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We consider discrete-time Geo/G/1 queues with negative customers and a repairable server. The server is subject to failure due
to a negative customer arrival. As soon as a negative customer arrives at a system, the server fails and one positive (ordinary)
customer is forced to leave. At a failure instant, the server is turned off and the repair process immediately begins. We construct the
mathematical model and present the probability generating functions of the system size distribution and the FCFS sojourn time
distribution. Finally, some numerical examples are given to show the influence of negative customer arrival on the performance
measures of the system.

1. Introduction

After the introduction in the work of Gelenbe [1], there has
been a rapid increase in the literature on queueing systems
with negative customers due to their applications to neural
networks, communication systems, and manufacturing sys-
tems. If a negative customer arrives at a queueing system, it
removes one ordinary customer (called a positive customer)
according to a predetermined removal discipline. There are
two typical removal disciplines: (i) a negative customer
removes the customer being served (RCH); (ii) a negative
customer removes the customer who arrived most recently
(RCE). The negative customers cannot accumulate in the
queue and do not receive services. The negative customers
have a rich andwide range of real applications such as job can-
celing signals accompanied by machine breakdowns [2], net-
work routing control [3], and load balancing [4]. For example,
if a certain virus enters a computer system, the virus inter-
rupts system operations, deletes files, and infects other files.
In telecommunication systems, the negative customers can be
used to model cell losses caused by the arrival of a corrupted
cell, when the preceding cells of a packet would be discarded.

The concept of the negative customer has been applied to
the M/M/1 queue [5], the M/G/1 queue [6], and the GI/M/1
queue [7]. Excellent surveys on negative customers have been
provided by Artalejo [8], Do [9, 10], and Gelenbe [11–13].

Recently, this topic has been extended to a discrete-time
queueing system. Note that the discrete-time queue is more
suitable to describe the operation of time-slotted digital
communication systems due to the packetized nature of
transport protocols. Atencia and Moreno [14] studied the
Geo/Geo/1 queues with negative customers and various
removal disciplines caused by the negative customers. Zhou
[15] investigated the discrete-time GI/G/1 queue with RCH-
type negative customers. Wang and Zhang [16] considered
the Geo/Geo/1 retrial queue with negative customers and
an unreliable server. Park et al. [17] obtained the results
of the Geo/G/1 queue with negative customers and without
repair times. Recently, Chae et al. [18] extended Atencia and
Moreno’s [14] Geo/Geo/1 queues to the GI/Geo/1 queues,
where the interarrival times are generally distributed. The
results of the queueing systemwith negative customers under
the assumption of a Markovian arrival process can be found
in Wu et al. [19, 20].

In most of the literature on queueing systems with nega-
tive customers, the server is assumed to be reliable on a per-
manent basis, regardless of the arrivals of negative customers.
However, in many practical systems, the arrival of a negative
customer can cause server breakdown as well as destruction
of work in a system. For example, when a computer server
is infected with a computer virus, a recovery time is needed
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to restore the server. Similarly, when a canceling signal for the
job in progress arrives at a database server, a system cleaning
time such as a rollback time for incomplete data operation
may be needed. For this reason, we consider the Geo/G/1
queues with negative customers under the assumption that
the server is repairable. Since the performance measure of
such a system may be influenced by breakdown and repair
time, the repairable system is well worth analyzing in view of
queueing theory along with reliability theory.

There are few researches on repairable queueing systems
with negative customers. Wang and Zhang [16] considered
the Geo/Geo/1 retrial queue with negative customers and an
unreliable server, where server breakdown occurs whenever
negative customers arrive at a system. Lee et al. [21] presented
the results of repairable Geo/G/1 queues with disasters, where
if a disaster arrives at a system, all present customers (i.e., a
customer in service plus customers in queue) are forced to
leave the system. In [21], the authors considered a disaster as
server failure which leads to the destruction of all work in
process in a system. However, neither of them considered the
case of repairable queueing systems with negative customers
which cause server breakdown as well as canceling a single
ordinary customer.

Systems under our study have following features. Positive
customers arrive at a single server queue, according to a
Bernoulli process. A server provides a service to each cus-
tomer on an FCFS basis. The service times are independent
and identically distributed (i.i.d.) random variables that are
generally distributed. Negative customers arrive when the
server is busy according to a Bernoulli process. Negative
customers do not have an effect on the system if the server
is idle or under repair. Each time a negative customer arrives
at the system while the server is busy, the server fails and the
customer in service leaves the system. At a failure epoch, the
server is turned off and a repair period immediately begins.
The server repair times are i.i.d. random variables that are
generally distributed. During the repair period, the stream of
new arrivals continues. Depending on whether new arrivals
are allowed to enter the system during the repair time, there
can be one of the two following systems. In System 1, the
customers newly arriving during the repair period cannot
enter the system and are blocked. This is the case when a
virus-infected computer server is isolated from the network
during the repair timewithout any backup server. In System2,
they join the queue andwait for the server to be repaired.This
is the case when a backup server just stores requests during
the repair time and passes them to the original server when
it is recovered. As soon as the repair period ends, the server
promptly becomes available. Both Systems 1 and 2 have RCH
discipline. For each system, using the probability generating
function (PGF) technique, we present PGFs of the system size
distribution and the sojourn time distribution.

In this paper, we first describe the mathematical model in
Section 2. In Sections 3 and 4, general results on the system
size and the sojourn time of System 1 and System 2 are
presented. Section 5 deals with numerical experiments which
we conducted to investigate the influence of the arrival of
negative customers on the mean system size of each system.

2. Model Description

Throughout this paper, we adopt the late arrival system (LAS)
[22]. Let the time axis be marked by 𝑡 = 0, 1, 2, . . .. According
to the LAS model, the potential arrival of a positive customer
takes place during the interval (𝑡−, 𝑡) and the potential service
completion occurs during the interval (𝑡, 𝑡+), where 𝑡+ and 𝑡−
represent lim

Δ𝑡→0

(𝑡+|Δ𝑡|) and lim
Δ𝑡→0

(𝑡−|Δ𝑡|), respectively.
Since the arrivals of a positive customer and a negative cus-
tomer can occur simultaneously at a slot boundary, the order
of these events must be stated. We assume that the potential
arrival of a negative customer occurs during the interval
(𝑡
−

, 𝑡) and immediately before the potential arrival of a posi-
tive customer. We also assume that the potential completion
of a repair time occurs during the interval (𝑡−, 𝑡) and imme-
diately before the potential arrival of a positive customer.
We further assume that a negative customer arrival and a
repair completion do not occur at the same slot boundary
simultaneously.

We define commonly used notations to analyze both Sys-
tems 1 and 2. Interarrival times of positive customers {𝐴

𝑛

}
∞

𝑛=1

are i.i.d. discrete random variables and follow a geometric
distribution with parameter 𝜆:

Pr{𝐴
𝑛

= 𝑘} = 𝜆
𝑘−1

𝜆, 𝑘 ≥ 1;

𝜆 = 1 − 𝜆, 0 < 𝜆 < 1;

𝐸[𝐴
𝑛

] = 𝜆
−1

.

(1)

Interarrival times of negative customers {𝑌
𝑛

}
∞

𝑛=1

are i.i.d.
discrete randomvariables and follow a geometric distribution
with parameter 𝜂:

Pr{𝑌
𝑛

= 𝑘} = 𝜂
𝑘−1

𝜂, 𝑘 ≥ 1;

𝜂 = 1 − 𝜂, 0 < 𝜂 < 1;

𝐸[𝑌
𝑛

] = 𝜂
−1

.

(2)

Service times {𝑆
𝑛

}
∞

𝑛=1

are i.i.d. general discrete random vari-
ables. A distribution and its PGF are denoted by Pr{𝑆

𝑛

= 𝑘} =

𝑠
𝑘

(𝑘 ≥ 1) and 𝑆(𝑧) = ∑
∞

𝑘=1

𝑠
𝑘

𝑧
𝑘, respectively. Repair times

{𝑅
𝑛

}
∞

𝑛=1

are i.i.d. general discrete random variables and have
the distribution Pr{𝑅

𝑛

= 𝑘} = 𝑟
𝑘

(𝑘 ≥ 1) and its PGF
𝑅(𝑧) = ∑

∞

𝑘=1

𝑟
𝑘

𝑧
𝑘. We assume that {𝐴

𝑛

}
∞

𝑛=1

, {𝑌
𝑛

}
∞

𝑛=1

, {𝑆
𝑛

}
∞

𝑛=1

,
and {𝑅

𝑛

}
∞

𝑛=1

are mutually independent.
Systems 1 and 2 are represented by a Markov chain. Let

𝑁(𝑡
+

) be the number of customers in the system at 𝑡+. Let
𝜉(𝑡
+

) be the server state at 𝑡+ and be defined as follows:

𝜉(𝑡
+

) = {
0, The server is under repair at 𝑡+,
1, The server is available at 𝑡+.

(3)

Then, in both System 1 and System 2, {𝑁(𝑡+), 𝜉(𝑡+), 𝑆
𝑅

(𝑡
+

),

𝑅
𝑅

(𝑡
+

), 𝑡 = 0, 1, . . .} is a Markov chain, where the supple-
mentary variables 𝑆

𝑅

(𝑡
+

) and 𝑅
𝑅

(𝑡
+

), respectively, represent
the remaining service time and the remaining repair time all
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at 𝑡+. One of our main purposes is to obtain the stationary
distribution:

𝑃
𝑛

= lim
𝑡→∞

Pr{𝑁(𝑡+) = 𝑛}, 𝑛 ≥ 0. (4)

Since we are interested in the steady-state behavior of the sys-
tems, we employ the following limiting probabilities through-
out this paper tomanipulate the Kolmogorov equations of the
Markov chain:

𝜓
𝑛

(𝑘) = lim
𝑡→∞

Pr{𝑁(𝑡+) = 𝑛, 𝜉(𝑡+) = 0, 𝑅
𝑅

(𝑡
+

) = 𝑘},

𝑛 ≥ 0, 𝑘 ≥ 1,

𝜋
𝑛

(𝑘) = lim
𝑡→∞

Pr{𝑁(𝑡+) = 𝑛, 𝜉(𝑡+) = 1, 𝑆
𝑅

(𝑡
+

) = 𝑘},

𝑛 ≥ 1, 𝑘 ≥ 1,

𝜓
𝑛

= lim
𝑡→∞

Pr{𝑁(𝑡+) = 𝑛, 𝜉(𝑡+) = 0} =
∞

∑

𝑘=1

𝜓
𝑛

(𝑘),

𝑛 ≥ 0,

𝜋
0

= lim
𝑡→∞

Pr{𝑁(𝑡+) = 0, 𝜉(𝑡+) = 1},

𝜋
𝑛

= lim
𝑡→∞

Pr{𝑁(𝑡+) = 𝑛, 𝜉(𝑡+) = 1} =
∞

∑

𝑘=1

𝜋
𝑛

(𝑘),

𝑛 ≥ 1.

(5)

To solve the Kolmogorov equations, we introduce PGFs:

Ψ(𝑧, 𝑘) =

∞

∑

𝑛=0

𝜓
𝑛

(𝑘)𝑧
𝑛

, |𝑧| ≤ 1,

Π(𝑧, 𝑘) =

∞

∑

𝑛=1

𝜋
𝑛

(𝑘)𝑧
𝑛

, |𝑧| ≤ 1,

Ψ
∗

(𝑧, 𝑤) =

∞

∑

𝑘=1

Ψ(𝑧, 𝑘)𝑤
𝑘

, |𝑤| ≤ 1,

Π
∗

(𝑧, 𝑤) =

∞

∑

𝑘=1

Π(𝑧, 𝑘)𝑤
𝑘

, |𝑤| ≤ 1.

(6)

3. System 1

In System 1, newly arriving customers are blocked when the
server is under repair.

3.1. System Size Distribution for System 1. With the limiting
probabilities defined in Section 2, the Kolmogorov equations
for the stationary distribution are given by

𝜓
𝑛

(𝑘) = 𝜓
𝑛

(𝑘 + 1) + 𝜂𝜋
𝑛+1

𝑟
𝑘

, 𝑛 ≥ 0, (7)

𝜋
0

= (𝜓
0

(1) + 𝜋
0

+ 𝜂𝜋
1

(1))𝜆, (8)

𝜋
1

(𝑘) = 𝜓
0

(1)𝜆𝑠
𝑘

+ 𝜓
1

(1)𝜆𝑠
𝑘

+ 𝜋
0

𝜆𝑠
𝑘

+ 𝜂(𝜋
1

(1)𝜆𝑠
𝑘

+ 𝜋
1

(𝑘 + 1)𝜆 + 𝜋
2

(1)𝜆𝑠
𝑘

),

(9)

𝜋
𝑛

(𝑘) = 𝜓
𝑛−1

(1)𝜆𝑠
𝑘

+ 𝜓
𝑛

(1)𝜆𝑠
𝑘

+ 𝜂(𝜋
𝑛−1

(𝑘 + 1)𝜆 + 𝜋
𝑛

(1)𝜆𝑠
𝑘

+ 𝜋
𝑛

(𝑘 + 1)𝜆 + 𝜋
𝑛+1

(1)𝜆𝑠
𝑘

), 𝑛 ≥ 2,

(10)

and the normalizing condition is given by

𝜋
0

+ Ψ
∗

(1, 1) + Π
∗

(1, 1) = 1. (11)

Multiplying (7) by 𝑧𝑛 and summing over 𝑛, 𝑛 ≥ 0, we
obtain

Ψ(𝑧, 𝑘) = Ψ(𝑧, 𝑘 + 1) + 𝜂𝑟
𝑘

𝑧
−1

Π
∗

(𝑧, 1). (12)

Multiplying (12) by 𝑤𝑘 and summing over 𝑘, 𝑘 ≥ 1, yield

Ψ
∗

(𝑧, 𝑤)(1 − 𝑤
−1

) = 𝜂𝑧
−1

𝑅(𝑤)Π
∗

(𝑧, 1) − Ψ(𝑧, 1). (13)

To obtain Ψ(𝑧, 1), we insert 𝑤 = 1 into (13). Thus,

Ψ(𝑧, 1) = 𝜂𝑧
−1

Π
∗

(𝑧, 1). (14)

Incorporating (14) back into (13) then yields

Ψ
∗

(𝑧, 𝑤) =
𝜂𝑤(𝑅(𝑤) − 1)

𝑧(𝑤 − 1)
Π
∗

(𝑧, 1). (15)

Letting 𝑤 = 1 in (15), we obtain the following relationship by
the L’Hospital rule:

Ψ
∗

(𝑧, 1) = 𝜂𝐸[𝑅]𝑧
−1

Π
∗

(𝑧, 1). (16)

Multiplying (9) and (10) by 𝑧𝑛 and then summing over 𝑛,
𝑛 ≥ 1, together with (8), we obtain

Π(𝑧, 𝑘)

= 𝜔
1

Π(𝑧, 𝑘 + 1)

+ 𝑠
𝑘

[𝜔
0

Ψ(𝑧, 1) + 𝑧
−1

𝜔
1

Π(𝑧, 1) − 𝜋
0

𝜆(1 − 𝑧)],

(17)

where 𝜔
0

= 𝜆+𝜆𝑧 and𝜔
1

= 𝜂(𝜆+𝜆𝑧). Multiplying (17) by𝑤𝑘
and summing over 𝑘, 𝑘 ≥ 1, yield

Π
∗

(𝑧, 𝑤)(1 − 𝑤
−1

𝜔
1

)

= 𝑧
−1

𝜔
1

Π(𝑧, 1)(𝑆(𝑤) − 𝑧)

+ 𝑆(𝑤)[𝜔
0

Ψ(𝑧, 1) − 𝜋
0

𝜆(1 − 𝑧)].

(18)

Inserting 𝑤 = 𝜔
1

into (18) and solving Π(𝑧, 1), we obtain

Π(𝑧, 1) =
𝑧𝑆(𝜔
1

)[𝜋
0

𝜆(1 − 𝑧) − 𝜔
0

Ψ(𝑧, 1)]

𝜔
1

(𝑆(𝜔
1

) − 𝑧)
. (19)

Utilizing (14) and (19) in (18), Π∗(𝑧, 𝑤) is represented as

Π
∗

(𝑧, 𝑤)

=
𝑤(𝑆(𝑤) − 𝑆(𝜔

1

))[𝜋
0

𝜆𝑧(1 − 𝑧) − 𝜂𝜔
0

Π
∗

(𝑧, 1)]

(𝑤 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
.

(20)
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By inserting 𝑤 = 1 into (20), it follows that

Π
∗

(𝑧, 1) =
𝜋
0

𝜆𝑧(1 − 𝑧)(1 − 𝑆(𝜔
1

))

𝜂𝜔
0

(1 − 𝑆(𝜔
1

)) + (1 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
. (21)

Let𝑃(𝑧) denote the PGF of the system size distribution. From
(16) and (21), we can obtain

𝑃(𝑧) = 𝜋
0

+ Ψ
∗

(𝑧, 1) + Π
∗

(𝑧, 1)

= 𝜋
0

+
𝜋
0

𝜆(1 − 𝑧)(𝑧 + 𝜂𝐸[𝑅])(1 − 𝑆(𝜔
1

))

𝜂𝜔
0

(1 − 𝑆(𝜔
1

)) + (1 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
,

(22)

where 𝜋
0

= (𝜂 − 𝜆(1 − 𝑆(𝜂)))/𝜂[1 + 𝜆𝐸[𝑅](1 − 𝑆(𝜂))] by the
normalizing condition (11).

Differentiating (22) with respect to 𝑧 and taking limit
𝑧 → 1 lead to the mean system size given by

𝐿 =
𝜆

1 + 𝜆𝐸[𝑅](1 − 𝑆(𝜂))

⋅ [
1 − 𝑆(𝜂)

𝜂

+

𝜂𝜆(1 + 𝜂𝐸[𝑅])(1 − 𝑆(𝜂) − 𝜂𝑆
󸀠

(𝜂))

𝜂(𝜂 − 𝜆 + 𝜆𝑆(𝜂))
],

(23)

where 𝑆󸀠(𝑧) = 𝑑𝑆(𝑧)/𝑑𝑧 in (23).

Remark 1. System 1 is stable if and only if |𝑃(𝑧)| < ∞ for
|𝑧| ≤ 1. The denominator of 𝑃(𝑧) for System 1 can be written
as (1 − 𝜔

1

)(𝐴(𝑧) − 𝑧), where

𝐴(𝑧) =
𝜂𝜔
0

+ (1 − 𝜔
0

)𝑆(𝜔
1

)

1 − 𝜔
1

. (24)

Here, (1 − 𝜔
1

) has no zeros for |𝑧| ≤ 1. By Rouché’s theorem,
𝐴(𝑧) − 𝑧 also has no zeros for |𝑧| ≤ 1 if and only if
𝑑𝐴(𝑧)/𝑑𝑧|

𝑧=1

< 1. Thus, the necessary and sufficient condi-
tion for the stability of System 1 is 𝜆 < 𝜂(1 − 𝑆(𝜂))−1.

3.2. Sojourn Time Distribution for System 1. We derive the
PGF of the sojourn time of a test customer (TC) under the
FCFS discipline for System 1, regardless of whether or not
its service is interrupted by a negative customer. The sojourn
time is defined as the sum of the queue waiting time and
the service time. We do not take blocked customers’ sojourn
times into consideration because they are equal to 0.

Let us define the actual service time as the actual amount
of service time that a TC receives before departing the system
either by a service completion or by a negative customer. Let
𝑆
𝑎

and 𝑆
𝑎

(𝑧), respectively, denote the actual service time and
its PGF under our assumption. Then, we obtain

Pr{𝑆
𝑎

= 𝑘} = Pr{𝑆 = 𝑘}𝜂𝑘 + Pr{𝑆 ≥ 𝑘}𝜂𝑘−1𝜂,

𝑘 ≥ 1,

𝑆
𝑎

(𝑧) =

∞

∑

𝑘=1

Pr{𝑆
𝑎

= 𝑘}𝑧
𝑘

=
𝜂𝑧 + (1 − 𝑧)𝑆(𝜂𝑧)

1 − 𝜂𝑧
.

(25)

We further define the modified service time as the virtual
service time, including a time to repair. Since a repair period
follows each time a negative customer arrives, from the point
of view of a TC, themodified service times can be regarded as
service times of the customers who arrive prior to a TC. Let
𝑆
𝑏

and 𝑆
𝑏

(𝑧), respectively, denote the modified service time
and its PGF under our assumption. Then, we obtain

Pr{𝑆
𝑏

= 1} = Pr{𝑆 = 1}𝜂,

Pr{𝑆
𝑏

= 𝑘} = Pr{𝑆 = 𝑘}𝜂𝑘 +
𝑘−1

∑

𝑖=1

Pr{𝑆 ≥ 𝑖}𝜂𝜂𝑖−1𝑟
𝑘−𝑖

,

𝑘 ≥ 2,

𝑆
𝑏

(𝑧) =

∞

∑

𝑘=1

Pr{𝑆
𝑏

= 𝑘}𝑧
𝑘

=
𝜂𝑧𝑅(𝑧) + (1 − 𝜂𝑧 − 𝜂𝑧𝑅(𝑧))𝑆(𝜂𝑧)

1 − 𝜂𝑧
.

(26)

Sincewe assumed that during a slot the potential arrival of
a negative customer and a repair completion occur immedi-
ately before the potential arrival of a positive customer, a TC’s
arrival which occurs during (𝑡−, 𝑡) may belong to one of the
following cases.

Case 1. A TC arrives finding the server is idle. Then, the TC’s
service is immediately started.

Case 2. A TC arrives at a slot during which a repair comple-
tion occurs. Then, the waiting time of the TC is the total ser-
vice time of the customers who are in the queue on the arrival
of the TC because the repair has just been completed.

Case 3. A TC arrives at a slot during which the server is busy
and a negative customer does not arrive. Then, the waiting
time of the TC is the total service time of the customers who
are in the queue on the arrival of the TC, plus the remaining
modified service time of the customer in service.

In other cases, a positive customer is blocked, and we do
not take blocked customers into consideration for waiting
time distribution. Let 𝑊

𝑞,𝑖

denote the waiting time of a TC
that arrives in case 𝑖, 𝑖 = 1, 2, 3, and define 𝑊

𝑞,𝑖

(𝑧) =

Pr{Case 𝑖}𝐸[𝑧𝑊𝑞,𝑖 | Case 𝑖]. From Case 1, we have
𝑊
𝑞,1

(𝑧)

= lim
𝑡→∞

Pr{𝑁(𝑡−) = 0, 𝜉(𝑡−) = 1}𝑧0

= lim
𝑡→∞

Pr{𝑁((𝑡 − 1)+) = 0, 𝜉((𝑡 − 1)+) = 1}

= 𝜋
0

.

(27a)

Case 2 yields

𝑊
𝑞,2

(𝑧)

= lim
𝑡→∞

∞

∑

𝑛=0

Pr{𝑁(𝑡−) = 𝑛, 𝜉(𝑡−) = 0, 𝜉(𝑡+) = 1}[𝑆
𝑏

(𝑧)]
𝑛
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= lim
𝑡→∞

∞

∑

𝑛=0

Pr{𝑁((𝑡 − 1)+) = 𝑛, 𝑅
𝑅

((𝑡 − 1)
+

) = 1}[𝑆
𝑏

(𝑧)]
𝑛

=

∞

∑

𝑛=0

𝜓
𝑛

(1)[𝑆
𝑏

(𝑧)]
𝑛

= Ψ(𝑆
𝑏

(𝑧), 1).

(27b)

From Case 3, we have

𝑊
𝑞,3

(𝑧)

= lim
𝑡→∞

∞

∑

𝑛=1

∞

∑

𝑘=0

Pr{𝑁(𝑡−) = 𝑛, 𝑆
𝑅

(𝑡
−

) = 𝑘,

𝜉(𝑡
−

) = 1, 𝜉(𝑡
+

) = 1}[𝑆
𝑏

(𝑧)]
𝑛−1

× [Pr{𝑆
𝑅

(𝑡
−

) < 𝑌 | 𝑆
𝑅

(𝑡
−

) = 𝑘}𝑧
𝑘

+

𝑘

∑

ℎ=1

Pr{𝑌 = ℎ | 𝑆
𝑅

(𝑡
−

) = 𝑘}𝑧
ℎ

𝑅(𝑧)]

= lim
𝑡→∞

∞

∑

𝑛=1

∞

∑

𝑘=0

Pr{𝑁((𝑡 − 1)+) = 𝑛, 𝑆
𝑅

((𝑡 − 1)
+

) = 𝑘 + 1,

𝜉((𝑡 − 1)
+

) = 1}𝜂[𝑆
𝑏

(𝑧)]
𝑛−1

× [Pr{𝑆
𝑅

(𝑡
−

) < 𝑌 | 𝑆
𝑅

(𝑡
−

) = 𝑘}𝑧
𝑘

+

𝑘

∑

ℎ=1

Pr{𝑌 = ℎ | 𝑆
𝑅

(𝑡
−

) = 𝑘}𝑧
ℎ

𝑅(𝑧)]

= 𝜂

∞

∑

𝑛=1

∞

∑

𝑘=0

𝜋
𝑛

(𝑘 + 1)[𝑆
𝑏

(𝑧)]
𝑛−1

[𝜂
𝑘

𝑧
𝑘

+

𝑘

∑

ℎ=1

𝜂
ℎ−1

𝜂𝑧
ℎ

𝑅(𝑧)]

= 𝜂

∞

∑

𝑛=1

∞

∑

𝑘=1

𝜋
𝑛

(𝑘)[𝑆
𝑏

(𝑧)]
𝑛−1

(𝜂𝑧)
𝑘−1

+ 𝜂

∞

∑

𝑛=1

∞

∑

𝑘=1

𝜋
𝑛

(𝑘)[𝑆
𝑏

(𝑧)]
𝑛−1

𝑅(𝑧)

𝜂𝑧(1 − (𝜂𝑧)
𝑘−1

)

1 − 𝜂𝑧

=
1

𝑆
𝑏

(𝑧)
[𝑧
−1

Π
∗

(𝑆
𝑏

(𝑧), 𝜂𝑧)

+ (𝜂Π
∗

(𝑆
𝑏

(𝑧), 1) − 𝑧
−1

Π
∗

(𝑆
𝑏

(𝑧), 𝜂𝑧))

⋅
𝜂𝑧

1 − 𝜂𝑧
𝑅(𝑧)].

(27c)

Let𝑊
𝑞

denote the unconditional waiting time of a TC. Com-
bining (27a), (27b), and (27c) with (14), we have𝑊

𝑞

(𝑧) given
by

𝑊
𝑞

(𝑧) =

𝑊
𝑞,1

(𝑧) + 𝑊
𝑞,2

(𝑧) + 𝑊
𝑞,3

(𝑧)

𝑊
𝑞,1

(1) + 𝑊
𝑞,2

(1) + 𝑊
𝑞,3

(1)

=
1

1 − 𝑃
𝑅

⋅ [𝜋
0

+
Π
∗

(𝑆
𝑏

(𝑧), 𝜂𝑧)

𝑧𝑆
𝑏

(𝑧)
(1 −

𝜂𝑧

1 − 𝜂𝑧
𝑅(𝑧))

+
Π
∗

(𝑆
𝑏

(𝑧), 1)

𝑆
𝑏

(𝑧)
(𝜂 + 𝜂

𝜂𝑧

1 − 𝜂𝑧
𝑅(𝑧))],

(28)

where 𝑃
𝑅

= 𝜆𝐸[𝑅](1 − 𝑆(𝜂))/(1 + 𝜆𝐸[𝑅](1 − 𝑆(𝜂))), which
denotes the probability that the arrival of a positive customer
is blocked.

Remark 2. Now that we deal with the Bernoulli arrival
process queueing system, BASTA property [22] is employed
to derive𝑊

𝑞,𝑖

(𝑧).

Let 𝑊 be a TC’s sojourn time. As 𝑊
𝑞

and 𝑆
𝑎

are inde-
pendent, we finally obtain

𝑊(𝑧) = 𝑊
𝑞

(𝑧) ⋅ 𝑆
𝑎

(𝑧), (29)

which leads to the mean sojourn time given by

𝐸[𝑊] =
1 − 𝑆(𝜂)

𝜂

+

𝜂𝜆(1 + 𝜂𝐸[𝑅])(1 − 𝑆(𝜂) − 𝜂𝑆
󸀠

(𝜂))

𝜂(𝜂 − 𝜆 + 𝜆𝑆(𝜂))
.

(30)

Remark 3. Equations (23) and (30) confirm the result of
Little’s law: 𝐿 = 𝜆

𝑒

𝐸[𝑊], where the effective arrival rate
𝜆
𝑒

= 𝜆(1 − 𝑃
𝑅

).

Remark 4. Since 𝑃
𝑅

is the blocking probability of a positive
customer, the service canceling probability 𝑃

𝐶

of a positive
customer is given by𝑃

𝐶

= (1−𝑃
𝑅

)(1−𝑆(𝜂)) because a service-
canceled positive customer first enters the system without
blocking and then a negative customer arrives before the
completion of the service of the service-canceled positive
customer.

4. System 2

In System 2, newly arriving customers enter the system while
the server is under repair. They receive their service after
repair.
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4.1. System Size Distribution for System 2. With the limiting
probabilities defined in Section 2, the Kolmogorov equations
that govern System 2 can be written as follows:

𝜓
0

(𝑘) = 𝜓
0

(𝑘 + 1)𝜆 + 𝜂𝜋
1

𝜆𝑟
𝑘

, (31)

𝜓
𝑛

(𝑘) = 𝜓
𝑛−1

(𝑘 + 1)𝜆 + 𝜓
𝑛

(𝑘 + 1)𝜆 + 𝜂𝜋
𝑛

𝜆𝑟
𝑘

+ 𝜂𝜋
𝑛+1

𝜆𝑟
𝑘

, 𝑛 ≥ 1,

(32)

𝜋
0

= (𝜓
0

(1) + 𝜋
0

+ 𝜂𝜋
1

(1))𝜆, (33)

𝜋
1

(𝑘) = 𝜓
0

(1)𝜆𝑠
𝑘

+ 𝜓
1

(1)𝜆𝑠
𝑘

+ 𝜋
0

𝜆𝑠
𝑘

+ 𝜂(𝜋
1

(1)𝜆𝑠
𝑘

+ 𝜋
1

(𝑘 + 1)𝜆 + 𝜋
2

(1)𝜆𝑠
𝑘

),

(34)

𝜋
𝑛

(𝑘) = 𝜓
𝑛−1

(1)𝜆𝑠
𝑘

+ 𝜓
𝑛

(1)𝜆𝑠
𝑘

+ 𝜂(𝜋
𝑛−1

(𝑘 + 1)𝜆 + 𝜋
𝑛

(1)𝜆𝑠
𝑘

+ 𝜋
𝑛

(𝑘 + 1)𝜆 + 𝜋
𝑛+1

(1)𝜆𝑠
𝑘

), 𝑛 ≥ 2,

(35)

and the normalizing condition is given by

𝜋
0

+ Ψ
∗

(1, 1) + Π
∗

(1, 1) = 1. (36)

Multiplying (31) and (32) by 𝑧𝑛 and summing over 𝑛, 𝑛 ≥
0, we obtain

Ψ(𝑧, 𝑘) = 𝜔
0

(Ψ(𝑧, 𝑘 + 1) + 𝜂𝑟
𝑘

𝑧
−1

Π
∗

(𝑧, 1)), (37)

where𝜔
0

= 𝜆+𝜆𝑧. Multiplying (38) by𝑤𝑘 and summing over
𝑘, 𝑘 ≥ 1, yield

Ψ
∗

(𝑧, 𝑤)(1 − 𝑤
−1

𝜔
0

)

= 𝜔
0

(𝜂𝑧
−1

𝑅(𝑤)Π
∗

(𝑧, 1) − Ψ(𝑧, 1)).

(38)

Inserting 𝑤 = 𝜔
0

into (38) and solving Ψ(𝑧, 1), we obtain

Ψ(𝑧, 1) = 𝜂𝑧
−1

𝑅(𝜔
0

)Π
∗

(𝑧, 1). (39)

Substituting (39) into (38) results in

Ψ
∗

(𝑧, 𝑤) =
𝜂𝑤𝜔
0

(𝑅(𝑤) − 𝑅(𝜔
0

))

𝑧(𝑤 − 𝜔
0

)
Π
∗

(𝑧, 1). (40)

Letting 𝑤 = 1 in (40), we obtain the relationship

Ψ
∗

(𝑧, 1) =
𝜂𝜔
0

(1 − 𝑅(𝜔
0

))

𝑧(1 − 𝜔
0

)
Π
∗

(𝑧, 1). (41)

Multiplying (34) and (35) by 𝑧𝑛 and then summing over
𝑛, 𝑛 ≥ 1, together with (33), we obtain

Π(𝑧, 𝑘)

= 𝜔
1

Π(𝑧, 𝑘 + 1)

+ 𝑠
𝑘

[𝜔
0

Ψ(𝑧, 1) + 𝑧
−1

𝜔
1

Π(𝑧, 1) − 𝜋
0

𝜆(1 − 𝑧)],

(42)

where 𝜔
1

= 𝜂(𝜆 + 𝜆𝑧). Multiplying (42) by 𝑤𝑘 and summing
over 𝑘, 𝑘 ≥ 1, yield

Π
∗

(𝑧, 𝑤)(1 − 𝑤
−1

𝜔
1

)

= 𝑧
−1

𝜔
1

Π(𝑧, 1)(𝑆(𝑤) − 𝑧)

+ 𝑆(𝑤)[𝜔
0

Ψ(𝑧, 1) − 𝜋
0

𝜆(1 − 𝑧)].

(43)

To solve Π(𝑧, 1), we insert 𝑤 = 𝜔
1

into (43). Thus, we have

Π(𝑧, 1) =
𝑧𝑆(𝜔
1

)[𝜋
0

𝜆(1 − 𝑧) − 𝜔
0

Ψ(𝑧, 1)]

𝜔
1

(𝑆(𝜔
1

) − 𝑧)
. (44)

Using (39) and (44) in (43), Π∗(𝑧, 𝑤) is represented as

Π
∗

(𝑧, 𝑤)

=
𝑤(𝑆(𝑤) − 𝑆(𝜔

1

))(𝜋
0

𝜆𝑧(1 − 𝑧) − 𝜂𝜔
0

𝑅(𝜔
0

)Π
∗

(𝑧, 1))

(𝑤 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
.

(45)

By inserting 𝑤 = 1 into (45), it follows that

Π
∗

(𝑧, 1)

=
𝜋
0

𝜆𝑧(1 − 𝑧)(1 − 𝑆(𝜔
1

))

𝜂𝜔
0

𝑅(𝜔
0

)(1 − 𝑆(𝜔
1

)) + (1 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
.

(46)

Let𝑃(𝑧) denote the PGF of the system size distribution. From
(41) and (46), we can obtain

𝑃(𝑧) = 𝜋
0

+ Ψ
∗

(𝑧, 1) + Π
∗

(𝑧, 1)

= 𝜋
0

+
𝜋
0

(1 − 𝑆(𝜔
1

))[𝜆𝑧(1 − 𝑧) + 𝜂𝜔
0

(1 − 𝑅(𝜔
0

))]

𝜂𝜔
0

𝑅(𝜔
0

)(1 − 𝑆(𝜔
1

)) + (1 − 𝜔
1

)(𝑆(𝜔
1

) − 𝑧)
,

(47)

where 𝜋
0

= (𝜂−𝜆(1+𝜂𝐸[𝑅])(1−𝑆(𝜂)))/𝜂 by the normalizing
condition (36).

Differentiating (47) with respect to 𝑧 and taking limit
𝑧 → 1 lead to the mean system size given by

𝐿 =
𝜆(1 − 𝑆(𝜂))

𝜂

+ ((𝜆
2

[(2𝜂 + 2𝜂𝐸[𝑅] + 𝜂
2

𝐸[𝑅(𝑅 + 1)])

⋅ (1 − 𝑆(𝜂)) − 2𝜂𝜂(1 + 𝜂𝐸[𝑅])𝑆
󸀠

(𝜂)])

⋅ (2𝜂[𝜂 − 𝜆(1 + 𝜂𝐸[𝑅])(1 − 𝑆(𝜂))])
−1

).

(48)

Remark 5. The denominator of 𝑃(𝑧) for System 2 can be
written as (1 − 𝜔

1

)(𝐵(𝑧) − 𝑧), where

𝐵(𝑧) =
𝜂𝜔
0

𝑅(𝜔
0

) + (1 − 𝜔
1

− 𝜂𝜔
0

𝑅(𝜔
0

))𝑆(𝜔
1

)

1 − 𝜔
1

. (49)

Similar toRemark 1, for the stability of System2, the following
inequality is the necessary and sufficient condition under
which steady-state solution exists: 𝜆 < 𝜂[(1 + 𝜂𝐸[𝑅])(1 −

𝑆(𝜂))]
−1.
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4.2. Sojourn Time Distribution for System 2. We derive the
PGF of the FCFS sojourn time of a TC for System 2. The
method used in this section is much simpler than that used
in Section 3.2. The PGF of the waiting time for the standard
Geo/G/1 queue is known to be [22]

𝑐(1 − 𝑧)

1 − 𝑧 − 𝜆 + 𝜆𝑆(𝑧)
, (50)

where 𝑐 is a normalizing constant.We first replace 𝑆(𝑧) in (50)
with 𝑆

𝑏

(𝑧) in (27a), (27b), and (27c).Then, 𝑐 is determined by
normalization. Applying this procedure,𝑊

𝑞

(𝑧) is given by

𝑊
𝑞

(𝑧)

=
𝑐(1 − 𝑧)(1 − 𝜂𝑧)

(1 − 𝑧)(1 − 𝜂𝑧) − 𝜆(1 − 𝜂𝑧 − 𝜂𝑧𝑅(𝑧))(1 − 𝑆(𝜂𝑧))
,

(51)

where 𝑐 = (𝜂−𝜆(1+𝜂𝐸[𝑅])(1− 𝑆(𝜂)))/𝜂. Since𝑊
𝑞

and 𝑆
𝑎

are
independent, we have𝑊(𝑧) as

𝑊(𝑧) = 𝑊
𝑞

(𝑧) ⋅ 𝑆
𝑎

(𝑧), (52)

which leads to the mean sojourn time given by

𝐸[𝑊]

=
1 − 𝑆(𝜂)

𝜂

+ ((𝜆[(2𝜂 + 2𝜂𝐸[𝑅] + 𝜂
2

𝐸[𝑅(𝑅 + 1)])

⋅ (1 − 𝑆(𝜂)) − 2𝜂𝜂(1 + 𝜂𝐸[𝑅])𝑆
󸀠

(𝜂)])

⋅ (2𝜂[𝜂 − 𝜆(1 + 𝜂𝐸[𝑅])(1 − 𝑆(𝜂))])
−1

).

(53)

Remark 6. Equations (48) and (53) confirm the result of
Little’s law: 𝐿 = 𝜆𝐸[𝑊].

Remark 7. The service canceling probability 𝑃
𝐶

of a positive
customer is given by 𝑃

𝐶

= 1 − 𝑆(𝜂) because a negative cus-
tomer arrives before the completion of the service of a ser-
vice-canceled positive customer.

5. Numerical Examples

The purpose of this section is to study the influence of nega-
tive customer arrival on the mean system size and the service
canceling probability of both System 1 and System 2. We
also investigate the influence of the type of the repair time
distribution on the mean system size. In every example,
positive customers arrive at a system, according to a Bernoulli
process at a rate of 0.1.We consider three types of service time
distributions: a geometric distribution, a negative binomial
distribution, and a mixture of two different geometric distri-
butions. Specifically, for the geometric case, the probability
mass function (PMF) of the service time is defined by

𝑠
𝑘

= (
1

8
)(

7

8
)

𝑘−1

, 𝑘 = 1, 2, . . . . (54)

For the negative binomial case, the PMF of the service time is
defined by

𝑠
𝑘

= (
𝑘 − 1

3
)(

1

2
)

4

(
1

2
)

𝑘−4

, 𝑘 = 4, 5, . . . . (55)

For the geometric mixture case, the PMF of the service time
is defined by

𝑠
𝑘

=
4

5
(
1

3
)(

2

3
)

𝑘−1

+
1

5
(
1

28
)(

27

28
)

𝑘−1

,

𝑘 = 1, 2, . . . .

(56)

The above three service times have a common mean of 8.
The coefficients of variation are, respectively, 0.94, 0.35, and 2
for the geometric, negative binomial, and geometric mixture
cases.

Similarly, the repair time distributions are assumed to fol-
low one of the three distributions. For the geometric case, the
PMF of the repair time is defined by

𝑟
𝑘

= (
1

5
)(

4

5
)

𝑘−1

, 𝑘 = 1, 2, . . . . (57)

For the negative binomial case, the PMF of the repair time is
defined by

𝑟
𝑘

= (
𝑘 − 1

1
)(

2

5
)

2

(
3

5
)

𝑘−2

, 𝑘 = 2, 3, . . . . (58)

For the geometric mixture case, the PMF of the repair time is
defined by

𝑟
𝑘

=
7

10
(
3

20
)(

17

20
)

𝑘−1

+
3

10
(
9

10
)(

1

10
)

𝑘−1

, 𝑘 = 1, 2, . . . .

(59)

While these three repair times have a common mean of 5,
their coefficients of variation are, respectively, 0.89, 0.55, and
1.15 for the geometric, negative binomial, and geometric mix-
ture cases.

In Figures 1, 2, and 3, the mean system sizes and the
service canceling probabilities of both System 1 and System
2 are shown as functions of 𝜂 when the repair time follows a
negative binomial distribution.

Figures 1 to 3 confirm that the mean system sizes of both
System 1 and System 2 decrease as 𝜂 increases. Furthermore,
for all cases, the mean system size of System 2 is greater than
the mean system size of System 1 as expected. This is obvious
because, in System 2, customers newly arriving during the
repair period join the queue and wait for the server to be
repaired without leaving the system. We also verify that the
service canceling probabilities of both System 1 and System 2
increase as 𝜂 increases and the service canceling probability of
System 2 is greater than that of System 1 for all cases. This is
because, in System 1, the arrival of a positive customer can be
blocked.
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Figure 1: Mean system size and service canceling probability over 𝜂 with geometric service time distribution.
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Figure 2: Mean system size and service canceling probability over 𝜂 with negative binomial service time distribution.
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Second, we investigate the tendencies of the mean system
size of System 2 by varying the repair time distributions. In
Figure 4, the mean system size of System 2 is shown as a
function of 𝜂 when the service time follows the negative
binomial distribution.

As shown in Figure 4, for all three different distributions
of repair times, as 𝜂 increases, themean system sizes decrease.
Moreover, for all values of 𝜂, the higher the coefficient of
variation is, the greater the mean system size is. The overall
results in this section confirm that the mean system size is a
decreasing function of 𝜂.

6. Conclusion

We considered two repairable Geo/G/1 queueing systems
with negative customers, in which a negative customer arrival
causes the customer in service to leave the system and the
server to fail. At a failure epoch, the repair process imme-
diately begins. Those arriving during the repair period are
blocked in System 1, while they remain in System 2. For
these systems, we derived some important results of system
characteristics such as the PGFs of the system sizes and
FCFS sojourn times. Finally, some numerical examples were
performed to illustrate the influence of the negative customer
arrival rate on the systems. Our research presents an exten-
sion of the discrete-time repairable queueing model and the
analysis of the model may provide a decision making tool for
repair policies arising in many practical systems.

For further studies, we can extend this model to more
complex situations such as the discrete-time repairable
queueing systems with the phase type arrival process of either
positive customers or negative customers.
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