
Research Article
Unified Mathematical Framework for Slicing and
Symmetry Reduction over Event Structures

Xinyan Gao,1 Yingcai Ding,1 Wenbo Liu,1 Kaidi Zheng,1 Siyu Huang,1

Ning Zhou,2,3 and Dakui Li1

1 G&S Labs, School of Software, Dalian University of Technology, Dalian 116620, China
2 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Dakui Li; ldk@dlut.edu.cn

Received 28 January 2014; Accepted 27 April 2014; Published 12 June 2014

Academic Editor: Xiaoyu Song

Copyright © 2014 Xinyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonclassical slicing and symmetry reduction can act as efficient structural abstract methods for pruning state space when dealing
with verification problems. In this paper, we mainly address theoretical and algorithmic aspects for nonclassical slicing and
symmetry reduction over prime event structures. We propose sliced and symmetric quotient reduction models of event structures
and present their corresponding algorithms. To construct the underlying foundation of the proposed methodologies, we introduce
strong and weak conflict concepts and a pair of mutually inverse operators and extend permutation group based symmetry notion
of event structures. We have established a unified mathematical framework for slicing and symmetry reduction, and further
investigated the translation, isomorphism, and equivalence relationship and other related basic facts from a theoretical point of
view. The framework may provide useful guidance and theoretical exploration for overcoming verification challenges. This paper
also demonstrates their practical applications by two cases.

1. Introduction

Generally, to detect whether a finite execution trace of
a distributed program satisfies a given predicate, namely,
predicate detection (a kind of verification problems), is a
fundamental problem in asynchronous distributed systems. It
has applications inmany domains such as testing, debugging,
and monitoring of distributed programs and it is also a
powerful runtime verification method.

Unfortunately, predicate detection is NP complete [1]
and suffers from the excessive size of the state space and
the state explosion problem—the number of possible global
states of the program increases exponentially owing to simple
combination.

To deal with this problem, several useful reduction
techniques have been suggested in succession for reducing
the state space in recent years, such as partial order reduction
and symmetric reduction methods [2–4].

On the one hand, the basic observation is that many
distributed or concurrent systems exhibit a certain degree of
symmetry, for example, a system composed of identical or
isomorphic components whose identities are interchangeable
from a verification point of view. This kind of structural
symmetry in the system is also reflected in the full state space
of the system.Themain idea behind the symmetry reduction
method is to figure out this symmetry and obtain a condensed
state space which is typically much smaller than the full state
space, but from which the same kind of properties of the
system can be derived without unfolding the condensed state
space to the full state space. Thus, it can be used to verify any
property of the original model.

On the other hand, a slice of a system with respect
to a criterion is a subsystem that only contains all the
states of the original system that satisfy this specification.
The advantage of this technique lies in the fact that the
detection is performed only on the small part of the global
state space which is of interest. In many cases, the slice is

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 352152, 20 pages
http://dx.doi.org/10.1155/2014/352152

http://dx.doi.org/10.1155/2014/352152

2 Journal of Applied Mathematics

exponentially smaller than the original. In order to tangle
predicate detection problem, nonclassical slicing technique,
named computation slicing, as an abstraction mechanism,
inspired by the classical program slicing of Weiser [5, 6], was
first proposed by Garg and Mittal [7].

For the majority predicate classes, the computation slic-
ing algorithm has polynomial-time complexity and gains
exponential reduction of state spaces. Computation slicing
has been proved to be an efficient technique for pruning
state space of predicate detection in distributed computation.
Moreover, it has also been successfully applied to solve the
problems of temporal properties verification in transaction
level hardware descriptions such as PCI local bus protocol
and the MSI (modified shared invalid) cache coherence
protocol [6] in SoC (system on chip) systems and so forth.

Due to the restriction of partial order execution trace
model [5, 8], this approach has some limitations. Firstly,
it is a runtime checking method and only checks a single
partial execution trace once. It is not easy to obtain 100% path
coverage even though this detection is performed multiple
times. Thus, it is not suitable for exhaustive analysis by
reasoning about all possible execution of the system model.
Secondly, its underlying model is partially ordered set and it
is not expressive enough to handle these models with explicit
choice structures or conflicts. Because all the runtime traces
do not contain any conflict information, it is not convenient
to analyze the system under construction statically.

In this paper, we extend the notion of computation slicing
from partial order traces to prime event structures with
conflict. We propose a more general event structure slicing
notion and a complete mathematical theoretical framework
for computing the event structure slices.

The main idea is that a prime event structure can
be viewed as such a system model consisting of several
conflict-free substructures. These substructures themselves
are in mutual weak conflict. Any of such conflict-free event
substructures of a prime event structure acts as a partial order
execution trace which can be sliced by traditional compu-
tation slicing algorithm. Based on this idea, we propose a
partition approach to decompose a prime event structure
into a group of conflict-free substructures equivalently. Each
of these substructures can be sliced with respect to a given
slicing criterion by the existing slicing algorithm and we can
get a set of the sliced substructures. We have proved that
these sliced results can be composed together and yield a new
prime event structure by a so-calledweak choice composition
operation. We have shown that the newly generated prime
event structure is the slicing result of the original prime
event structure. Meanwhile, based on above partition, we can
detect structural symmetry property and make symmetric
reduction on each substructure of the original system. In
additional, we also investigate the relationship between the
symmetric reduction model and the original one.

The main contribution of our work can be summarized
as follows. We introduced the slicing notion into the area
ofevent structure and extended nonclassical computation

slicing with conflict. We also proposed a unified mathemati-
cal framework as a common theory basis for event structure
slicing and symmetry reduction.We also made a comparison
between our event structure slicing and the traditional com-
putation slicing and demonstrated the mathematical aspects
of this framework.

The rest of this paper is structured as follows. Related
work is discussed in Section 2. Section 3 introduces the
notion of event structure and other basic definitions.
Section 4 describes two core operators over event strictures.
Slicing reduction derived from computation slicing will be
discussed in Section 5. Symmetry reduction theory based
on permutation group is reported in Section 6. The overall
mathematical framework for event structure slicing and
symmetry reduction will be provided in Section 7. In the last
section, we make a short summary of our work.

2. Related Work

Regarding the slicing technique, the work in [5, 6] proposed
classical program slice idea firstly byWeiser. Given a program
and a set of variables, a program slice consists of all statements
in the program thatmay affect the value of the variables in the
set at some given point.

During years after the program slice notionwas proposed,
a lot of work based on this notion had been performed.
For example, in 1992, the notion of a slice has been also
extended to distributed programs [9]. In 2000, the notion
of a nonclassical computation slice, which is very similar
to the concept of a program slice, has been proposed. In
work [7, 10], computation slice over partial order traces was
firstly investigated by Garg and Mittal, de Bakker et al. This
computation slice notion is based on partial order traces
model, which is a special case of event structure without
conflict.

Event structure, as an true concurrency model [11–
16], can be taken as an extension of partial order model.
In concurrency theory, event structures constitute a major
branch of concurrent models. These were initially developed
as a link between Petri nets and Scott domain theory [17] and
have since been extensively applied as a semantic model for
process algebras, for example [18].

All the previous work [7, 8, 19, 20] does not consider the
case with conflict. Compared with them, our work is aimed
to extend this slicing notion to the area of event structure.

On the other hand, as for symmetry reduction, the use of
symmetry to reduce state space has been investigated widely
by researchers. Technically speaking, symmetry in event
structures [3, 4] is similar to symmetry in model checking
[2, 21, 22]. In work [23], a category of event structures with
symmetry was introduced and its categorical properties were
investigated, while our work is relevant to the structural
reduction via symmetry property over event structuremodel.

In our previous work [24], we have extended this tech-
nique to event structure area. In this paper, we will further
investigate the common basis for both slicing and symmetry
reduction over event structures and provide a unified frame-
work.

Journal of Applied Mathematics 3

3. Event Structure and Basic Definitions

In this section, we will introduce the notion of prime
event structure [11, 17, 25, 26] and the basic definitions
we use throughout the paper. The prime event structure is
firstly defined and other related key notions are introduced.
Moreover, we focus on finite prime event structures only.

Definition 1 (prime event structure). A prime event structure
(over an alphabet A, a set of actions) is a 4-tuple structure
(𝐸, ⪯, ♯, 𝑙) with

(i) 𝐸, a finite set of events;
(ii) ⪯⊆ 𝐸 × 𝐸, a partial order, the causality relation,

satisfying the principle of finite causes: for all 𝑒 ∈ 𝐸 :

{𝑒
󸀠 ∈ 𝐸 | 𝑒󸀠 ⪯ 𝑒} is finite and the inverse of ⪯ is

denoted by ⪯−1;
(iii) ♯ ⊆ 𝐸 × 𝐸, the (irreflexive and symmetric) conflict

relation, satisfying the principle of conflict inheri-
tance: ∀𝑑, 𝑒, 𝑓 ∈ 𝐸 : 𝑑 ⪯ 𝑒 ∧ 𝑑♯𝑓 ⇒ 𝑒♯𝑓;

(iv) 𝑙 : 𝐸 → A, the action-labelling function.

A prime event structure (for short, an event structure)
represents a system in the following way: the action names
are activities which the systemmay perform, an event labelled
𝑎 ∈ A stands for a particular occurrence of an action, 𝑒

𝑎
⪯ 𝑒
𝑏

indicates that 𝑎 cannot occur before 𝑏 has, and 𝑒
𝑐
♯𝑒
𝑑
indicates

that actions 𝑐 and 𝑑 can never occur together in one run.
The conflict inheritance property states that if an event 𝑒

is in conflict with some event 𝑓, then it is in conflict with all
causal successors of 𝑓.

From the causality relation, it is not difficult to derive a
notion of causal independence:

𝑒cod ⇐⇒ ¬(𝑒 = 𝑑 ∨ 𝑒 ⪯ 𝑑 ∨ 𝑒⪯
−1
𝑑 ∨ 𝑒♯𝑑) . (1)

Let E denote the domain of prime event structures
labelled overA and 0 = (0, 0, 0, 0) stand for the empty event
structure. Generally, the components of an event structureE
will be denoted by 𝐸E, ⪯E, ♯E, and 𝑙E, respectively. More
specifically, E = (𝐸E, ⪯E, ♯E, 𝑙E). If clear from the context,
the index will be omitted; that is,E = (𝐸, ⪯, ♯, 𝑙) is also a valid
form.

Additionally, for 𝑋 ⊆ 𝐸E, the restriction of E to 𝑋 can
be defined as E|

𝑋
= (𝑋, ⪯E ∩ (𝑋 × 𝑋), ♯E ∩ (𝑋 × 𝑋), 𝑙E|𝑋).

Let Succ(𝑒) denote all causal successors of an event 𝑒; that is,
Succ(𝑒) = {𝑎 ∈ 𝐸E | 𝑒⪯E𝑎, 𝑒 ∈ 𝐸E}.

Definition 2 (event substructure). Let E = (𝐸E, ⪯E, ♯E, 𝑙E) ∈

E and E󸀠 = (𝐸E󸀠 , ⪯E󸀠 , ♯E󸀠 , 𝑙E󸀠) ∈ E be event structures; E󸀠 is
called a substructure of E (denoted by E󸀠 ⊲ E) if and only if

(i) 𝐸E󸀠 ⊆ 𝐸E;
(ii) for all 𝑒, 𝑒󸀠 ∈ 𝐸E, 𝑒♯E󸀠𝑒

󸀠 ⇔ 𝑒, 𝑒󸀠 ∈ 𝐸E󸀠 ∧ 𝑒♯E𝑒
󸀠;

(iii) for all 𝑒, 𝑒󸀠 ∈ 𝐸E, 𝑒⪯E󸀠𝑒
󸀠 ⇔ 𝑒, 𝑒󸀠 ∈ 𝐸E󸀠 ∧ 𝑒⪯E𝑒

󸀠.

Definition 3 (conflict-free event structure). An event struc-
ture E = (𝐸E, ⪯E, ♯E, 𝑙E) ∈ E is called conflict-free event
structure (denoted by 𝑐𝑓𝐸𝑆, for short) if and only if its conflict
relation is empty; that is, ♯E = 0.

Let F denote the domain of conflict-free prime event
structures.

In order to characterize the conflict relationship between
two conflict-free event structures (or substructures of a
prime event structure), we introduce the following basic
definitions: strong conflict, weak conflict, and weak conflict
event structure set (for short, weak conflict set).

Definition 4 (strong conflict). Let F
1
= (𝐸F

1

, ⪯F
1

, 0, 𝑙F
1

) ∈

F and F
2

= (𝐸F
2

, ⪯F
2

, 0, 𝑙F
2

) ∈ F . The conflict rela-
tion between 𝐸

1
(𝐸
1

⊆ 𝐸F
1

and 𝐸
1
̸= 0) and 𝐸

2
(𝐸
2

⊆

𝐸F
2

and 𝐸
2
̸= 0) is called strong conflict if and only if for all

𝑒 ∈ 𝐸
1
, 𝑓 ∈ 𝐸

2
: 𝑒♯𝑓, denoted by 𝐸

1
♯𝑠𝐸
2
. F
1
and F

2

are called strong conflict if and only if their event sets are
in mutually strong conflict, that is, for all F

1
,F
2
∈ F :

F
1
♯𝑠F
2
⇔ 𝐸F

1

♯𝑠𝐸F
2

, denoted byF
1
♯𝑠F
2
.

More generally, for any E
1
∈ E and E

2
∈ E, the relation

between nonempty 𝐸󸀠
1
(0 ̸= 𝐸󸀠

1
⊆ 𝐸E

1

) and 𝐸󸀠
2
(0 ̸= 𝐸󸀠

2
⊆ 𝐸E

2

)

is called extended strong conflict if and only if for all 𝑒 ∈

𝐸
󸀠

1
, 𝑓 ∈ 𝐸󸀠

2
: 𝑒♯𝑓, denoted by 𝐸󸀠

1
♯𝑥𝑠𝐸󸀠
2
. That is, each of 𝐸󸀠

1
is in

conflict with each of 𝐸󸀠
2
and the existence of conflict relation

in 𝐸󸀠
1
or 𝐸󸀠
2
is allowed.

Definition 5 (weak conflict). Let F
1
= (𝐸F

1

, ⪯F
1

, 0, 𝑙F
1

) ∈

F and F
2
= (𝐸F

2

, ⪯F
2

, 0, 𝑙F
2

) ∈ F . The conflict relation
between event sets 𝐸

1
(𝐸
1
⊆ 𝐸F

1

and 𝐸
1
̸= 0) and 𝐸

2
(𝐸
2
⊆

𝐸F
2

and 𝐸
2
̸= 0) is called weak conflict if and only if ∃𝑒 ∈

𝐸
1
, ∃𝑓 ∈ 𝐸

2
: 𝑒♯𝑓, denoted by 𝐸

1
♯𝑤𝐸
2
. The conflict-free

event structures, F
1
and F

2
, are called weak conflict if and

only if their event sets are in weak conflict; that is, for all
F
1
,F
2
∈ F : F

1
♯𝑤F
2
⇔ 𝐸F

1

♯𝑤𝐸F
2

, denoted byF
1
♯𝑤F
2
.

Stated in words, it is not that each event of 𝐸F
1

is in
conflict with each event of 𝐸F

2

, but there exists at least one
conflicting event pair between 𝐸F

1

and 𝐸F
2

.
Basically, according to the previous definitions, strong

conflict relation is a special case of weak conflict relation.

Definition 6 (weak conflict set). Let WF𝑐𝑓𝑤
𝑛

= {F
𝑖
∈ F |

𝑖, 𝑛 ∈ N, 1 ≤ i ≤ n} over event set 𝐸WF, WF𝑐𝑓𝑤
𝑛

is called
a weak conflict set if and only if 𝐸WF = ⋃

𝑛

𝑖=1
𝐸F
𝑖

and for all
F
𝑖
,F
𝑗
∈ WF𝑐𝑓𝑤

𝑛
: 𝑖 ̸= 𝑗 ⇒ F

𝑖
♯𝑤F
𝑗
(𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑛).

For convenience, let 𝑤𝑓𝑠𝑒𝑡𝐹(WF𝑐𝑓𝑤
𝑛
) = {𝐸F

𝑖

| 𝑖 ∈ N, 1 ≤
𝑖 ≤ 𝑛} denote the family of weak conflict event sets.

Definition 7 (maximal conflict-free event substructure). Let
E = (𝐸E, ⪯E, ♯E, 𝑙E) ∈ E be an event structure; any event
subset 𝐸󸀠 ⊆ 𝐸E is called a maximal conflict-free event subset
(for short,mcfset) of𝐸E if and only if it satisfies the following:

(1) for all 𝑒, 𝑓 ∈ 𝐸󸀠 : ¬(𝑒♯𝑓);

(2) for all 𝑐 ∈ (𝐸E − 𝐸
󸀠) : ∃𝑑 ∈ 𝐸󸀠 ⇒ 𝑐♯𝑑.

Its corresponding substructure E󸀠 is called maximal
conflict-free event substructure of E; that is, E󸀠 = (𝐸󸀠, ≤E ∩

(𝐸󸀠 × 𝐸󸀠), 0, 𝑙
𝐸
󸀠).

4 Journal of Applied Mathematics

4. Operators over Event Structure

In this section, a pair of mutually inverse operators, 𝑐𝑓𝑝
(conflict-free partition) and𝑤𝑐𝑐 (weak conflict composition),
will be introduced and discussed. For any prime event
structure E, partition and composition operation over it can
be associated via its family of configurations.

4.1. Maximal Conflict-Free Partition. In fact, a prime event
structure can be viewed as a system consisting of several
substructures, which are conflict-free themselves. Such a
conflict-free event substructure of a prime event structure
represents a specific possible partial order execution trace via
branching or nondeterministic choices. For any prime event
structure, it is a certainty that we can get its maximal conflict-
free substructures by some kind of conflict-free partition
operation according to the characteristics of its conflict
relation.

First of all, we give the definition of maximal conflict
pattern for an event structure.The notion ofmaximal conflict
pattern canmake great contributions to accelerate the process
of partition by avoiding unnecessary partition steps. We
then provide the key partition algorithm for a prime event
structure.

Definition 8 (maximal conflict pattern). Let E =

(𝐸E, ≤E, ♯E, 𝑙E) ∈ E; for any 𝐴 ⊆ 𝐸E and 𝐵 ⊆ 𝐸E,
𝐴♯𝑥𝑠𝐵 is called amaximal conflict patternif and only if for all
𝐴󸀠 ⊆ 𝐸E, for all 𝐵

󸀠 ⊆ 𝐸E : (𝐴 ⊂ 𝐴󸀠 ∧ 𝐵 ⊂ 𝐵󸀠) ⇒ ¬(𝐴󸀠♯𝑥𝑠𝐵󸀠).

For any prime event structure, we can get these maximal
conflict patterns by the following two steps:

(1) casual successors expanding;

(2) conflict pairs merging.

Firstly, due to the conflict inheritance property, we know
that if event 𝑒 is in conflict with event 𝑓 then their casual suc-
cessors are also in mutual conflict; that is, ∀𝑐 ∈ Succ(𝑒), ∀𝑑 ∈
Succ(𝑓) : 𝑒♯𝑓 ⇒ 𝑐♯𝑑.

Let {𝑒}
♯
= {𝑒} ∪ Succ(𝑒) and {𝑓}

♯
= {𝑓} ∪ Succ(𝑓); we

have that {𝑒}
♯
and {𝑓}

♯
are in strong conflict if 𝑒♯E𝑓; namely,

∀𝑒, 𝑓 ∈ 𝐸E : 𝑒♯E𝑓 ⇒ {𝑒}
♯
♯𝑠{𝑓}
♯
.

For example, for a prime event structure E, if 𝑐♯E𝑑
and casual relations are 𝑐⪯E𝑒1, 𝑐⪯E𝑒2, 𝑑⪯E𝑓1, 𝑓1⪯E𝑓2, and
𝑑⪯E𝑓3, we then have {𝑐, 𝑒

1
, 𝑒
2
, }♯
𝑠
{𝑑, 𝑓
1
, 𝑓
2
, 𝑓
3
}.

We also have that any nonempty subset of {𝑒}
♯
and any

nonempty subset of {𝑒}
♯
are also in strong conflict.

Consider a prime event structure E ∈ E whose conflict
relation has 𝑙 (𝑙 ∈ N) conflict pairs. Expand each conflict
relation with its successors according to the conflict inher-
itance property and we can get full conflict relation pairs:
{𝑒
1
}
♯
♯𝑠{𝑓
1
}
♯
, . . . , {𝑒

𝑙
}
♯
♯𝑠{𝑓
𝑙
}
♯
; here, 𝑒

𝑖
♯E𝑓𝑖, 𝑒𝑖 ∈ 𝐸E, 𝑓𝑖 ∈

𝐸E(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑙).
Secondly, for such a group of full conflict relation pairs

obtained by the above steps, there may exist common
elements among some pairs that can be merged together
and form a maximal conflict pattern. For example, events

𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝑒

4
are mutually in conflict; we have six imme-

diate conflict relation pairs: {𝑒
1
}♯𝑠{𝑒
2
}, {𝑒
1
}♯𝑠{𝑒
3
}, {𝑒
1
}♯𝑠{𝑒
4
},

{𝑒
2
}♯𝑠{𝑒
3
}, {𝑒
2
}♯𝑠{𝑒
4
}, and {𝑒

3
}♯𝑠{𝑒
4
}.

From the principle of permutation, we then have
three maximal conflict patterns by merging conflict pairs:
{𝑒
1
}♯𝑥𝑠{𝑒

2
, 𝑒
3
, 𝑒
4
}, {𝑒
2
}♯𝑥𝑠{𝑒

3
, 𝑒
4
}, and {𝑒

3
}♯𝑥𝑠{𝑒

4
}. Equivalently,

{𝑒
4
}♯
𝑥𝑠
{𝑒
1
, 𝑒
2
, 𝑒
3
}, {𝑒
3
}♯
𝑥𝑠
{𝑒
1
, 𝑒
2
}, and {𝑒

2
}♯
𝑥𝑠
{𝑒
1
} are also the

valid maximal conflict patterns.
Assume that there are 𝑚 ∈ N maximal conflict

patterns after expanding and merging which are I1
♯E

:

𝐴
1
♯𝑥𝑠𝐵
1
, . . . ,I𝑚

♯E
: 𝐴
𝑚
♯𝑥𝑠𝐵
𝑚
, respectively.

Here, I𝑖
♯E

: 𝐴
𝑖
♯𝑥𝑠𝐵
𝑖
denotes the 𝑖th pattern, and ∀𝑒 ∈

𝐴
𝑖
⊆ 𝐸E, ∀𝑓 ∈ 𝐵

𝑖
⊆ 𝐸E : 𝑒♯E𝑓(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚).

If 𝐴
𝑖
♯𝑥𝑠𝐵
𝑖
, then any nonempty subset of 𝐴

𝑖
and any

nonempty subset of 𝐵
𝑖
are also in extended strong conflict.

For any event set 𝐷, let 𝐷 denote any nonempty subset
of 𝐷 (0 ̸=𝐷 ⊆ 𝐷); correspondingly, Î𝑖

♯E
: 𝐴
𝑖
♯𝑥𝑠𝐵
𝑖
denotes a

conflict subpattern ofI𝑖
♯E
(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚).

Formally, I󸀠 : 𝐴󸀠♯𝑥𝑠𝐵󸀠 is called a conflict subpattern of
I : 𝐴♯𝑥𝑠𝐵 if and only if (0 ̸= 𝐴󸀠 ⊆ 𝐴) ∧ (0 ̸= 𝐵󸀠 ⊆ 𝐵), denoted
byI󸀠⊆patternI (orI⊇patternI

󸀠). Otherwise,I󸀠 ̸⊆patternI (or
I ̸⊇patternI

󸀠).
Let 𝑃E = {I𝑖

♯E
: 𝐴
𝑖
♯𝑥𝑠𝐵
𝑖
| 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚} denote the

maximal conflict pattern set of an event structure E.
For any prime event structure, it is a certainty that we

can get its maximal conflict-free substructures by some kind
of conflict-free partition operation according to its conflict
relation characteristics: maximal conflict patterns. Thus, we
have the following theorem for partition.

Theorem 9. For any prime event structure, its maximal
conflict-free partition exists and the partition result is unique.

Proof. (1) Existence.The proof is constructive.
If there is no conflict in 𝐸E, then 𝐸E itself is the maximal

conflict-free event subset ofE. Otherwise, for any nonempty
event subset 𝐸 (𝐸 ⊆ 𝐸E ∧ 𝐸 ̸= 0), and there exists such
maximal conflict pattern I𝑖

♯E
: 𝐴
𝑖
♯𝑥𝑠𝐵
𝑖
(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚)

that (𝐴
𝑖
∪ 𝐵
𝑖
) ⊆ 𝐸.

In order to make a subset 𝐸󸀠 of 𝐸 (𝐸󸀠 ⊆ 𝐸) become
conflict-free with respect to the conflict relation:𝐴

𝑖
♯𝑥𝑠𝐵
𝑖
, that

is, eliminate this conflict relation from its all subsets, we have
known that if 𝐴

𝑖
⊆ 𝐸󸀠 (or 𝐵

𝑖
⊆ 𝐸󸀠), then there should be

𝐵
𝑖
̸⊆ 𝐸󸀠(or 𝐴

𝑖
̸⊆ 𝐸󸀠); otherwise, theI𝑖

♯E
conflict pattern will

still exist in its subsets.
By greedy policy, let𝐴󸀠

𝑖
and 𝐵󸀠

𝑖
be bothmaximal inclusion

subsets with respect to 𝐸 calculated by 𝐴󸀠
𝑖
= maxincl(𝐴

𝑖
, 𝐸)

and 𝐵󸀠
𝑖
= maxincl(𝐵

𝑖
, 𝐸), respectively.This means the current

event set 𝐸 will be partitioned into two parts by this maximal
conflict subpattern: one part is (𝐸 −𝐴󸀠

𝑖
), and the other is (𝐸 −

𝐵󸀠
𝑖
). Certainly, there exists no I𝑖

♯E
conflict relation between

(𝐸 − 𝐴󸀠
𝑖
) and (𝐸 − 𝐵󸀠

𝑖
) any more. If there does not exist any

conflict in (𝐸 − 𝐵󸀠
𝑖
) (or (𝐸 − 𝐴󸀠

𝑖
)), then (𝐸 − 𝐵󸀠

𝑖
) (or (𝐸 − 𝐴󸀠

𝑖
))

is one conflict-free event subset of 𝐸E.

Journal of Applied Mathematics 5

Otherwise, apply the next maximal conflict pattern
I𝑖+1
♯E

(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚) to all the previously obtained
event subsets in the same manner. This partition process is
continued until no conflict exists.

As we know, if each pattern of the maximal conflict
patterns set has been applied just once by the above manner,
then any consequent subset will be conflict-free and the
partition process will stop. Meanwhile, there are 2𝑚 conflict-
free subsets at most.

Because intersection of 𝑥
𝑖
and 𝑦
𝑖
(𝑥, 𝑦 ∈ {𝐴, 𝐵}, 𝑖 ̸= 𝑗, 1 ≤

𝑖, 𝑗 ≤ 𝑚) can be nonempty, thus the partition tree is not
yet a full binary tree and set inclusion among these solution
nodes is allowed. If some subsets are included by others,
then they will be removed until every result subset cannot
be included by others. It is not difficult to verify that every
consequent subset is maximal and conflict-free. Exploiting
these expanded fully conflict patterns to partition the event
set𝐸E step by step, wewill eventually get allmaximal conflict-
free event subsets.That is, there exists a practical algorithm to
implement the partition operation.Without loss of generality,
let ⊘
𝐴
denote such partition for the time being.

(2) Uniqueness. Assume we have𝑚𝑐𝑓𝑠𝑒𝑡𝑁
𝐴
(E) distinct max-

imal conflict-free event subsets in total by partition ⊘
𝐴
.

These subsets form a set of 𝑚𝑐𝑓𝑠𝑒𝑡𝑠, denoted by R
𝐴

=

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
| 𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁

𝐴
(E)}.

We might as well assume there is another partition ⊘
𝐵

that generates the result set R
𝐵
= {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
| 𝑚 =

𝑚𝑐𝑓𝑠𝑒𝑡𝑁
𝐵
(E)} which is also a set of𝑚𝑐𝑓𝑠𝑒𝑡𝑠.

Consider any element of R
𝐵
; let 𝐵

𝑖
(1 ≤ 𝑖 ≤ 𝑚, 𝑖 ∈ N)

denote it.The relationship between an element𝐴
𝑗
(1 ≤ 𝑗, 𝑘 ≤

𝑚𝑐𝑓𝑠𝑒𝑡𝑁
𝐴
(E), 𝑗, 𝑘 ∈ N) in R

𝐴
and 𝐵

𝑖
satisfies the following.

(1) ∃𝐴
𝑗
∈ R
𝐴
: 𝐴
𝑗
⊂ 𝐵
𝑖
⊆ 𝐸E.

Since ∀𝐴
𝑘
∈ R
𝐴
, 𝑘 ̸= 𝑗 : 𝐴

𝑗
♯𝑤𝐴
𝑘
, then ∀𝐴

𝑘
∈

R
𝐴
, 𝑘 ̸= 𝑗 : 𝐵

𝑖
♯𝑤𝐴
𝑘
. We have known that 𝐴

𝑗
∈ R
𝐴

is maximal, and now event subset 𝐵
𝑖
is also a subset

of 𝐸E and is in weak conflict with other event subsets
except𝐴

𝑖
. Moreover,𝐵

𝑖
includes𝐴

𝑖
.This case leads to

a contradiction.
(2) ∃𝐴

𝑗
∈ R
𝐴
: 𝐵
𝑖
⊂ 𝐴
𝑗
⊆ 𝐸E.

Theproof is similar to the above case (1).This case also
leads to a contradiction.

(3) ∀𝐴
𝑗
∈ R
𝐴
: 𝐴
𝑗
̸= 𝐵
𝑖
.

(3.1) ∀𝐴
𝑗
∈ R
𝐴
: 𝐴
𝑗
♯𝑤𝐵
𝑖
.

Since 𝐵
𝑖
is also a subset of 𝐸E, thus, R󸀠𝐴 =

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
, 𝐵
𝑖
| 𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁

𝐴
(E)} is a

valid set of 𝑚𝑐𝑓𝑠𝑒𝑡𝑠. There are 𝑛 + 1 subsets in
this partition ⊘

𝐴
. This is in contradiction with

that there are 𝑛 (𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁
𝐴
(E)) subsets in

R
𝐴
.

(3.2) ∃𝐴
𝑗
∈ R
𝐴
: ¬(𝐴

𝑗
♯𝑤𝐵
𝑖
).

Since ∀𝐴
𝑘

∈ R
𝐴
, 𝑘 ̸= 𝑗 : 𝐴

𝑗
♯𝑤𝐴
𝑘
, then

∀𝐴
𝑘

∈ R
𝐴
, 𝑘 ̸= 𝑗 : (𝐴

𝑗
∪ 𝐵
𝑖
)♯
𝑤
𝐴
𝑘
; that

is, R󸀠󸀠
𝐴

= {𝐴
1
, 𝐴
2
, . . . , {𝐴

𝑗
∪ 𝐵
𝑖
}, . . . , 𝐴

𝑛
, |

𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁
𝐴
(E)} is a valid set of 𝑚𝑐𝑓𝑠𝑒𝑡𝑠.

𝐴
𝑗
(𝐴
𝑗
∈ R
𝐴
) is maximal; moreover, 𝐴

𝑗
⊂

(𝐴
𝑗
∪ 𝐵
𝑖
) ∈ R󸀠󸀠

𝐴
is maximal too. This leads to

a contradiction.
(3.3) ∀𝐴

𝑗
∈ R
𝐴
: ¬(𝐴

𝑗
♯𝑤𝐵
𝑖
).

The proof is similar to the above case (3.2). This
case also leads to a contradiction.

Therefore, we are forced to have only∃𝐴
𝑗
∈ R
𝐴
: 𝐴
𝑗
= 𝐵
𝑖
;

that is, any element in R
𝐵
is also an element in R

𝐴
; we get

R
𝐵
⊆ R
𝐴
; in the same manner, we will get R

𝐴
⊆ R
𝐵
. Thus, we

have R
𝐵
= R
𝐴
.

This establishes the uniqueness and also implies the
partition result is independent of partition order or conflict
pattern.

Therefore, we have the conclusion.
Assume E ∈ E has 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E) ∈ N 𝑚𝑐𝑓𝐸𝑆𝑠 in total.

Here, let 𝑁E = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E) (𝑁E, for short) denote total
amount of 𝑚𝑐𝑓𝐸𝑆𝑠, Emax

𝑖
(𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑁E) denote the 𝑖th

maximal conflict-free event substructure, and 𝐸Emax
𝑖

denote
the event set of Emax

𝑖
.

Then the result set can be represented as B𝑚𝑐𝑓𝐸𝑆(E) =
{Emax
𝑖

| 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁E}.
In fact, every Emax

𝑖
(𝑖 ∈, 1 ≤ 𝑖 ≤ 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E)) of the

original prime event structure represents a specific possible
execution choice in a system run. We might as well let
𝑐𝑓𝑝 denote such an operator. Then, we have the following
definition of this partition operator.

Definition 10 (conflict-free partition). An operator 𝑐𝑓𝑝 is
called conflict-free partition operator for E ∈ E if and only
ifB𝑚𝑐𝑓𝐸𝑆(E) = 𝑐𝑓𝑝(E).

According to our previous discussion, we have C-like
pseudocode descriptions: Algorithm 1 for 𝑐𝑓𝑝.

4.2. Family of Configurations. In general, the behavior of
an event structure is described by its configurations which
are sets of events with certain properties. In other words, a
configuration is a set of events that have happened during a
specific run of the event structure.

We will review the basic definition of configuration in the
following section. More detailed information can be found in
[26].

Definition 11 (configuration). Let𝑋 be a subset of𝑋 ⊆ 𝐸E of a
prime event structure E ∈ E; then𝑋 is called a configuration
of E if and only if

(1) 𝑋 is left-closed if and only if ∀𝑐, 𝑑 ∈ 𝐸, 𝑑 ∈ 𝑋 ∧ 𝑐 ≤

𝑑 ⇒ 𝑐 ∈ 𝑋.
(2) 𝑋 is conflict-free if and only if ∀𝑒, 𝑓 ∈ 𝑋 : ¬(𝑒♯E𝑓).

A configuration can also be viewed as a global state
where all events in the configuration have occurred. The
configuration of the event structure should be conflict-free
because conflicting events can never happen in a system
run. In addition, all casual predecessors of an event in

6 Journal of Applied Mathematics

Input: a prime event structure: E;
Output: the set of𝑚𝑐𝑓𝐸𝑆𝑠:B𝑚𝑐𝑓𝐸𝑆(E);
BEGIN
(1) 𝐶 = 0; 𝑖𝑛𝑡 𝑖 = 1; 𝑖𝑛𝑡 𝑛 = 0; 𝑅 = 0;
(2) 𝑆𝑄 = 𝐸𝑛𝑡𝑒𝑟𝑄𝑢𝑒𝑢𝑒(𝐸E, 1);

/∗ Initialize the Queue ∗/
(3) if (𝐼𝑠𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐹𝑟𝑒𝑒(𝐸E)){
(5) 𝐶 = ∪{𝐸};
(6) Goto BUILDES;
(7) } /∗ end if; ∗/

/∗ Expand and merge each conflict pair and build maximal conflict patterns:
{I𝑖#E : 𝐴

𝑖
#𝑥𝑠𝐵
𝑖
| 𝑖 ∈, 1 ≤ 𝑖 ≤ 𝑚}; ∗/

(8) for (𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖++) { /∗ do ∗/
(9) Select a partition pattern:I𝑖#E : 𝐴

𝑖
#𝑥𝑠𝐵
𝑖
;

(10) /∗ Current level is 𝑖, applyI𝑖#E , otherwise, skip while loop to the next one: 𝑖++; ∗/
(11) while (!𝐸𝑚𝑝𝑡𝑦𝑄𝑢𝑒𝑢𝑒(𝑆𝑄) &&

𝑖 == 𝑉𝑎𝑟𝑄𝑢𝑒𝑢𝑒(𝑆𝑄, LEVEL)) {
/∗ Get the head of the Queue: event set ∗/

(12) 𝐸 = 𝑂𝑢𝑡𝑄𝑢𝑒𝑢𝑒(𝑆𝑄,EVENT);
(13) 𝐴

󸀠

𝑖
= 𝑚𝑎𝑥𝑖𝑛𝑐𝑙(𝐴

𝑖
, 𝐸);

(14) 𝐵󸀠
𝑖
= 𝑚𝑎𝑥𝑖𝑛𝑐𝑙(𝐵

𝑖
, 𝐸);

(15) 𝐸
1
= (𝐸 − 𝐴

󸀠

𝑖
);

(16) 𝐸
2
= (𝐸 − 𝐵󸀠

𝑖
);

/∗𝐸
1
is a conflict-free subset; ∗/

(17) if (𝐼𝑠𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐹𝑟𝑒𝑒(𝐸
1
)) {

(18) 𝐶 = 𝐶 ∪ {𝐸
1
};

/∗ Remove these elements included in others; ∗/
(19) 𝑅𝑒𝑚𝑜V𝑒𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝐶);
(20) }else{

/∗ Continue next partition by the conflict pattern:I𝑖+1#E ;
∗/

(21) 𝑆𝑄 = 𝐸𝑛𝑡𝑒𝑟𝑄𝑢𝑒𝑢𝑒(𝐸
1
, 𝑖 + 1);

(22) } /∗ end if ∗/
(23) if (𝐼𝑠𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐹𝑟𝑒𝑒(𝐸

2
)) {

(24) 𝐶 = 𝐶 ∪ {𝐸
2
};

(25) 𝑅𝑒𝑚𝑜V𝑒𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝐶);
(26) }else{
(27) 𝑆𝑄 = 𝐸𝑛𝑡𝑒𝑟𝑄𝑢𝑒𝑢𝑒(𝐸

2
, 𝑖 + 1);

(28) } /∗ end if ∗/
(29) } /∗ end while ∗/
(30) } /∗ end for ∗/
(31) BUILDES: /∗ Build the sub-structure:F = (𝐸F, ⪯F, #F, 𝑙F)

∗/
(32) while (¬𝐼𝑠𝐸𝑚𝑝𝑡𝑦(𝐶)) {
(33) Select a conflict-free event subset 𝐴

!# from 𝐶;
(34) 𝐸F = 𝐴

!#;
(35) #F = 0;
(36) ⪯F = ⪯E ∩ (𝐴 !# × 𝐴 !#);
(37) 𝑙F = 𝑙|

𝐴!#
;

(38) 𝐶 = 𝐶 − {𝐴
!#};

(39) 𝑅 = 𝑅 ∪F; 𝑛++;
(40) } /∗ end while ∗/
(41)𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E) = 𝑛;
(42) return 𝑅;
END;

Algorithm 1: Conflict-free partition: 𝑐𝑓𝑝.

Journal of Applied Mathematics 7

a configuration should be contained in this configuration too;
that is, configuration should be downwards closed; otherwise
this event could not have happened at all.

That is, a subset 𝑋 is a (finite) configuration of E if and
only if it is finite, left-closed, and conflict-free.

The semantics of a prime event structure is defined as
the family of its configurations ordered by set inclusion.
Let 𝐶𝑜𝑛𝑓𝐹(E) denote the family of all configurations of
event structure E, which forms an ordered set (called prime
algebraic coherent partial order; see [16]) by inclusion; that is,
(𝐶𝑜𝑛𝑓𝐹(E), ⊆) is partial order.

Definition 12. A configuration 𝑋 ∈ Conf𝐹(E) is called
complete or (successfully) terminated if and only if ∀𝑑 ∈ 𝐸 :

𝑑 ∉ 𝑋 ⇒ ∃𝑒 ∈ 𝑋 : 𝑒♯𝑑. A configuration 𝑋 ∈ Conf𝐹(E) is
calledmaximal if and only if ∀𝑌 ∈ Conf𝐹(E) : 𝑋 ̸⊂ 𝑌.

For any prime event structure E, a configuration of E
is maximal if and only if it is complete. Obviously, for any
maximal configuration of a prime event structure, there
exists a corresponding maximal conflict-free substructure
set. An empty or initial configuration, denoted by 0Conf𝐹 ∈
𝐶𝑜𝑛𝑓𝐹(E), represents the initial state in which there is no
event happened.

In general, initial configuration and complete configu-
ration are also called trivial configurations, while others are
called nontrivial configurations.

Similarly, we have the following configuration definition
for conflict-free event structure.

Definition 13 (configuration of 𝑐𝑓𝐸𝑆). Let F =

(𝐸F, ⪯F, 0, 𝑙F) be a 𝑐𝑓𝐸𝑆 and let 𝑍 be a subset of 𝐸F (𝑍 ⊆

𝐸F); then 𝑍 is called a configuration ofF if and only if 𝑍 is
left-closed; that is, ∀𝑐, 𝑑 ∈ 𝐸F, 𝑑 ∈ 𝑍 ∧ 𝑐 ⪯ 𝑑 ⇒ 𝑐 ∈ 𝑍.

SinceF ∈ F , its event subset is evidently conflict-free.
Let 𝑐𝑓Conf𝐹(F) denote the family of all configurations

of conflict-free event structure F. Clearly, when F is the
𝑖th 𝑚𝑐𝑓𝐸𝑆: Emax

𝑖
(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁E) of prime event

structure E ∈ E, its family of all configurations is denoted
by𝑚𝑐𝑓Conf𝐹(Emax

𝑖
).

Definition 14 (subfamily of configurations). Let F ∈ be a
𝑐𝑓𝐸𝑆 and let Ω (0 ̸=Ω ⊆ 𝐸F) be a nonempty event subset; a
subfamily of configurations ofFwith respect to event subset
Ω is the family of configurations of its event substructure
F|
Ω
= (Ω, ≤F ∩ (Ω × Ω), 0, 𝑙

Ω
) restricted by event subset

Ω; that is, 𝑐𝑓subConf𝐹(F, Ω) ≜ 𝑐𝑓Conf𝐹((Ω, ≤F ∩ (Ω ×

Ω), 0, 𝑙
Ω
)).

Clearly, for any 𝑚𝑐𝑓𝐸𝑆Emax
𝑖

(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁E)

of event structure E ∈ E, its subfamily of configurations
with respect to event subset Ω (0 ̸=Ω ⊆ 𝐸

max
E,𝑖) is denoted

by 𝑚𝑐𝑓subConf𝐹(Emax
𝑖

, Ω) ≜ 𝑚𝑐𝑓Conf𝐹((Ω, ≤Emax
𝑖

∩ (Ω ×

Ω), 0, 𝑙
Ω
)) for convenience.

Lemma 15. The relation between the family of configurations
of a prime event structure and that of its 𝑚𝑐𝑓𝐸𝑆𝑠 can be
described by Conf𝐹(E) = ⋃

1≤𝑖≤𝑁E
(𝑚𝑐𝑓Conf𝐹(Emax

𝑖
).

Proof. To prove the result of this lemma, we will show that

⋃
1≤𝑖≤𝑁E

(𝑚𝑐𝑓Conf𝐹 (Emax
𝑖

)) ⊆ Conf𝐹 (E) ,

Conf𝐹 (E) ⊆ ⋃
1≤𝑖≤𝑁E

(𝑚𝑐𝑓Conf𝐹 (Emax
𝑖

))

(2)

both hold.

(1) “⊆”. For any configuration 𝑋 ∈ Conf𝐹(E), since 𝑋 is a
configuration, by definition, 𝑋 should be conflict-free. Thus
𝑋 should be the subset of one of the maximal configurations.
Otherwise, if 𝑋 is greater than any maximal configuration,
then 𝑋 must contain mutual conflicting events; that is
impossible.

Therefore, we have that there must exist a maximal con-
figuration which contains 𝑋. Such a maximal configuration
corresponds to a maximal conflict-free event subset: 𝐸Emax

𝑖

∈

(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁E); that is, 𝑋 must be the element of
𝑚𝑐𝑓Conf𝐹(Emax

𝑖
); that is, 𝑋 ∈ 𝑚𝑐𝑓Conf𝐹(Emax

𝑖
). We have

Conf𝐹(E) ⊆ ⋃
1≤𝑖≤𝑁E

(𝑚𝑐𝑓Conf𝐹(Emax
𝑖

)).

(2) “⊇”. For any configuration 𝑋 ∈ 𝑚𝑐𝑓Conf𝐹(Emax
𝑖

) (𝑖 ∈

N, 1 ≤ 𝑖 ≤ 𝑁E), of course, 𝑋 ∈ ⋃
1≤𝑖≤𝑁E

(𝑚𝑐𝑓Conf𝐹(Emax
𝑖

));
this implies 𝑋 ⊆ 𝐸Emax

𝑖

and 𝐸Emax
𝑖

⊆ 𝐸E; therefore, we get
𝑋 ⊆ 𝐸E. Since 𝑋 is a configuration, it is also a configuration
of E; that is,𝑋 ∈ 𝐶𝑜𝑛𝑓𝐹(E).

We have ∪
1≤𝑖≤𝑁E

(𝑚𝑐𝑓Conf𝐹(Emax
𝑖

)) ⊆ Conf𝐹(E).
Therefore, from (1) and (2), we have the result.

4.3. Domains of Configurations. In this section, we will
discuss the concept of domain from the point of view that
computation states are taken as such subsets and progress in
a computation is measured by the occurrence of more events.

Firstly, we will recall some related conceptions regarding
domain [16, 27].Then, some important factswill be discussed.

Definition 16 (least upper bound). LetD = (𝐷, ⊑) be a partial
order; an element 𝑑 ∈ 𝐷 is called least upper bound of subset
𝑋 (𝑋 ⊆ 𝐷), denoted by 𝑑 = ⊔𝑋, if and only if (∀𝑥 ∈ 𝑋 : 𝑥 ⊑

𝑑) ∧ (∀𝑑
󸀠 ∈ 𝐷 : (∀𝑥 ∈ 𝑋 : 𝑥 ⊑ 𝑑󸀠) ⇒ 𝑑 ⊑ 𝑑󸀠).

Definition 17 (coherent). Let D = (𝐷, ⊑) be a partial order;
two elements 𝑥, 𝑦 ∈ 𝐷 are called consistent (denoted by 𝑥 ↑

𝑦) if and only if ∃𝑧 ∈ 𝐷 : 𝑥 ⊑ 𝑧 ∧ 𝑦 ⊑ 𝑧; a subset 𝑋 ⊆ 𝐷 is
pairwise consistent if and only if any two of its element have
an upper bound in 𝐷; that is, ∀𝑥, 𝑦 ∈ 𝑋 : 𝑥 ↑ 𝑦; (𝐷, ⊑) is
called coherent if and only if every pairwise consistent subset
𝑋 (𝑋 ⊆ 𝐷) has a least upper bound ⊔𝑋.

The consistency relation of 𝑥 and 𝑦 is denoted by 𝑥 ↑ 𝑦;
conversely, inconsistency is denoted by 𝑥��↑𝑦.

Definition 18 (complete prime). A partial order D = (𝐷, ⊑);
an element is a complete prime if and only if for every finite
subset 𝑋 ⊆ 𝐷, if ⊔𝑋 exists and 𝑝 ⊆ ⊔𝑋 then there exists an
𝑥 ∈ 𝑋 such that 𝑝 ⊑ 𝑥 (i.e., 𝑝 ⊑ ⊔𝑋 ⇒ ∃𝑥 ∈ 𝑋.𝑝 ⊑ 𝑥).

Let 𝑃(𝐷) denote the set of complete prime of (𝐷, ⊑).

8 Journal of Applied Mathematics

Definition 19 (prime algebraic). A partial orderD = (𝐷, ⊑) is
called finitary if and only if ∀𝑝, 𝑑 ∈ 𝑃(𝐷) : {𝑑 ∈ 𝐷 | 𝑑 ⊑ 𝑝}

is finite. (𝐷, ⊑) is called prime algebraic if and only if 𝑃(𝐷) is
countable and ∀𝑑 ∈ 𝐷 : 𝑑 = ⊔{𝑝 ∈ 𝑃(𝐷) | 𝑝 ⊑ 𝑑}.

Namely, D is called prime algebraic if and only if, for
every element 𝑑 ∈ 𝐷, ⊔D

𝑑
exists (define ⊔D

𝑑
= {𝑝 ⊑ 𝑑 |

𝑝 is a complete prime}), and 𝑑 = ⊔D
𝑑
.

Definition 20 (domain). A coherent, prime algebraic, and
finitary partial order is called a Scott domain (or simply a
domain).

Definition 21. Let D = (𝐷, ⊑) be a coherent, finitary prime
algebraic domain. Define P

𝑟
[𝐷] = (𝑃(𝐷), ⪯, ♯), where 𝑃(𝐷)

consists of the complete primes ofD:

(1) ∀𝑝, 𝑝󸀠 ∈ 𝑃(𝐷) : 𝑝 ⪯ 𝑝󸀠 ⇔ 𝑝 ⊑ 𝑝󸀠;

(2) ∀𝑝, 𝑝󸀠 ∈ 𝑃(𝐷) : 𝑝♯𝑝󸀠 ⇔ 𝑝��↑𝑝
󸀠.

Definition 22. Let D = (𝐷, ⊑) be a prime algebraic complete
lattice. Define P

𝑟
[𝐷] = (𝑃(𝐷), ⪯), where 𝑃(𝐷) consists of

the complete primes ofD, ∀𝑝, 𝑝󸀠 ∈ 𝑃(𝐷) : 𝑝 ⪯ 𝑝󸀠 ⇔ 𝑝 ⊑ 𝑝
󸀠.

Theorem 23. Let E = (𝐸E, ⪯E, ♯E, 𝑙E) ∈ E; then
(Conf𝐹(E), ⊆) is a finitary coherent prime algebraic domain;
the complete primes are the set {𝑎 ∈ 𝐸E | 𝑎 ⪯ 𝑒, 𝑒 ∈ 𝐸E} (see
[25]).

Theorem 24. Let (𝐷, ⊑) be a finitary coherent prime algebraic
domain. Then, P

𝑟
[𝐷] = (𝑃(𝐷), ⪯, ♯) is a prime event

structure, with 𝜑 : (𝐷, ⊑) ≅ (Conf𝐹(P
𝑟
[𝐷]), ⊆) giving an

isomorphism of partial orders where 𝜑(𝑑) = {𝑝 ⊑ 𝑑 |

𝑝 is a complete prime} with inverse 𝜆 : Conf𝐹(P
𝑟
[𝐷]) →

(𝐷, ⊑) given by 𝜆(𝑥) = ⊔𝑥 (see [16]).

Evidently, event structures and coherent, finitary prime
algebraic domains are equivalent; one can be used to repre-
sent the other.

The following theorem describes the important property
of family of configurations of a prime event structure.

Theorem 25. For any nonempty 𝑚𝑐𝑓𝐸𝑆: Emax
𝑖

(𝑖 ∈ N, 1 ≤

𝑖 ≤ 𝑁E) of event structure E ∈ E, its family of configurations
(𝑚𝑐𝑓Conf𝐹(Emax

𝑖
), ⊆) is prime algebraic complete lattice. Its

complete primes are those elements of the form {𝑎 ∈ 𝐸Emax
𝑖

|

𝑎 ⪯ 𝑒, 𝑒 ∈ 𝐸Emax
𝑖

}.

Proof.The proof is straightforward.
Thus prime event structure and finitary coherent prime

algebraic domain are equivalent; this implies that there is a
one-to-one correspondence between a prime event structure
and its family of configurations; one can be used to represent
the other.

4.4. Weak Choice Composition. Theorem 23 describes an
important property between the domains of configurations
of prime event structures and the prime event structures
themselves.

We can obtain a full set of 𝑚𝑐𝑓𝐸𝑆𝑠 from a prime event
structure by applying 𝑐𝑓𝑝 operator over it. Conversely, given
a full set of 𝑚𝑐𝑓𝐸𝑆𝑠 of an event structure, we can certainly
recover the original event structure that generates this set of
𝑚𝑐𝑓𝐸𝑆𝑠 by some kind of composition operation.

Further, for any weak conflict set, we give the constraint
conditions, under which this weak conflict set can be com-
posed together and form a prime event structure that can
generate this set by conflict-free partition operation.

The following theorem discusses the constraint condi-
tions for composition.

Theorem 26 (necessary and sufficient condition for compo-
sition). For any weak conflict set WF𝑐𝑓𝑤

𝑛
= {F
𝑖
∈ F | 𝑖, 𝑛 ∈

N, 1 ≤ 𝑖 ≤ 𝑛}, if it satisfies the following conditions: (1) and
(2), then there exists a unique prime event structureE ∈ Eprime
that can generate this set by 𝑐𝑓𝑝 partition operation; that is,
WF𝑐𝑓𝑤
𝑛

= 𝑐𝑓𝑝(E).

(1) ∀F
𝑖
,F
𝑗
∈ WF𝑐𝑓𝑤

𝑛
: Ω = (𝐸F

𝑖

∩ 𝐸F
𝑗

) ∧ (Ω ̸= 0) ⇒

𝑐𝑓subConf𝐹(F
𝑖
, Ω) = 𝑐𝑓subConf𝐹(F

𝑗
, Ω) (𝑖, 𝑗 ∈

𝑁, 𝑖 ̸= 𝑗, 1 ≤ 𝑖 ≤ 𝑛).

(2) (⋃𝑛
𝑖=1

𝑐𝑓Conf𝐹(F
𝑖
), ⊆) is a finitary coherent prime

algebraic domain.

Proof. On one hand, the intersection of event sets of any
two 𝑐𝑓𝐸𝑆𝑠 is nonempty meaning that common events have
happened from both event structures. By definition, if these
events represent common global states in runs of a system
described by the same prime event structure with multiple
choices, they should behave identically. That is, their config-
urations with respect to the intersection of event set should
be identical.

In addition, from Theorems 23 and 24, the family of
configurations of a prime event structure ordered by set
inclusion should be a finitary coherent prime algebraic
domain.

Thus, we have the necessary condition for composition.
On the other hand, from Theorems 23 and 24, we have

that there is a one-to-one correspondence between a prime
event structure and its family of configurations. Given a valid
family of configurations for prime event structure, then there
should exist a corresponding prime event structure.

For any weak conflict set: WF𝑐𝑓𝑤
𝑛

= {F
𝑖
∈ F | 𝑖, 𝑛 ∈

, 1 ≤ 𝑖 ≤ 𝑛}, if all 𝑐𝑓𝐶𝑜𝑛𝑓𝐹(F
𝑖
) by joining can form a valid

family of configurations for a prime event structure, that is,
⋃
1≤𝑖≤𝑛

𝑐𝑓𝐶𝑜𝑛𝑓𝐹(F
𝑖
) forms a ordered by set inclusion, then

there should exist such a unique prime event structureE that
𝐶𝑜𝑛𝑓𝐹(E) = ⋃

1≤𝑖≤𝑛
𝑐𝑓𝐶𝑜𝑛𝑓𝐹(F

𝑖
).

Therefore, we get the necessary and sufficient condition
for composition.

Obviously, the set B𝑚𝑐𝑓𝐸𝑆(E) of a prime event structure
satisfies the above condition. Clearly, this implies that there
must exists a composition operation which can construct the
target event structureE from a weak conflict set that satisfies
the constraint conditions. We may as well let 𝑤𝑐𝑐 denote the
operator. Thus, we have the following definition.

Journal of Applied Mathematics 9

Definition 27 (weak choice composition (𝑤𝑐𝑐 operator)). Let
WF𝑐𝑓𝑤
𝑛

be a weak conflict set, which satisfies necessary and
sufficient conditions for composition; an operator 𝑤𝑐𝑐 is
called weak choice composition operator if and only if the
result event structureR = 𝑤𝑐𝑐(WF𝑐𝑓𝑤

𝑛
) andR satisfies the

following:

(1) Conf𝐹(𝑅) = (⋃𝑛
𝑖=1

𝑐𝑓Conf𝐹(F
𝑖
), ⊆);

(2) WF𝑐𝑓𝑤
𝑛

= 𝑐𝑓𝑝(𝑅).

The following theorem states that the operator 𝑤𝑐𝑐 and
𝑐𝑓𝑝 are mutually inverse for a prime event structure.

Theorem 28. For any E ∈ E,E = 𝑤𝑐𝑐(𝑐𝑓𝑝(E)) holds.

Proof.The proof is straightforward.
Obviously, it is not difficult to derive an algorithm for

weak conflict composition operator from Definition 27 and
Theorem 28.

5. Slicing Reduction

In this section, we will discuss slicing reduction technique
for partial order trace or prime event structure. Slicing is
often taken as an effective abstract technique to combat
the state explosion problem. A slicing algorithm for event
structure with respect to predicates in a subset of temporal
logic formulas is studied. Specially, we focus on statically
analyzing rather than online detecting over event structure
model.

First of all, we will retrospect the classical notion of
computation slicing for partial order traces. Then, we will
extend the idea from partial order traces to prime event
structures with conflict relations. Additionally, all related
definitions and theorems [18, 19, 28] for our theory will be
discussed.

5.1. Partial Order Trace Slicing. Computation slicing was
introduced in [7] as an abstraction technique for analyzing
partial order traces of distributed programs or distributed
computations.

Generally, for classical program slicing, programs are
sliced with respect to a slicing criterion that is an interested
point for analyzing. In static program slicing, for example, “a
program line number” can be taken as a valid slicing criterion.
Thus, in order to compute a slice, we need to firstly define the
slicing criterion.

Intuitively, a slice of a trace with respect to a temporal
logic specification or a predicate (slicing criterion) 𝜑 is a
subtrace that contains all the states of the trace that satisfy
𝜑. A slice contains all the states that satisfy 𝜑 such that it can
be computed efficiently and is often much smaller than the
original model.

We can use directed graphs to model partial order
(execution) traces (POTs, for short) as well as slices. Thus, a
notion named graph ideal (or order ideal) of directed graph
[29] is introduced to specify partial order traces and slices
pictorially. Formally, its definition is given as follows.

e1 e1e2 e2

e3 e3e4 e4

(1) (2)

⊥ ⊤

Figure 1: Partial order trace and its directed graph representation.

Definition 29 (order ideal). Given a poset (𝑋, ≤), (≤ denotes
an order relation) a subset 𝑆 of𝑋 is an order ideal if it satisfies
∀𝑥, 𝑦 : 𝑥, 𝑦 ∈ 𝑋 : (𝑥 ∈ 𝑆) ∧ (𝑦 ≤ 𝑥) ⇒ (𝑦 ∈ 𝑆).

Definition 30 (graph ideal). Given a directed graph 𝐺 =

(𝑉, Γ), let 𝑉(𝐺) and Γ(𝐺) denote the set of vertices with event
labels and directed edges, respectively. A subgraph 𝐻 of 𝐺
is a graph ideal if it satisfies ∀𝑢, V ∈ 𝑉(𝐺),𝐻 ⊆ 𝑉(𝐺), V ∈

𝐻 ∧ (𝑢, V) ∈ Γ(𝐺) ⇒ 𝑢 ∈ 𝐻.

It is more convenient to use directed graphs to represent
partially ordered sets and prime event structures for slicing
computation. It satisfies the following.

(1) For any event 𝑒 and 𝑓 of E, if 𝑒 ⪯ 𝑓, then there is
directed edge from the vertex V

𝑒
labelled with 𝑒 to the

vertex V
𝑓
labelled with 𝑓.

(2) For any event 𝑒 and 𝑓 of E, if 𝑒♯𝑓, then there is dash
line between the vertex V

𝑒
labelled with 𝑒 to the vertex

V
𝑓
labelled with 𝑓.

For example, as shown in Figure 1, a partial order trace or
a𝑚𝑐𝑓𝐸𝑆 is demonstrated pictorially.The corresponding event
structure for Figure 1 is as follows.

(i) E = (𝐸E, ⪯E, ♯E, 𝑙E), (𝐴𝑐𝑡 = {𝑎, 𝑏, 𝑐, 𝑑}).

(1) 𝐸E = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
}.

(2) ⪯E = {𝑒
1
⪯ 𝑒
2
, 𝑒
1
⪯ 𝑒
4
, 𝑒
3
⪯ 𝑒
4
}.

(3) 𝑙(𝑒
1
) = 𝑎, 𝑙(𝑒

2
) = 𝑏, 𝑙(𝑒

3
) = 𝑐, 𝑙(𝑒

4
) = 𝑑.

(4) ♯E = 0.

In addition, when attempting to construct the graph
representation of 𝑚𝑐𝑓𝐸𝑆, as Figure 1 shows, two specific
vertexes ⊤ and ⊥ will be added as initial state and terminal
state corresponding to initial configuration and maximal
configuration, respectively.

A subset of elements forms an order ideal if whenever
an element is contained in the subset then all its preceding
elements are also contained in the subset. Intuitively, order
ideals or left-closed subsets can be graphically represented
by graph ideals. Generally, independency relation will not be
represented explicitly. It is not difficult to have that partial
order trace is only a special case of prime event structure with
no conflict relations. Here, graph ideal is a notion equivalent
to the configuration of an event structure. Empty set and
the set of all vertices are called trivial ideal. Similarly, initial
configuration and complete configuration are also called
trivial configurations.

10 Journal of Applied Mathematics

Definition 31 (predicate on configuration). Intuitively, a logic
formula or predicate is a Boolean-valued function defined on
the set of configurations: 𝜑 : Conf𝐹(E) → {0, 1}. It actually
represents a subset of configurations in which the Boolean
function evaluates to 1.

The predicate detection problem is to decide whether the
initial configuration of an event structure satisfies a predicate.
More formally, we have the following definition.

Definition 32 (predicate detection). For any prime event
structure E and any predicate 𝜑, predicate detection is to
decide whether Conf𝐹(E), {⊥} ⊨ 𝜑 holds or not.

Predicates are used to specify system behaviors and
properties such as safety and liveness. Properties expressed by
a CTL (computational tree logic, introduced in [30]) formula
are beyond the scope of this paper. For evaluating the value
of a predicate efficiently, various predicate classes [28] such as
conjunctive, stable, observer-independent, linear, relational,
and nontemporal regular [7] predicates have been defined.

Generally, predicate on configurations will act as the
slicing criterion for POTs slicing.

Definition 33 (slice of 𝑚𝑐𝑓𝐸𝑆(POTs)). A slice of a
𝑚𝑐𝑓𝐸𝑆(POTs): Emax

𝑖
(𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁E) of prime

event structure E with respect to a formula 𝜑, denoted by
𝑚𝑐𝑓𝐸𝑆slice(Emax

𝑖
, 𝜑), is such an event structure that satisfies

the following.
(i) Its family of configurations contains all the configura-

tions that satisfy 𝜑.
(ii) Its family of configurations has the least number of

configurations and still forms a sublattice.

This formal definition is derived from computation slice
notion [7] given by Garg and Mittal. Meanwhile, existence
and uniqueness of the 𝑚𝑐𝑓𝐸𝑆 slice have also been discussed;
that is, the following theorem holds.

Theorem 34. For any Emax
𝑖

(𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑁E) of a prime
event structure and any predicate 𝜑, the slice of with respect to
predicate 𝜑, that is,𝑚𝑐𝑓𝐸𝑆slice(Emax

𝑖
, 𝜑) exists and is unique.

Proof.The proof is straightforward; see [8, 20, 31].
In general, the family of configurations for a 𝑚𝑐𝑓𝐸𝑆

forms a distributed lattice, and its slice with respect to a
predicate is a sublattice. Sometimes a slice may contain those
configurations that do not satisfy the predicate for completing
sublattice.

In the next section, we will discuss the slicing definition
and model for prime event structure.

5.2. Sliced Model over Event Structure. Generally, predicate
on configurations acts as the slicing criterion for prime
event structure slicing. Temporal regular predicate, such
as a regular subset of CTL called RCTL [7, 8, 29], which
contains four temporal operators EF, AG, EG, and EX[j], and
nontemporal regular predicates both can also be taken as the
slicing criterions.

Compared with the definition of slice of𝑚𝑐𝑓𝐸𝑆, we have
a similar case for prime event structure.

Definition 35 (slice of prime event structure). A slice of a
prime event structure with respect to a formula 𝜑, denoted
by 𝑆𝑙𝑖𝑐𝑒𝐸𝑆(E, 𝜑), is such an event structure that satisfies the
following.

(i) Its family of configurations contains all the configura-
tions that satisfy 𝜑.

(ii) Its family of configurations has the least number of
configurations.

Generally, a slice may contain configurations that do not
satisfy the given predicate.The slice of an event structure with
respect to a predicate is called lean [32] if every configuration
of the slice satisfies the predicate.

Theorem 36. For any E ∈ E and any predicate 𝜑,
Slice𝐸𝑆(E, 𝜑) exists and is unique, and Slice𝐸𝑆(E, 𝜑) =

𝑤𝑐𝑐(𝑚𝑐𝑓𝐸𝑆slice(𝑐𝑓𝑝(E), 𝜑)) holds.

Proof. (1) Existence and Uniqueness. From Theorem 34, we
have that, for any Emax

𝑖
(𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑁E) of a prime

event structure E and any predicate 𝜑, its slice with respect
to predicate 𝜑 exists and is unique.

For any 𝑚𝑐𝑓𝐸𝑆, the family of configuration of
𝑚𝑐𝑓𝐸𝑆slice(Emax

𝑖
, 𝜑) is a distributed lattice and is unique.

Further, let ⋃
C
E = ⋃

1≤𝑖≤𝑁E
(𝑚𝑐𝑓Conf(𝑚𝑐𝑓𝐸𝑆𝑠𝑙𝑖𝑐𝑒)

((Emax
𝑖

, 𝜑))); ⋃C
E is also unique and (⋃

C
E, ⊆) is a finitary

coherent prime algebraic domain.
Next, we show that the slicing operation will keep the

second part of necessary and sufficient condition for compo-
sition.

For any Emax
𝑖

and Emax
𝑗

(𝑗 ̸= 𝑖), if 𝐸Emax
𝑖

∩ 𝐸Emax
𝑗

=

𝐷 and 𝐷 ̸= 0, we then have that 𝑐𝑓subConf𝐹(Emax
𝑖

, 𝐷) =

𝑐𝑓subConf𝐹(Emax
𝑗

, 𝐷); that is, for any nonempty event subset
𝐷󸀠 (𝐷󸀠 ⊆ 𝐷) and any predicate 𝜑, if any configuration of
𝐷󸀠 satisfies 𝜑, that is, 𝐷󸀠 is the common part of both slices
of Emax
𝑖

and Emax
𝑗

. We still get that 𝑐𝑓subConf𝐹(Emax
𝑖

, 𝐷󸀠) =

𝑐𝑓subConf𝐹(Emax
𝑗

, 𝐷󸀠).
This means that, for any two𝑚𝑐𝑓𝐸𝑆𝑠, if their intersection

is nonempty, nomatter which part of the intersection belongs
to the slice, after slicing, the necessary and sufficient condi-
tion for composition will be still satisfied.

Thus, we get that ⋃C
E is a valid family of configurations

for prime event structures; there should exist such a unique
prime event structure 𝑅 ∈ E that satisfies Conf𝐹(𝑅) = ⋃

C
E.

We can get 𝑅 by applying 𝑤𝑐𝑐 to the corresponding event
structures of⋃C

E.
Therefore, the existence and uniqueness for event struc-

ture slicing have been established.We will then prove that the
prime event structure 𝑅 is the ultimate result of slicing.

(2) Satisfactoriness and Minimality. On the one hand, for any
configuration 𝑋 of event structure E that makes predicate
𝜑 hold, that is, 𝑋 ∈ Conf𝐹(Slice𝐸𝑆(E, 𝜑)), there must
be a 𝑚𝑐𝑓𝐸𝑆: Emax

𝑖
so that 𝑋 ∈ Conf𝐹(Slice𝐸𝑆(E, 𝜑));

Journal of Applied Mathematics 11

let C
𝑖
= 𝑚𝑐𝑓Conf𝐹(𝑚𝑐𝑓𝐸𝑆slice(Emax

𝑗
, 𝜑)), because C

𝑖
con-

tains all the configurations of event structureEmax
𝑗

that make
predicate 𝜑 hold. We have that 𝑋 must be contained by C

𝑖
;

that is,𝑋 ∈ C
𝑖
.

We get𝑋 ∈ Conf𝐹(Slice𝐸𝑆(E, 𝜑)) ⇒ 𝑋 ∈ ⋃
C
E.

Further, we get Conf𝐹(Slice𝐸𝑆(E, 𝜑)) ⊆ ⋃C
E.

On the other hand, for any configuration 𝑋 ∈ ⋃
C
E, we

get 𝑋 ∈ Conf𝐹(E) and 𝑋 can make predicate 𝜑 hold; then
𝑋 ∈ Conf𝐹(Slice𝐸𝑆(E))must hold. Thus, we get 𝑋 ∈ ⋃

C
E ⇒

𝑋 ∈ Conf𝐹(Slice𝐸𝑆(E, 𝜑)).
That is,⋃C

E ⊆ Conf𝐹(Slice𝐸𝑆(E, 𝜑)).
Therefore, we have⋃C

E = Conf𝐹(Slice𝐸𝑆(E, 𝜑)).
Thus, we get that Slice𝐸𝑆(E, 𝜑) = 𝑅.
Moreover, by the definition of slice of maximal conflict-

free event substructure, we have that, for anyEmax
𝑖

(𝑖 ∈ N, 1 ≤
𝑖 ≤ 𝑁E), the corresponding 𝑚𝑐𝑓𝐸𝑆slice(Emax

𝑖
, 𝜑) contains

the least number of configurations that satisfy the given
predicate 𝜑; we then have that ⋃C

E = Conf𝐹(Slice𝐸𝑆(E, 𝜑))
also contains the least number of configurations satisfying
this specification. Thus, satisfactoriness and minimality both
hold.

Consequently, fromboth (1) and (2), we conclude that the
theorem holds.

5.3. Slicing Reduction Algorithm. In this section, we will
present an approach for event structure slice computing. The
slicing algorithm for a prime event structure or its 𝑚𝑐𝑓𝐸𝑆𝑠
with respect to regular predicates is based on theAdding Edges
Theorem (see [8, 20, 31, 33]).

In fact, by the following theorem, these lattices will never
be actually constructed in the slicing process for efficiency.

The configurations do not satisfy the predicate but still
can be included to complete the sublattice.

Given a distributive lattice𝐿 generated by a graph𝐺, every
sublattice of𝐿 can be generated by a graph obtained by adding
edges to 𝐺. The following theorem holds.

Theorem 37 (Adding Edges Theorem). Let 𝐿󸀠 be any sublat-
tice of a finite distributive lattice 𝐿 generated by the directed
graph 𝐺. Then, there exists a graph 𝐺󸀠 that can be obtained by
adding edges to (removing vertices from) 𝐺 that generates 𝐿󸀠.

For any prime event structure, we can get the slices of its
𝑚𝑐𝑓𝐸𝑆𝑠 by applying the Adding EdgesTheorem.These slices
can be composed by𝑤𝑐𝑐 to form a new prime event structure
which is the target slice of the original event structure. This
approach is less general but results in more efficient detection
algorithms for a special class of predicates. Note that we will
never actually construct the lattice or family of configurations
of the event structure due to efficiency.

Garg and Mittal have presented an efficient algorithm
slice(𝐺, 𝜑) [8, 28] based on graphical representation 𝐺 to
compute the slice of POTs (or conflict-free event structures)
with respect to a predicate 𝜑. The algorithm adopts the
principle of the Adding Edges Theorem and can produce
a sliced graph representation. Especially, we have 𝐺 =

slice(𝐺, true) for predicate 𝜑 = true itself.

We extend the idea and algorithm tomore generalmodels
and provide an algorithm for slicing the 𝑚𝑐𝑓𝐸𝑆𝑠 and the
original prime event structure. Thus, we have Algorithm 2 to
compute the slice of conflict-free event structure.

For a prime event structure with conflict relations, we
have to apply 𝑐𝑓𝑝 operator to get 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E) maximal
conflict-free event substructures and each of them can be
sliced by 𝑚𝑐𝑓𝐸𝑆slice. Then, the set consisting of each sliced
result can be composed together by 𝑤𝑐𝑐 to construct a new
event structure. This new event structure will be the sliced
result.

Thus, we can derive Algorithm 3 to compute the slice of a
prime event structure.

Because the set of the slices of𝑚𝑐𝑓𝐸𝑆𝑠mayno longer keep
theweak conflict relationwhich exists in the original𝑚𝑐𝑓𝐸𝑆𝑠.

Therefore, after 𝑚𝑐𝑓𝐸𝑆slice(𝑚𝑐𝑓𝐸𝑆(E), 𝜑) operation is
performed, the relation among these slices can be one of the
following cases:

(1) strong conflict;
(2) conflict-free;
(3) weak conflict;
(4) hybrid of weak conflict and conflict-free;
(5) hybrid of weak conflict and strong conflict;
(6) hybrid of strong conflict, weak conflict, and conflict-

free.

In case of (1), (3), and (5), the operation 𝑤𝑐𝑐 can be
performed directly. But in case of (2), (4), and (6), we have to
add some events in order to make the result set of slices still
be able to form a valid weak conflict set at the end of process.

For temporal predicates [8], such as 𝐸𝐹, 𝐸𝐺 and 𝐴𝐺

can be computed by slice(𝐺, 𝐸𝐹(𝜑)), slice(𝐺, 𝐸𝐺(𝜑)), and
slice(𝐺, 𝐴𝐺(𝜑)), respectively. From the definition of a slice,
we know that every configuration of a slice slice𝐸𝑆(E, 𝜑) is
also a configuration of E.

Clearly, the following two corollaries hold.

Corollary 38. (1) For any prime event structure E ∈

E, Conf𝐹(slice𝐸𝑆(E, 𝐸𝐺(𝜑))) ⊆ Conf𝐹(slice𝐸𝑆(E, 𝜑)) ⊆

Conf𝐹(E).
Similarly for 𝐴𝐺, the following holds.
(2) For any prime event structure E ∈ E,

Conf𝐹(slice𝐸𝑆(E, 𝐴𝐺(𝜑))) ⊆ Conf𝐹(slice𝐸𝑆(E, 𝜑)) ⊆

Conf𝐹(E).

Corollary 39. For any prime event structure E ∈ E,
Conf𝐹(slice𝐸𝑆(E, 𝐸𝐹(𝜑))) ⊆ Conf𝐹(E).

5.4. Case Study for Slicing Reduction. In this section, we will
give an example to illustrate the prime event structure slice
notion and its computing process.

Consider a prime event structure:E = (𝐸E, ≤E, ♯E, 𝑙E), as
shown in Figure 2. The components are described as follows:

(1) event set: 𝐸E = {𝑒
𝑎
, 𝑒
𝑏
, 𝑒
𝑐
, 𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
};

(2) conflict relation: #E = {𝑒
𝑏
#𝑒
1
};

12 Journal of Applied Mathematics

Input:
(1) a conflict-free event structure:𝑚𝑐𝑓𝐸𝑆(E),
(2) a regular predicate: 𝜑

Output: the slice of𝑚𝑐𝑓𝐸𝑆: Emax
𝑖 𝑠𝑙𝑖𝑐𝑒

BEGIN
(1) 𝐾 = 0;
(2) generate graph representation 𝐺 for Emax

𝑖
;

(3) computing slice: 𝐾 = 𝑠𝑙𝑖𝑐𝑒(𝐺, 𝜑);
(4) generate event structure Emax

𝑖 𝑠𝑙𝑖𝑐𝑒
from graph representation 𝐾;

(5) return Emax
𝑖 𝑠𝑙𝑖𝑐𝑒

;
END

Algorithm 2: Slicing algorithm:𝑚𝑐𝑓𝐸𝑆𝑠𝑙𝑖𝑐𝑒(𝑚𝑐𝑓𝐸𝑆(E), 𝜑).

Input:
(1) an event structure:E
(2) a regular predicate: 𝜑

Output: the slice: E
𝑠𝑙𝑖𝑐𝑒

BEGIN
(1) 𝑖𝑛𝑡 𝑛 = 0, 𝐶 = 0;
(2) R = 0;
(3) B𝑚𝑐𝑓𝐸𝑆(E) = 𝑐𝑓𝑝(E)

(4) 𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E);
(5) for (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛; 𝑖++) {
(6) get the 𝑖th 𝑚𝑐𝑓𝐸𝑆: Emax

𝑖
fromB𝑚𝑐𝑓𝐸𝑆;

(7) 𝐶 = 𝐶 ∪ 𝑚𝑐𝑓𝐸𝑆𝑠𝑙𝑖𝑐𝑒(Emax
𝑖

, 𝜑);
(8) }

(9) if (𝐶 ̸= 0){
(10) R = 𝑤𝑐𝑐(𝐶);
(11) }
(12) returnR;

END

Algorithm 3: Slicing algorithm: 𝑠𝑙𝑖𝑐𝑒𝐸𝑆(E, 𝜑).

(3) casual relation: ⪯E = {𝑒
𝑏
⪯ 𝑒
𝑎
, 𝑒
𝑐
⪯ 𝑒
𝑎
, 𝑒
1
⪯ 𝑒
2
, 𝑒
1
⪯

𝑒
4
, 𝑒
3
⪯ 𝑒
4
, 𝑒
𝑐
⪯ 𝑒
3
};

(4) action labels: 𝑙E(𝑒𝑎) = 𝑎, 𝑙E(𝑒𝑏) = 𝑏, 𝑙E(𝑒𝑐) =

𝑐,𝑙E(𝑒1) = 𝑎1, 𝑙E(𝑒2) = 𝑎2, 𝑙E(𝑒3) = 𝑎3, 𝑙E(𝑒4) = 𝑎4;
(5) action functions:

(i) action(𝑎
1
) : {𝑥 = 𝑥 + 1};

(ii) action(𝑎
2
) : {𝑥 = 𝑥 + 3};

(iii) action(𝑎
3
) : {𝑦 = 𝑦 + 3};

(iv) action(𝑎
4
) : {𝑦 = 𝑦 + 2};

(v) action(𝑎) : {𝑧 = 𝑧 + 2};
(vi) action(𝑏) : {𝑧 = 𝑧 + 1};
(vii) action(𝑐) : {𝑦 = 𝑦 − 1};
(viii) initValue : {𝑥 = 1; 𝑦 = 1; 𝑧 = 0};

(6) slice criterion: {𝜑 = −2 ≤ (𝑦 − 𝑥 + 𝑧) < 2}.

In this example, the system global states will be updated
after an action function executes. Figure 2 depicts all the

ea

ec

eb

e1

e3

e2

e4

ℰ

Figure 2: A Prime event structure E.

events conflict (for simplicity, only immediate conflict rela-
tion is shown) and casual relation. Figure 3 shows its corre-
sponding family of configurations.

There is one conflict relation between event 𝑏 and 𝑒
1
; due

to the conflict inheritance property of prime event structures,
we have 𝑒

𝑏
♯𝑒
1
, 𝑒
𝑏
♯𝑒
2
, 𝑒
𝑏
♯𝑒
4
and 𝑒
𝑎
♯𝑒
1
, 𝑒
𝑎
♯𝑒
2
, 𝑒
𝑎
♯𝑒
4
; that is, each

of {𝑒
𝑎
, 𝑒
𝑏
} is in conflict with each of {𝑒

1
, 𝑒
2
, 𝑒
4
}. Obviously,

according to this conflict relation, apply 𝑐𝑓𝑝 operation to the
prime event structure E and we get that this event structure
has only two𝑚𝑐𝑓𝐸𝑆𝑠: they areE

1
= ({𝑒
𝑎
, 𝑒
𝑏
, 𝑒
𝑐
, 𝑒
3
}, ≤E

1

, 0, 𝑙E
1

)

and E
2
= ({𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
𝑐
}, ≤E

2

, 0, 𝑙E
2

) depicted by Figures

Journal of Applied Mathematics 13

{e1, e2, ec, e3, e4} [5, 5, 0]

{e1, e2, ec, e3} [5, 3, 0] {e1, ec, e3, e4}[2, 5, 0] {ea, eb, ec, e3}[1, 3, 3]

{e1, e2, ec}[5, 0, 0] [2, 3, 0] {e1, ec, e3} {ea, ec, eb} [1, 0, 3] {ec, e3, eb}
[1, 3, 1]

[5, 1, 0] {e1, e2} {e1, ec} [2, 0, 0] {ec, e3}[1, 3, 0] {ec, eb} [1, 0, 1]

[2, 1, 0] {e1} [1, 0, 0] {ec} [1, 0, 0] {eb}

[1, 1, 0]0

ConfF(ℰ)

Figure 3: Family of configurations of E.

ea

ec

eb
e3 ec

e1

e3

e2

e4

(1)ℰ1 (2)ℰ2

Figure 4:𝑚𝑐𝑓𝐸𝑆𝑠 of E: E
1
and E

2
.

{ea, eb, ec, e3}

{ea, ec, eb} {ec, e3, eb}

{ec, eb} {ec, e3}

{eb} {ec}

{e1, e2, ec, e3, e4}

{e1, e2, ec, e3} {e1, ec, e3, e4}

{e1, e2, ec} {e1, ec, e3}

{e1, e2} {e1, ec} {ec, e3}

{e1} {ec}

0 0

(1)mcfConfF(ℰ1) (2)mcfConfF(ℰ2)

Figure 5: Families of configurations of𝑚𝑐𝑓𝐸𝑆𝑠(E
1
and E

2
).

4(1) and 4(2), respectively, and Figures 5(1) and 5(2) show
their corresponding families of configurations.

The configurations that satisfy the predicate are labelled
with frames. In fact, these configurations are only used to
describe relationship between original event structure and
its slice graphically; in general, they will never be actually
constructed in the slicing algorithm for efficiency.

The families of configurations of the slices of E
1
and E

2

with respect to the predicate {𝜑 = −2 ≤ (𝑦 − 𝑥 + 𝑧) < 2} are
shown in Figures 6(1) and 6(2), respectively. It can be verified
that both 𝑚𝑐𝑓Conf(E

1
) and 𝑚𝑐𝑓Conf(E

2
) form distributed

lattices.

{ea, ec, eb}

{ec, eb}

{eb} {ec}

0

{e1, e2, ec, e3, e4}

{e1, e2, ec, e3}

{e1, ec, e3}

{e1, ec}

{e1} {ec}

0

(1) submcfConfF(ℰ1) (2) submcfConfF(ℰ2)

Figure 6: Subfamilies of configurations of the slices.

{ea, ec, eb}

{ec, eb}

{eb}

0

{e1, e2, ec, e3, e4}

{e1, e2, ec, e3}

{e1, ec, e3}

{e1, ec}

{e1} {ec}

subConfF(ℰ)

Figure 7: Subfamily of configurations of the slice.

These configurations of the slices are exactly the ones
that satisfy the given predicate in the family of configurations
of the original event structure. Figure 7 shows the family of
configurations constructed by applying ∪ operation to the
families of configurations of all slices.

14 Journal of Applied Mathematics

Finally, in Figure 8, the slice of E
1
and the slice of E

2
are

combined into the slice ofE by 𝑤𝑐𝑐 operator, as expected.
To illustrate the benefit of predicate detection by using

slicing reduction as shown in above example, consider the
states in Figure 3 again.

Let {𝜑 = −2 ≤ (𝑦 − 𝑥 + 𝑧) < 2} be the predicate to
be checked, and suppose we want to detect whether 𝐸𝐹(𝜑)
holds or not; that is, there exists a global state that satisfies 𝜑.
Without slicing reduction applied, we are forced to examine
all global states, 15 states in total as shown in Figure 3, to
decide whether the traces satisfy the predicate.

Alternatively, we can compute the slice via slicing reduc-
tion technique with respect to the regular temporal predicate
and use this slice for predicate detection.

For this purpose, firstly, we compute the slice with respect
to 𝜑 and the slice is shown in Figure 7.

Finally, we check whether the initial state is the same as
the initial state of the slice and decide whether the predicate
is satisfied or not.

The slice contains only 9 states and has much fewer states
than the original traces itself. Generally, it is exponentially
smaller in many cases and this can result in substantial
savings.

6. Symmetry Reduction

Finite state systems frequently exhibit symmetry which can
be found in memories, caches, register files, bus protocols,
and anything that has a lot of replicated structures.The use of
symmetry to reduce state space has been investigated widely
by researchers [2, 3, 15, 22, 23].

In this section, we will discuss symmetry properties
over prime event structures. Symmetry in an event structure
implies the existence of nontrivial permutation groups that
preserve both the events labelling and all relations of causal
dependence and independence that exist between events. We
start by introducing some notions of group theory.

6.1. Automorphism Groups. We know that the set of all
permutation on a set forms a permutation group under
functional composition. A permutation group over a finite set
𝑋 consists of bijections, 𝑋 → 𝑋, and their compositions as
the binary operations.

Definition 40 (permutation group). Let 𝑋 be a finite set; a
permutation of 𝑋 is a bijection from 𝑋 to itself. Then, 𝑆

𝑋
:=

{𝑓 : 𝑋 → 𝑋 | 𝑓 𝑖𝑠 𝑎𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛}; that is, the family of all
the permutations of the set 𝑋, denoted by 𝑆

𝑋
, forms a group

called the symmetric group on 𝑋. For any bijection 𝑓 ∈ 𝑆
𝑋
is

called a permutation.Any subgroup of is called a permutation
group on𝑋.

Obviously, a symmetric group is a special permutation
group. A permutation group over a set has good properties;
specially, it can induce an equivalence relation. The equiv-
alence classes of an equivalence relation on a set can form
a partition of this set. Thus, for a set 𝑋, if there exists a
permutation group on the set 𝑋, the permutation group can

induce a partition of the set 𝑋. We can easily check this
property.

In this paper, permutation groups are used to partition the
set of events in an event structure so that we use equivalence
classes (orbits) of events to investigate symmetry in this event
structure.

Definition 41 (automorphism). Let E = (𝐸, ⪯, ♯, 𝑙) ∈ E and
let 𝐺 be a permutation group on the event set 𝐸 of E. A
permutation 𝑓 ∈ 𝐺 is said to be an automorphism of 𝐸 if and
only if 𝑓 satisfies the following conditions:

(1) ∀𝑒
1
, 𝑒
2
∈ 𝐸 : 𝑒

1
⪯ 𝑒
2
⇒ 𝑓(𝑒

1
) ⪯ 𝑓(𝑒

2
), 𝑒
1
♯𝑒
2
⇒

𝑓(𝑒
1
)♯𝑓(𝑒
2
);

(2) 𝑙(𝑒
1
) = 𝑙(𝑓(𝑒

2
)).

Definition 42 (automorphism group). A permutation group
𝐺 is called an automorphism group for the event structure
E (E = (𝐸, ⪯, ♯, 𝑙) ∈ E) if and only if every permutation
𝑓 ∈ 𝐺 is an automorphism of E.

Notice that every 𝑓 ∈ 𝐺 has an inverse, which is also an
automorphism; our definition of an automorphism group can
prove that𝑓 ∈ 𝐺 is an automorphism for an event structureE
if and only if 𝑓 satisfies the following condition: ∀𝑒

1
, 𝑒
2
∈ 𝐸 :

𝑒
1
⪯ 𝑒
2
⇔ 𝑓(𝑒

1
) ⪯ 𝑓(𝑒

2
); 𝑒
1
♯𝑒
2
⇔ 𝑓(𝑒

1
)♯𝑓(𝑒
2
); and 𝑙(𝑒

1
) =

𝑙(𝑓(𝑒
2
)).

6.2. Quotient Model of an Event Structure. The symmetric
quotient model for an event structure is a structural reduced
model.

Let 𝐺 be a permutation group acting on the set 𝐸 and 𝑒 ∈
𝐸; then the orbit of 𝑒 is the set 𝜃(𝑒) = {𝑑 | ∃𝑔 ∈ 𝐺 : 𝑓(𝑒) = 𝑑}.
From each orbit 𝜃(𝑒) we pick a representative that is called
rep(𝜃(𝑒)). Intuitively, the quotient model can be obtained by
collapsing all the events to orbits.

Definition 43 (symmetric quotient model). Let E = (𝐸, ⪯

, ♯, 𝑙) ∈ E and let 𝐺 be an automorphism group on the event
set 𝐸 of the event structure E. The symmetric quotient model
E
𝐺
= (𝐸
𝐺
, ⪯
𝐺
, ♯
𝐺
, 𝑙
𝐺
) is defined as follows.

(1) The event set is 𝐸
𝐺
= {𝜃(𝑒) | 𝑒 ∈ 𝐸}, the set of orbits

of the events in 𝐸.
(2) The causality relation ⪯

𝐺
is given by ⪯

𝐺
=

{(𝜃(𝑒
1
), 𝜃(𝑒
2
)) | (𝑒

1
, 𝑒
2
) ∈⪯} and the inverse of ⪯

𝐺
is

denoted by ⪰
𝐺
.

(3) The conflict relation ♯
𝐺
is given by ♯

𝐺
= 𝐸
𝐺
× 𝐸
𝐺
\

(≺
𝐺
∪ ≻
𝐺
∪ co

𝐺
∪ {(𝑒󸀠󸀠, 𝑒󸀠󸀠) | 𝑒󸀠󸀠 ∈ 𝐸

𝐺
}), where co

𝐺
=

{(𝜃(𝑒
1
), 𝜃(𝑒
2
)) | co = 𝐸 × 𝐸(⪯ ∪ ⪰ ∪♯ ∪ (𝑒󸀠, 𝑒󸀠) | 𝑒󸀠 ∈

𝐸), (𝑒
1
, 𝑒
2
) ∈ 𝐸}.

(4) The labelling function 𝑙
𝐺

is given by 𝑙
𝐺
(𝜃(𝑒)) =

𝑙(rep(𝜃(𝑒))).

An automorphism group 𝐺 of an event structure E =

(𝐸, ⪯, ♯, 𝑙) is an invariance group for an action 𝑎 ∈ 𝐴𝑐𝑡 if and
only if the following condition holds: ∀𝑓 ∈ 𝐺, 𝑒 ∈ 𝐸 : 𝑙(𝜃) =

𝑎 ⇔ 𝑙(𝑓(𝜃)) = 𝑎.

Journal of Applied Mathematics 15

We then say that 𝑎 is an invariant under𝐺.Thus, if𝐺 is an
invariance group for all actions in the action set Act ofE and
E
𝐺
is the symmetric quotient model for E; we can directly

have ∀𝑎 ∈ Act, 𝑒 ∈ 𝐸 : 𝑙(𝜃) ⇔ 𝑙
𝐺
(𝜃(𝑒)) = 𝑙(rep(𝜃(𝑒)) = 𝑎.

From the above definition, we have that the symmetric
quotient model is still a prime event structure and preserves
all the causal dependence and independence relations of the
original, but the conflict relations are reduced.Note that every
two different events in an orbit are exactly in conflict with
each other. The quotient model can preserve all the behavior
of the original one.

6.3. Symmetry Reduction Algorithm. Based on previous dis-
cussion, we haveAlgorithm 4 for symmetry reduction. In this
algorithm, replicated substructure will be removed and only
one copy will be kept.

Firstly, 𝑐𝑓𝑝 operator will be applied on a given event
structure to get a set of conflict-free substructures.

Then, for any two elements of them, a checking procedure
will be performed to remove the redundant one.

Finally, 𝑤𝑐𝑐 will be applied on the substructure set to
get the reduced model. Detailed pseudocode description is
shown in Algorithm 4.

6.4. An Example for Symmetry Reduction. In this section,
an example will be discussed to demonstrate the reduction
process based on Algorithm 4.

The example of a prime event structureEwith five events
(𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, and 𝑒

5
) and its semantics in terms of families of

configurations is given in Figures 9(1) and 9(2), respectively.
The action-labelling (action set: 𝐴𝑐𝑡 = {𝑎, 𝑏, 𝑐, 𝑑})

function is defined as follows: 𝑙(𝑒
1
) = 𝑎, 𝑙(𝑒

2
) = 𝑏, 𝑙(𝑒

3
) = 𝑐,

𝑙(𝑒
4
) = 𝑏, and 𝑙(𝑒

5
) = 𝑑.

In this structure, we have 𝑒
3
⪯ 𝑒
5
, 𝑒
2
♯𝑒
4
, 𝑒
3
♯𝑒
2
, and

𝑒
3
♯𝑒
4
. We also have 𝑒

5
♯𝑒
2
, 𝑒
5
♯𝑒
1
, and 𝑒

5
♯𝑒
4
(due to conflict

inheritance).
Then event set is 𝐸

𝐺
= {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
} and we can

construct a permutation group 𝐺 on the set 𝐸
𝐺
where two

permutations are as follows:

(
𝑒
1
𝑒
2
𝑒
3
𝑒
4
𝑒
5

𝑒
1
𝑒
2
𝑒
3
𝑒
4
𝑒
5

)(
𝑒
1
𝑒
2
𝑒
3
𝑒
4
𝑒
5

𝑒
1
𝑒
4
𝑒
3
𝑒
2
𝑒
5

) . (3)

Obviously, the group 𝐺 is an invariance group for all
actions in 𝐴𝑐𝑡 = {𝑎, 𝑏, 𝑐, 𝑑}. We then have the orbits of events
in being 𝜃(𝑒

2
) = 𝜃(𝑒

4
) = {𝑒

2
, 𝑒
4
}, 𝜃(𝑒
1
) = {𝑒

1
}, 𝜃(𝑒
3
) = {𝑒

3
},

and 𝜃(𝑒
5
) = {𝑒

5
}. Thus, the symmetric quotient model can be

described as shown in Figure 10.
We can get weak conflict set of the event structure E by

𝑐𝑓𝑝 operator as follows: 𝑐𝑓𝑝(E) = {E
1
,E
2
,E
3
}, where

E
1
= (𝐸
1
, ⪯
1
, ♯
1
, 𝑙
1
) ,

E
2
= (𝐸
2
, ⪯
2
, ♯
2
, 𝑙
2
) ,

E
3
= (𝐸
3
, ⪯
3
, ♯
3
, 𝑙
3
) ,

𝐸
1
= {𝑒
1
, 𝑒
2
} ,

𝐸
2
= {𝑒
1
, 𝑒
4
} ,

𝐸
3
= {𝑒
1
, 𝑒
3
, 𝑒
5
} .

(4)

Thus, we have 𝐸
1
♯𝑤𝐸
2
, 𝐸
1
♯𝑤𝐸
3
, and 𝐸

3
♯𝑤𝐸
2
(or,E

1
♯𝑤E
2
,

E
1
♯𝑤E
3
, and E

3
♯𝑤E
2
).

By definition, we have that E
1
and E

2
are symmetric.

According to the symmetry reduction algorithm, we will
remove replicated events but keep the common or represen-
tation ones. The substructure E

2
is removed. The resulted

substructure set consists of two elements:E
1
andE

3
, because

E
1
and E

3
are weak conflict sets of E and 𝑤𝑐𝑐 operator can

be applied on them to construct a new event structure: E󸀠 =
𝑤𝑐𝑐(E

1
,E
3
). Thus, the symmetric reduced event structure

can be described by Figure 11.
To illustrate the advantage for properties checking by

using symmetry reduction as shown in the above example,
consider the states in Figure 9, 9 states in total.

Suppose we want to check whether a property 𝐸𝐹(𝑝)

holds or not; that is, there exists a global state that satisfies 𝜑.
Without symmetry reduction applied, we have to examine all
global states, 9 states in total. But with symmetry reduction,
as shown in Figure 11 or Figure 10 to decide whether the
property holds, only 7 states should be checked and a
considerable saving can be achieved.

7. Mathematical Framework

In this section, we will provide a unified mathematical
framework for slicing and symmetry reduction based on 𝑐𝑓𝑝
and 𝑤𝑐𝑐 operators.

Firstly, we will review some basic definitions in this
section. Here, we refer the reader to [14] for details. Next,
we will introduce the single action transitions [3] for event
structures. Finally, we will discuss the related theories for
slicing and symmetric reduction and establish the unified
framework.

7.1. Basic Definitions

Definition 44. For any event structure E = (𝐸E, ⪯E, ♯E, 𝑙E) ∈

E, defineL[E] = (Conf𝐹(E), ⊆). Especially, for any conflict-
free event structureF = (𝐸F, ⪯F, 0, 𝑙F) ∈ F , defineL[F] =

(Conf𝐹(F), ⊆).

In fact, L[F] is the partial order of left-closed and
conflict-free subsets of 𝐸E ordered by set inclusion.

L[E] is the partial order of left-closed subsets of 𝐸F

ordered by set inclusion.

Definition 45 (single action transition). Let E ∈ E. A
transition 𝑋

𝑎

󳨀→E𝑋
󸀠 is called a single action transition if and

only if 𝑎 ∈ 𝐴𝑐𝑡, 𝑋,𝑋󸀠 ∈ Conf𝐹(E), 𝑋 ⊆ 𝑋󸀠 and there exists
an event 𝑒 such that𝑋󸀠 − 𝑋 = 𝑒 with 𝑙E(𝑒) = 𝑎.

Here, 𝑋 𝑎󳨀→E𝑋
󸀠 indicates that in the event structure the

state represented by the configuration 𝑋 may evolve into
a state represented by the configuration by performing

16 Journal of Applied Mathematics

Input: a prime event structure E;
Output: the reduced model of the event structure: E

𝑠𝑟
;

BEGIN
(1) 𝐶 = 0; 𝑖 = 1; 𝑛 = 0; 𝐵 = 0;B = 0;

/∗ Step One: partition via 𝑐𝑓𝑝 operator, we will get all maximal conflict-free sub-structure of an event structure ∗/
(2) 𝐵 = B𝑚𝑐𝑓𝐸𝑆(E) = 𝑐𝑓𝑝(E);
(3) 𝑛 = 𝑚𝑐𝑓𝑠𝑒𝑡𝑁(E);

/∗ Step Two: automorphism checking for sub-structure ∗/
(4) for (𝑖 = 0; 𝑖 ≤ 𝑛; 𝑖++) {
(5) for (𝑗 = 0; 𝑖 ≤ 𝑖; 𝑗++) {

/∗ Step Two-1: get action set of each maximal conflict-free sub-structure from 𝐵
∗/

(6) 𝐿
𝐴𝑐𝑡
(𝐸
𝑖
) = {𝑎 ∈ 𝐴𝑐𝑡 | ∃𝑒 ∈ 𝐸

𝑖
: 𝑙(𝑒) = 𝑎}

(7) 𝐿
𝐴𝑐𝑡
(𝐸
𝑗
) = {𝑎 ∈ 𝐴𝑐𝑡 | ∃𝑒 ∈ 𝐸

𝑗
: 𝑙(𝑒) = 𝑎}

/∗ 𝐼𝑠𝑁𝑜𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙: checking two sets are are identical or not ∗/
/∗ |𝑆|: the element amount of the set 𝑆 ∗/
/∗ Step Two-2: checking their action sets are identical or not ∗/

(8) if ((|𝐿
𝐴𝑐𝑡
(𝐸
𝑖
| ̸= |𝐿
𝐴𝑐𝑡
(𝐸
𝑗
)|) ‖

𝐼𝑠𝑁𝑜𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙(𝐿
𝐴𝑐𝑡
(𝐸
𝑖
), 𝐿
𝐴𝑐𝑡
(𝐸
𝑗
)) {

(9) break; }
/∗ Step Two-3: checking their causal relations are identical or not ∗/

(10) if ((|⪯Emax
𝑖

| ̸= |⪯Emax
𝑗

|) ‖
𝐼𝑠𝑁𝑜𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙(⪯Emax

𝑖

, ⪯Emax
𝑗

) {
(11) break; }

/∗ Step Two-4: checking their conflict relations are identical or not ∗/
(12) if ((|#Emax

𝑖

| ̸= |#Emax
𝑗

|) ‖
𝐼𝑠𝑁𝑜𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙(#Emax

𝑖

, #Emax
𝑗

) {
(13) break; }

/∗ Step Three: automorphism exists, remove the duplicated one and merge for reduction ∗/
(14) 𝐵 = 𝐵 −Emax

𝑗
;

(15) 𝑛 = 𝑛 − 1;
(16) } /∗ end for 𝑗 ∗/
(17) } /∗ end for 𝑖 ∗/
(18) return E

𝑠𝑟
= 𝑤𝑐𝑐(𝐵);

END;

Algorithm 4: Symmetry reduction: 𝑠𝑟(E).

ea

eb

ec

ec

e1

e3
e4

e2
ea

ec
e3

eb

e1 e2

e4

(3) SliceES(𝜀, 𝜑)(1) mcfESslice(ℰ1, 𝜑) (2) mcfESslice(ℰ2, 𝜑)

Figure 8: Slice model with respect to 𝜑.

the action 𝑎. This transition relation associates a labelled
system based on single action transitions with each event
structure.

Definition 46 (trace). LetE ∈ E. A word𝑤 = 𝑎
1
. . . 𝑎
𝑛
∈ 𝐴𝑐t∗

is called trace of E if and only if ∃𝑋
0
, . . . , 𝑋

𝑛
∈ Conf𝐹(E) :

𝑋
0
= 0 and𝑋

𝑖−1

𝑎
𝑖

󳨀→ 𝑋
𝑖
, 𝑖 = 1, . . . , 𝑛.

Here, let Trs(E) denote the set of all traces of E.

Definition 47 (interleave trace equivalence). Let E
1
,E
2
∈ E.

E
1
andE

2
are called interleave trace equivalence (E

1
≈
𝑖𝑡
E
2
) if

and only if Trs(E
1
) = Trs(E

2
).

Definition 48 (interleaving bisimulation). Let E
1
,E
2
∈ E. A

relation𝑅 ⊆ 𝐶(E
1
)×𝐶(E

2
) is called interleaving bisimulation

Journal of Applied Mathematics 17

a

b

cb

db
ab

a

a

c

a

d

Conflict relation
Causal relation

(2)(1)

e1

e2

e3

e5

e4

{e1, e3, e5}

{e3, e1}

{e2, e1}
{e1, e4}

{e3, e5}

{e1}

{e2}
{e4} {e3}

0

Figure 9: An event structure and its family of configurations.

a
b

c

d
b

a a
c

ad

(1) (2)

Conflict relation
Causal relation

{e2, e4} {e5}

{e3}

{e1}

{{e1}, {e3}, {e5}}

{{e3}, {e1}}

{{e3}, {e5}}

{{e4, e2}} {{e1}} {{e3}}

0

{{e1}, {e4, e2}}

Figure 10: Symmetric quotient model of E: E
𝐺
.

between E
1
and E

2
if and only if (0, 0) ∈ 𝑅 and (𝑋, 𝑌) ∈ 𝑅;

then

(1) 𝑋 𝑎󳨀→E
1

𝑋󸀠, 𝑎 ∈ 𝐴𝑐𝑡 ⇒ ∃𝑌󸀠 : 𝑌
𝑎

󳨀→E
2

𝑌󸀠 ∧ (𝑋󸀠, 𝑌󸀠) ∈ 𝑅;

(2) 𝑌 𝑎󳨀→E
2

𝑌󸀠, 𝑎 ∈ 𝐴𝑐𝑡 ⇒ ∃𝑋󸀠 : 𝑋
𝑎

󳨀→E
1

𝑋󸀠 ∧ (𝑋󸀠, 𝑌󸀠) ∈ 𝑅.

Definition 49 (interleaving bisimulation equivalent). Let
E
1
,E
2
∈ E. E

1
and E

2
are called interleaving bisimulation

equivalent (E
1
≈
𝑖𝑏
E
2
) if and only if there exists an interleaving

bisimulation between E
1
and E

2
.

7.2. Unified Framework. The unified framework for slicing
and symmetry reduction we have set up can be pictured as
in Figure 12.

(1) Isomorphism and Equivalence.We are concerned with the
translation of concepts and ideas from one side to the other.
The following theorems hold.

Theorem 50. Let F be a conflict-free event structure, F =

(𝐸F, ⪯F, 0, 𝑙F) ∈ F ; then F ≅ ℘[L[F]]. Similarly, let 𝑃 =

(𝐷, ⊑) be a prime algebraic complete lattice; then𝑃 ≅ L[℘[𝑃]].

Theorem 51. Let E be a prime event structure, E =

(𝐸E, ⪯E, ♯E, 𝑙E) ∈ E; then E ≅ ℘[L[E]]. Similarly, let

𝑃 = (𝐷, ⊑) be a prime algebraic coherent domain; then 𝑃 ≅

L[℘[𝑃]].

Clearly, fromTheorems 50 and 51, we have the following.

(1) For any prime event structure E, we have that E ≅

℘[L[E]].

(2) Similarly, for any partial order𝑃 = (𝐷, ⊑),𝑃 is a prime
algebraic complete lattice or a finitary coherent prime
algebraic domain; we have that 𝑃 ≅ L[℘[𝑃]].

From Theorems 23, 24, and 25, we have that conflict-
free event structures and prime algebraic complete lattices
are equivalent; this implies that there is a one-to-one corre-
spondence between a prime event structure and its family of
configurations. Similarly, prime event structures and finitary
coherent prime algebraic domains are also equivalent; one
can be used to represent the other.

(2) Mutual Inverse Operation. For any prime event structure,
𝑐𝑓𝑝 and 𝑤𝑐𝑐 are mutually inverse operators.

We can get the full set of maximal conflict-free substruc-
tures of a prime event structure by 𝑐𝑓𝑝 operator.

18 Journal of Applied Mathematics

a
b

c

d
b

a

ac

a
d

(1) (2)

Conflict relation
Causal relation

e1

e2 e3

e5

{e1, e3, e5}

{e3, e1}

{e1, e2} {e3, e5}

{e2} {e1} {e3}

0

Figure 11: Reduced model: E󸀠.

LTS(ℰ) LTS(ℰq

ℰq

)

Finitary
coherent

prime
algebraic
domain

Finitary
coherent

prime
algebraic
domain

ℒ

℘

ℒ

℘

ℒ

℘

ℒ

℘
Slice of ES

ℰ󳰀

Prime
event structure

ℰ

Quotient
event

structure

≈ it, ≈ ib

cfp wcc cfp wcc (Isomorphism) ≅

Prime
algebraic
complete

lattice

Prime
algebraic
complete

lattice

Slice of mcfES

ℰmax
󳰀

1

...
...

ℰmax
󳰀

n

ℰmax

1

ℰmax

n

(n = mcfsetN(ℰ))

wcc

Reduced
substructure

ℰr

Symmetric
reduced
mcfESs

(maximal
conflict-free

event
substructure)

SliceES(𝜑)

SliceES(𝜑)

mcfESslice (𝜑)

mcfESslice (𝜑)

Figure 12: Unified mathematical framework.

Conversely, given the full set of maximal conflict-free
substructures of the prime event structure, we can recover the
original prime event structure by 𝑤𝑐𝑐 operator.

(3) Slicing Reduction. Firstly, compared with traditional
computation slicing, Figure 12 demonstrates the translation
between a conflict-free event structure (or its slice) and prime
algebraic complete lattice. This forms the theoretical basis of
computation slicing technique proposed by Garg and Mittal,
Sen [7, 20].

Secondly, Figure 12 also demonstrates the translation
between a prime event structure (or its slice) and finitary
coherent prime algebraic domain, which serves as the the-
oretical basis of our event structure slicing with conflict. A
pair of mutually inverse operators, 𝑐𝑓𝑝 and 𝑤𝑐𝑐, act as a link
between the two parts.

Thirdly, the slice of a prime event structure can be
computed by the following steps:

(1) applying 𝑐𝑓𝑝 operator to partition the original prime
event structure into a full set of maximal conflict-free
substructures;

(2) for each maximal conflict-free substructure, applying
traditional computation slicing algorithm based on
Adding Edges Theorem [7, 8, 20] over its directed
graph representation to compute the slicewith respect
to the given predicate;

(3) applying 𝑤𝑐𝑐 operator to compose the resulted slices
in above step (2) and form a new prime event
structure, while the generated event structure is the
slice of the original prime event structure.

(4) Symmetry Reduction. Operators 𝑐𝑓𝑝 and𝑤𝑐𝑐 can also play
an important role in symmetry reduction.

Symmetry reduction of a prime event structure can be
performed by the following steps:

(1) applying 𝑐𝑓𝑝 operator to partition the original prime
event structure into a full set of maximal conflict-free
substructures;

(2) checking automorphism among the produced sub-
structures and checking causal relation and action set;

Journal of Applied Mathematics 19

(3) removing duplicated substructure and applying 𝑤𝑐𝑐
operator to compose the resulted structure to form a
newly generated prime event structure, which will be
symmetry reduced prime event structure.

(5) Trace Equivalence. The relation between original event
structure and its quotientmodel can be specified byTheorems
52 and 53 (See [3]).

Theorem 52. Let E ∈ E and E
𝐺
be quotient structure of E;

then E
𝐺
≈
𝑖𝑡
E.

Theorem 53. LetE ∈ E and letE
𝐺
be the symmetric quotient

model for E. Then E≃
𝑖𝑏
E
𝐺
.

Generally, given an event structureE, in fact, its behavior
is exhibited by the labelled transition system (LTS, for short)
LTSE = {Conf𝐹(E), 𝐴𝑐tE, 𝑇E, 0}, where

(1) the configurations Conf𝐹(E) are states;
(2) the set of labels is the set of actions 𝐴𝑐tE;
(3) the transitions 𝑇E are single action transitions

between every two configurations ofE; namely, 𝑇E ⊆

Conf𝐹(E) × 𝐴𝑐tE × Conf𝐹(E);
(4) the initial configuration (the empty set 0) is the initial

state.
The above equivalence is based on labelled transition

systems whose transitions are single action transitions. As
shown in Figure 12, we construct labelled transition system
for prime event structure and its quotientmodel, we will have
that their LTSs are interleaving bisimulation and interleave
trace equivalence also. Therefore, the following corollary
holds.

Corollary 54. Let E ∈ E and E
𝐺
let be the symmetric

quotient model for E. If 𝐿𝑇𝑆 = (Conf𝐹(E),Act, → E, 0) and
𝐿𝑇𝑆
𝐺
= (Conf𝐹(E

𝐺
), 𝐴𝑐𝑡, → E

𝐺

, 0) are induced from E and
E
𝐺
, respectively, then 𝐿𝑇𝑆≈

𝑖𝑡
𝐿𝑇𝑆
𝐺
and 𝐿𝑇𝑆≈

𝑖𝑏
𝐿𝑇𝑆
𝐺
hold.

Evidently, we have the following theorems.

Theorem 55. For any E ∈ E, its symmetric quotient model
E
𝐺
and symmetric reduced modelE󸀠 are isomorphism; that is,

E
𝐺
≅ E󸀠.

Proof. It is not difficult to prove it by constructing a bijection
between the events and their orbits.

Theorem 56. For anyE ∈ E, its symmetric reduced modelE󸀠
is a substructure of E; that is, E󸀠 ⊲ E.

Proof.The proof is straightforward.
(6) Technique Combination. Symmetry reduction technique is
orthogonal to slicing reduction and can be used in conjunc-
tion with slicing. Thus, it is easy to have the following result.

Theorem 57. For any E ∈ E, let 𝜑 be a regular predicate;
then the following statements hold: 𝑠𝑟(𝑆𝑙𝑖𝑐𝑒𝐸𝑆(E, 𝜑)) =

𝑤𝑐𝑐(𝑚𝑐𝑓𝐸𝑆slice(𝑐𝑓𝑝(𝑠𝑟(E)), 𝜑)) and 𝑠𝑟(Slice𝐸𝑆(E, 𝜑)) =

Slice𝐸𝑆(𝑠𝑟(E), 𝜑).

Proof.The proof is straightforward.

8. Conclusion

In this paper, we presented a unifiedmathematical framework
for event structure slicing and symmetric reduction. We
described the equivalent relationship between original event
structure and its maximal conflict-free event substructures.
We proposed two mutually inverse operators: conflict-free
partition operator and weak choice composition operator.
Both symmetry reduction and slicing reduction can be
performed by this pair of operators. We also investigated
the related properties, translations, and correspondences
between event structures and domains. Essentially, slicing
over event structure is a high level extension to the traditional
computation slicing based on the model with conflict.

Slicing technique can make the verification of program
behavior easier by reducing the size of the state space to be
analyzed. Symmetry reduce is another powerful structural
reduction technique that can also be applied to narrow down
state space. Both quotient model and sliced model produced
by reduction are often much smaller than the original model.
The consequentialmodel can be used to significantly improve
the effectiveness of property verification of the original
model.

In future work, on the one hand, we will extend our
work to other more complicated event structure models,
such as flow event structure [34] and bundle event structure
[35, 36]. On the other hand, we hope to implement and test
our approach on various verification tools in practice. In
addition, we would like to exploit more possible applications
and theories.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theproject is supported by the Fundamental Research Funds
for the Central Universities (DUT14QY05) (1600-851025).
The authors would like to thank their colleagues for partic-
ipating in the research. They also appreciate the anonymous
reviewers for their helpful comments.

References

[1] S. Alagar and S. Venkatesan, “Techniques to tackle state
explosion in global predicate detection,” IEEE Transactions on
Software Engineering, vol. 27, no. 8, pp. 704–714, 2001.

[2] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting
symmetry in temporal logic model checking,” Formal Methods
in System Design, vol. 9, pp. 77–104, 1996.

[3] J. Jiang and J. Wu, “Symmetry and autobisimulation,” in Pro-
ceedings of the 6th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT
’05), pp. 866–870, IEEE Computer Society Press, December
2005.

20 Journal of Applied Mathematics

[4] J.-Z.Wu andH. Fecher, “Symmetric structure in logic program-
ming,” Journal of Computer Science and Technology, vol. 19, no.
6, pp. 803–811, 2004.

[5] M. Weiser, Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method
[Ph.D. thesis], University of Michigan, 1979.

[6] M.Weiser, “Programmers use slices when debugging,”Commu-
nications of the ACM, vol. 25, no. 7, pp. 446–452, 1982.

[7] V.K.Garg andN.Mittal, “On slicing a distributed computation,”
in Proceedings of the 21st IEEE International Conference on
Distributed Computing Systems (ICDCS ’01), D. Harel, D. Kozen,
and J. Tiuryn, Eds., Dynamic Logic, pp. 322–329, MIT Press,
Phoenix, Ariz, USA, 2001.

[8] A. Sen and V. K. Garg, “Formal verification of simulation traces
using computation slicing,” IEEE Transactions on Computers,
vol. 56, no. 4, pp. 511–527, 2007.

[9] E. Duesterwald, R. Gupta, and M. L. Soffa, “Distributed slicing
and partial re-execution for distributed programs,” in Proceed-
ings of the 5thWorkshop on Language and Compilers for Parallel
Computing, pp. 329–337, 1992.

[10] J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds., Linear
Time, Branching Time and Partial Order in Logics and Models
for Concurrency, vol. 354 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, 1989.

[11] G. Winskel, “Event structures,” in Petri Nets: Applications and
Relationships to Other Models of Concurrency, Advances in
Petri Nets 1986, Part II; Proceedings of an Advanced Course,
Bad Honnef, September 1986, W. Brauer, W. Reisig, and G.
Rozenberg, Eds., vol. 255 of Lecture Notes in Computer Science,
pp. 325–392, Springer, Berlin, Germany, 1987.

[12] P. Madhusudan, “Model-checking trace event structures,” in
Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science (LICS ’03), pp. 371–380, June 2003.

[13] M. Mukund and P. S. Thiagarajan, “An axiomatization of
event structures,” in Foundations of Software Technology and
Theoretical Computer Science (Bangalore, 1989), vol. 405 of
Lecture Notes in Computer Science, pp. 143–160, Springer, Berlin,
Germany, 1989.

[14] R. J. van Glabbeek and U. Goltz, “Refinement of actions and
equivalence notions for concurrent systems,” Hildesheimer
Informatik-Bericht 6/98, University of Hildesheim, 1998.

[15] H. Hermanns and M. Ribaudo, “Exploiting symmetries in
stochastic process algebras,” in Proceedings of the European Sim-
ulation Multiconference (ESM ’98), pp. 763–770, SCS Europe,
1998.

[16] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event
structures and domains. I,” Theoretical Computer Science, vol.
13, no. 1, pp. 85–108, 1981.

[17] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event
structures and domains. I,” Theoretical Computer Science, vol.
13, no. 1, pp. 85–108, 1981.

[18] R. Loogen and U. Goltz, “Modelling nondeterministic concur-
rent processes with event structures,” Fundamenta Informaticae,
vol. 14, no. 1, pp. 39–73, 1991.

[19] A. Sen, J. Bhadra, V. K. Garg, and J. A. Abraham, “Formal
verification of a system-on-chip using computation slicing,” in
Proceedings of the International Test Conference (ITC ’04), pp.
810–819, October 2004.

[20] A. Sen, Techniques for formal verification of concurrent and
distributed program traces [Ph.D. thesis], The University of
Texas at Austin, Austin, Tex, USA, 2004, http://www.library.
utexas.edu/etd/d/2004/senma042/senma042.pdf.

[21] E. A. Emerson andA. P. Sistla, “Symmetry andmodel checking,”
in Computer Aided Verification (Elounda, 1993), vol. 697 of
Lecture Notes in Computer Science, pp. 463–478, Springer,
Berlin, Germany, 1993.

[22] A.Miller, A.Donaldson, andM.Calder, “Symmetry in temporal
logic model checking,” ACM Computing Surveys, vol. 38, no. 3,
article 8, 2006.

[23] G. Winskel, “Event structures with symmetry,” in Computation,
Meaning, and Logic: Articles Dedicated to Gordon Plotkin, vol.
172 of Electronic Notes in Theoretical Computer Science, pp. 611–
652, Elsevier, Amsterdam, The Netherlands, 2007.

[24] X. Gao, J. Wu, R. Qiao, and J. Chen, “Theory framework
for event structure slicing,” in Proceedings of the 13th IEEE
Symposium on Computers and Communications (ISCC ’08), pp.
714–721, IEEE, Marrakech, Morocco, July 2008.

[25] G. Winskel, “An introduction to event structures,” in Linear
Time, Branching Time and Partial Order in Logics and Models
for Concurrency (Noordwijkerhout, 1988), J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, Eds., vol. 354 of Lecture Notes in
Computer Science, pp. 364–397, Springer, Berlin, Germany, 1989.

[26] G. Winskel, “An introduction to event structures,” in Linear
Time, Branching Time and Partial Order in Logics andModels for
Concurrency (Noordwijkerhout, 1988), vol. 354 of Lecture Notes
in Computer Science, pp. 364–397, Springer, Berlin, Germany,
1989.

[27] G. Winskel and M. Nielsen, “Models for concurrency,” in
Handbook of Logic in Computer Science, vol. 4, pp. 1–148, Oxford
University Press, New York, NY, USA, 1995.

[28] N. Mittal and V. K. Garg, “On detecting global predicates
in distributed computations,” in Proceedings of the 21st IEEE
International Conference on Distributed Computing Systems, pp.
3–10, Phoenix, Ariz, USA, April 2001.

[29] V. K. Garg, “Algorithmic combinatorics based on slicing posets,”
Theoretical Computer Science, vol. 359, no. 1–3, pp. 200–213,
2006.

[30] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verifi-
cation of finite state concurrent systems using temporal logic,”
ACMTransactions on Programming Languages and Systems, vol.
8, no. 2, pp. 244–263, 1986.

[31] B. A. Davey and H. A. Priestley, Introduction to Lattices
and Order, Cambridge Mathematical Textbooks, Cambridge
University Press, Cambridge, UK, 1990.

[32] A. Sen and V. K. Garg, “Detecting temporal logic predicates in
distributed programs using computation slicing,” in Proceedings
of the 7th International Conference on Principles of Distributed
Systems (OPODIS ’03), December 2003.

[33] N. Mittal, A. Sen, V. K. Garg, and R. Atreya, “Finding satisfying
global states: all for one and one for all,” inProceedings of the 18th
International Parallel and Distributed Processing Symposium
(IPDPS ’04), Santa Fe, NM, USA, April 2004.

[34] G. Boudol, “Flow event structures and flow nets,” in Semantics
of Systems of Concurrent Processes (La Roche Posay, 1990), vol.
469 of Lecture Notes in Computer Science, pp. 62–95, Springer,
Berlin, Germany, 1990.

[35] H. Fecher, M. Majster-Cederbaum, and J. Wu, “Bundle event
structures: a revised cpo approach,” Information Processing
Letters, vol. 83, no. 1, pp. 7–12, 2002.

[36] R. Langerak, “Bundle event structures: a non-interleaving
semantics for LOTOS,” in Formal Description Techniques V, M.
Diaz and R. Groz, Eds., pp. 331–346, 1992.

