1) a stronger
Meir-Keeler function if the function 𝜑 satisfies the following
condition:

∀𝜂 > 0, ∃𝛿 > 0, ∃𝛾
𝜂
∈ [0, 1) , ∀𝑡 ∈ [0,∞) ,

(𝜂 ≤ 𝑡 < 𝛿 + 𝜂 ⇒ 𝜑 (𝑡) < 𝛾
𝜂
) .

(35)
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And, we let the function 𝜑 : [0,∞) → [0, 1) satisfy the
following conditions:

(𝜑
1
) 𝜑 : [0,∞) → [0, 1) is a stronger Meir-Keeler func-
tion;

(𝜑
2
) 𝜑(𝑡) > 0 for 𝑡 > 0 and 𝜑(0) = 0.

Next, we introduce the notion of (𝛼 − 𝜑)-stronger Meir-
Keeler contractive mappings via the stronger Meir-Keeler
function 𝜑 and the 𝛼-admissible mapping 𝛼.

Definition 20. Let (𝑋, 𝑑) be a g.q.m.s, let 𝛼 : 𝑋 × 𝑋 → R+,
and let 𝑓 : 𝑋 → 𝑋 be a function satisfying

𝛼 (𝑥, 𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) , (36)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 is said to be a (𝛼 − 𝜑)-stronger Meir-
Keeler contractive mapping.

We state two main periodic point theorms of (𝛼 − 𝜑)-
stronger Meir-Keeler contractive mapping, as follows.

Theorem 21. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝛼 :

𝑋 × 𝑋 → R+. Suppose 𝑓 is a (𝛼 − 𝜑)-stronger Meir-Keeler
contractive mapping which satisfies

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1 and 𝛼(𝑥

0
, 𝑓
2
𝑥
0
) ≥ 1, 𝛼(𝑓

2
𝑥
0
, 𝑥
0
) ≥ 1;

(iii) 𝑓 is continuous.

Then 𝑓 has a periodic point in 𝑋.

Proof. Following the proof of Theorem 17, we obtained that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . ,

𝛼 (𝑥
𝑛+1

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . ,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+2

) ≥ 1, ∀𝑛 = 0, 1, . . . ,

𝛼 (𝑥
𝑛+2

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . .

(37)

Next, we prove that the sequence {𝑥
𝑛
} is Cauchy; that is, {𝑥

𝑛
}

is both right-Cauchy and left-Cauchy.

Step 1. First, we will prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (38)

Taking into account (36) and the definition of stronger Meir-
Keeler function 𝜑, we have that, for each 𝑛 ∈ N,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

≤ 𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ⋅ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

< 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) .

(39)

Thus the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing and bounded
below and hence it is convergent. Let lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) =

𝜂 ≥ 0. Then there exists 𝑛
0

∈ N and 𝛿 > 0 such that for all
𝑛 ∈ N with 𝑛 ≥ 𝑛

0

𝜂 ≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝜂 + 𝛿. (40)

Taking into account (40) and the definition of stronger Meir-
Keeler function 𝜑, corresponding to 𝜂 use, there exists 𝛾

𝜂
∈

[0, 1) such that

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) < 𝛾
𝜂

∀𝑛 ≥ 𝑛
0
. (41)

Thus, we can deduce that for each 𝑛 ∈ N with 𝑛 ≥ 𝑛
0
+ 1

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

≤ 𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ⋅ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

< 𝛾
𝜂
⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,

(42)

and so

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝛾
𝜂
⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)

< 𝛾
2

𝜂
⋅ 𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

)

< ⋅ ⋅ ⋅

< 𝛾
𝑛−𝑛0

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) .

(43)

Since 𝛾
𝜂
∈ [0, 1), we get

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (44)

Step 2.We will prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 0. (45)

Taking into account (36) and the definition of stronger Meir-
Keeler function 𝜑, we have that for each 𝑛 ∈ N

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

≤ 𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)) ⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

< 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

) .

(46)

Thus the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+2

)} is decreasing and bounded
below and hence it is convergent. By the same above proof
process of Step 1, we also conclude that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 0. (47)
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Step 3. We will prove that the sequence {𝑥
𝑛
} is right-Cauchy

by standard technique. For this purpose, it is sufficient to
examine two cases.

Case (I). Suppose that 𝑘 > 2 and 𝑘 is odd. Let 𝑘 = 2𝑚 + 1,
𝑘 ≥ 1. Then, by using the quadrilateral inequality, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+2𝑚+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+3

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+2𝑚

, 𝑥
𝑛+2𝑚+1

)

= 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) + 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

)

+ 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑑 (𝑓𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

+ 𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)

+ 𝛼 (𝑥
𝑛+1

, 𝑥
𝑛+2

) 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝛼 (𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

) 𝑑 (𝑓𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

)

≤ ⋅ ⋅ ⋅

≤ 𝛾
𝑛−𝑛0

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) + 𝛾
𝑛−𝑛0+1

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

)

+ 𝛾
𝑛−𝑛0+2

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) + ⋅ ⋅ ⋅

+ 𝛾
𝑛−𝑛0+2𝑚

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

)

≤

2𝑚

∑
𝑖=0

𝛾
𝑛−𝑛0+𝑖

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) .

(48)

Letting 𝑛 → ∞, then, we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0. (49)

Case (II). Suppose that 𝑘 > 2 and 𝑘 is even. Let 𝑘 = 2𝑚, 𝑘 ≥ 1.
Then, by using the quadrilateral inequality, we also have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+4

)

+ 𝑑 (𝑥
𝑛+4

, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+4

)

+ 𝑑 (𝑥
𝑛+4

, 𝑥
𝑛+6

) + ⋅ ⋅ ⋅

+ 𝑑 (𝑥
𝑛+2𝑚−2

, 𝑥
𝑛+2𝑚

)

= 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

) + 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+3

)

+ 𝑑 (𝑓𝑥
𝑛+3

, 𝑓𝑥
𝑛+5

) + ⋅ ⋅ ⋅

+ 𝑑 (𝑓𝑥
𝑛+2𝑚−3

, 𝑓𝑥
𝑛+2𝑚−1

)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)

+ 𝛼 (𝑥
𝑛+1

, 𝑥
𝑛+3

) 𝑑 (𝑓𝑥
𝑛+1

, 𝑓𝑥
𝑛+3

)

+ 𝛼 (𝑥
𝑛+3

, 𝑥
𝑛+5

) 𝑑 (𝑓𝑥
𝑛+3

, 𝑓𝑥
𝑛+5

) + ⋅ ⋅ ⋅

+ 𝛼 (𝑥
𝑛+2𝑚−3

, 𝑥
𝑛+2𝑚−1

) 𝑑 (𝑓𝑥
𝑛+2𝑚−3

, 𝑓𝑥
𝑛+2𝑚−1

)

≤ ⋅ ⋅ ⋅

≤ 𝛾
𝑛−𝑛0

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) + 𝛾
𝑛−𝑛0+2

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

)

+ 𝛾
𝑛−𝑛0+4

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) + ⋅ ⋅ ⋅

+ 𝛾
𝑛−𝑛0+2𝑚

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

)

≤

𝑚

∑
𝑖=0

𝛾
𝑛−𝑛0+2𝑖

𝜂
⋅ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) .

(50)

Letting 𝑛 → ∞, then, by using the condition 𝜙
4
, we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0. (51)

By above argument, we get that {𝑥
𝑛
} is a right-Cauchy

sequence.
Analogously, we derive that the sequence {𝑥

𝑛
} is left-

Cauchy. Consequently, the sequence {𝑥
𝑛
} is Cauchy.

Since𝑋 is a complete g.q.m.s, there exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = lim

𝑛→∞
𝑑 (𝑢, 𝑥

𝑛
) = 0. (52)

Step 4. We claim that 𝑓 has a periodic point in 𝑋. Suppose,
on the contrary, that 𝑓 has no periodic point. Since 𝑓 is
continuous, we obtain from (52) that

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑓𝑢) = lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑢) = 0,

lim
𝑛→∞

𝑑 (𝑓𝑢, 𝑥
𝑛+1

) = lim
𝑛→∞

𝑑 (𝑓𝑢, 𝑓𝑥
𝑛
) = 0.

(53)

From (52) and (53), we get immediately that lim
𝑛→∞

𝑓𝑛𝑥
0
=

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢. Regarding Lemma 14, we deduce that 𝑢 =

𝑓𝑢 which contradicts the assumption that 𝑓 has no periodic
point. So, there exists 𝑢 ∈ 𝑋 such that 𝑢 = 𝑓

𝑝(𝑢) for some
𝑝 ∈ N. So 𝑓 has a periodic point in 𝑋.

Apply Theorems 18 and 21, and we can easily deduce the
following theorem.

Theorem 22. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝛼 :

𝑋 × 𝑋 → R+. Suppose 𝑓 is a (𝛼 − 𝜑)-stronger Meir-Keeler
contractive mapping which satisfies

(i) 𝑓 is 𝛼-admissible;
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(ii) there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1 and 𝛼(𝑥

0
, 𝑓2𝑥
0
) ≥ 1, 𝛼(𝑓2𝑥

0
, 𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1,
𝛼(𝑥
𝑛+1

, 𝑥
𝑛
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞,

then 𝛼(𝑥
𝑛
, 𝑥) ≥ 1, 𝛼(𝑥, 𝑥

𝑛
) ≥ 1 for all 𝑛.

Then 𝑓 has a periodic point in 𝑋.
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