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This paper presents a new application of the homotopy analysis method (HAM) for solving evolution equations described in
terms of nonlinear partial differential equations (PDEs). The new approach, termed bivariate spectral homotopy analysis method
(BISHAM), is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of theHAMalgorithm.
The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs,
namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from
literature has been used to confirm accuracy and effectiveness of the proposed method.

1. Introduction

Thestudy of nonlinear evolution partial differential equations
(PDEs) is a vast area of research with well-developed and
documented theories and applications in almost all areas
of science and engineering. The PDEs are used to describe
many complex nonlinear settings in applications such as
vibration and wave propagation, fluid mechanics, plasma
physics, quantum mechanics, nonlinear optics, solid state
physics, chemical kinematics, physical chemistry, population
dynamics, and many other areas of mathematical modelling.
The development of both analytical and numerical methods
for solving complicated highly nonlinear PDEs continues to
be a fertile area of research geared towards enriching and
deepening our understanding of these intriguing nonlinear
problems.

The homotopy analysis method (HAM) has been widely
discussed in the literature for solving both nonlinear ordinary
and partial differential equations. A comprehensive expo-
sition of the underlying concepts and applications of the
HAM can be found in recently published books [1–4]. A
unique feature of the HAM, which sets it apart from all

perturbative and nonperturbative methods reported in the
literature, is the flexibility to vary its embedded convergence
controlling auxiliary parameters and functions. Previous
studies have illustrated that a carefully selected choice of
auxiliary linear operators result in significant improvement
of the convergence and accuracy of the HAM [5–7]. Baxter
et al. [5] examined multiple auxiliary linear operators to
find the best operator that yields the best accuracy for the
solution of the Cahn-Hilliard equation, a nonlinear partial
differential equation. The linear operators in the study of
Baxter et al. [5], as well as in numerous other HAM based
studies for solving nonlinear PDEs, are conveniently chosen
to guarantee that the HAM algorithm yields analytical series
solutions.The limitation of theseHAMbased approaches that
seek to obtain completely analytical results is that generating
incremental terms of the HAM series solution becomes
progressively cumbersome and the problem solving exercise
becomes intractable eventually.This is particularly true when
a nontrivial linear operator is used or required for optimal
accuracy. Accordingly, an approach that can admit any form
of linear operator, no matter how complex, is required in
the HAM algorithm. However, complicated linear operators
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preclude the possibility of resolving theHAM series solutions
analytically. Motsa et al. [8, 9] proposed a discrete version
of the HAM that is based on Chebyshev spectral colloca-
tion approach for implementing the HAM algorithm which
was otherwise impossible to solve analytically. This discrete
variant of theHAMwas called the spectral homotopy analysis
method (SHAM) in [8, 9]. The SHAM has recently been
extended to solve a nonlinear partial differential equation
based problem of unsteady boundary layer flow caused by an
impulsively stretching plate in [10]. Motsa [10] used a partial
differential equation based auxiliary operator to improve on
the ordinary derivative based linear operator approach used
previously by Liao [11] to solve same problem. Motsa [10]
concluded that when solving nonlinear PDEs, the use of
PDE based linear operators leads to better results than the
use of ODE based linear operators. In implementing the
method, the decomposed equations were solved by applying
the spectral method in the space variable and monomial
series expansion in the time variable. This approach was
found to work well for the unsteady boundary layer problem
considered in [10] because the dimensionless time variable
was defined in the range 𝜉 ∈ [0, 1]. However, series
approaches of this kind are well known to have the capacity
to resolve accurate solutions only in the region 0 ≤ 𝜉 <
1. Consequently, there is a need to develop variants of the
SHAM that give solutions that are uniformly valid including
regions where 𝜉 ≫ 1. More robust SHAM variations are
needed for the solution of complex nonlinear PDEs that
model important problems with wide applications in science,
engineering, and other areas of applied mathematics.

The main objective of this work is to introduce a new
variant of the spectral homotopy analysis method for solv-
ing nonlinear partial differential equations. The proposed
method is developed by defining a rule of solution expression
based on bivariate Lagrange interpolation. The homotopy
analysis method algorithm is then applied to decompose the
governing nonlinear PDEs into a sequence of linear PDEs.
The resulting linear sequence of PDEs contains variable coef-
ficients and is impossible to solve exactly. Consequently, the
Chebyshev spectral collocation method is applied indepen-
dently in the space and time independent variables. In view of
the application of the combination of bivariate interpolation
and spectral collocation differentiation, the new method
is called bivariate interpolated spectral homotopy analysis
method (BI-SHAM). The study presents a general BI-SHAM
algorithm that can be used to solve second order nonlinear
evolution equations. The applicability, accuracy, and reliabil-
ity of the proposed BI-SHAM is confirmed by solving the
Fisher, Burger-Fisher, Burger-Huxley, and Fitzhurg-Nagumo
equations.TheBI-SHAMresults are compared against known
exact solutions that have been reported in the scientific
literature.

The remainder of the paper is organized as follows. In
Section 2, we introduce the algorithm of the Bi-SHAM for
a general nonlinear evolution PDE. Section 3 describes the
application of the BI-SHAM in the problems that are selected
for numerical experimentation. The numerical simulations
and results are presented in Section 4. Finally, we conclude
and describe future work in Section 5.

2. Bivariate Interpolated Spectral Homotopy
Analysis Method (BI-SHAM)

In this sectionwe introduce theBivariate Interpolated Spectral
Homotopy analysis Method (BI-SHAM) used to solve the gov-
erning nonlinear evolution PDEs. Without loss of generality,
we consider nonlinear PDEs of the form

𝑢
𝑡
= 𝐻 (𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥

) , (1)

where 𝑢(𝑥, 𝑡) is the solution and 𝐻 is a nonlinear operator
which contains all the spatial derivatives of 𝑢. The solution
procedure is based on the initial assumption that the solution
can be approximated by a bivariate Lagrange interpolation
polynomial of the form

+∞

∑
𝑚=0

𝑁

∑
𝑟=0

𝑀

∑
𝑠=0

𝑢
𝑀,𝑁

𝑚
(𝑥
𝑟
, 𝑡
𝑠
) 𝜙
𝑟
(𝑥) 𝜙
𝑠
(𝑡) , (2)

which interpolates 𝑢
𝑚
(𝑥, 𝑡) independently at selected points

in both the 𝑥 and 𝑡 directions defined as follows:

{𝑥
𝑟
} = {cos(𝜋𝑟

𝑁
)}
𝑁

𝑟=0

, {𝑡
𝑠
} = {cos(𝜋𝑠

𝑀
)}
𝑀

𝑠=0

. (3)

The choice of grid points (3), which are called Chebyshev-
Gauss-Lobatto points, ensures that there is a simple conver-
sion of the continuous derivatives, in both space and time, to
discrete derivatives at the grid points aswill be discussed later.
The functions 𝜙

𝑟
(𝑥) are the characteristic Lagrange cardinal

polynomials defined as follows:

𝜙
𝑗
(𝑥) =

𝑀

∏
𝑗=0

𝑗 ̸=𝑘

𝑥 − 𝑥
𝑘

𝑥
𝑗
− 𝑥
𝑘

, (4)

which obey the Kronecker delta equation. Consider

𝜙
𝑗
(𝑥
𝑘
) = 𝛿
𝑗𝑘

= {
0 if 𝑗 ̸= 𝑘

1 if 𝑗 = 𝑘.
(5)

The functions 𝜙
𝑠
(𝑡) are defined in a similar manner.

To derive the HAM equations corresponding to the non-
linear equation (1), it is convenient to rewrite the governing
equation in the form

𝐹 [𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
] + 𝐺 [𝑢, 𝑢

󸀠
, 𝑢
󸀠󸀠
] − 𝑢̇ = 0, (6)

where the dot and primes denote the time and space deriva-
tives, respectively, 𝐹 is a linear operator, and 𝐺 is a nonlinear
operator. A crucial step in the implementation of the solution
procedure is the evaluation of the time derivative at the grid
points 𝑡

𝑖
(𝑖 = 0, 1, . . . ,𝑀). Before the derivative is applied, the

given physical region, say 𝑡 ∈ [0, 𝑇], is converted to the region
𝜏 ∈ [−1, 1] using the linear transformation 𝑡 = 𝑇(𝜏 + 1)/2.
The values of the derivatives at the Chebyshev-Gauss-Lobatto
points 𝜏

𝑖
are computed as follows:

𝜕𝑢

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡𝑖
= 2
𝑀

∑
𝑗=0

𝑑
𝑖,𝑗
𝑢
𝑗
(𝑥) , 𝑖 = 0, 1, 2, . . . ,𝑀, (7)
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where 𝑢
𝑗
= 𝑢(𝑥, 𝜏

𝑗
), 𝑑
𝑖,𝑗

(𝑖, 𝑗 = 0, 1, . . . ,𝑀) are entries of the
standard Chebyshev differentiation matrix d = [𝑑

𝑖,𝑗
] of size

(𝑀 + 1) × (𝑀 + 1) (see, e.g., [12, 13]). By evaluating (6) at the
grid points 𝜏

𝑖
, we obtain

𝐹 [𝑢
𝑖
, 𝑢
󸀠

𝑖
, 𝑢
󸀠󸀠

𝑖
] + 𝐺 [𝑢

𝑖
, 𝑢
󸀠

𝑖
, 𝑢
󸀠󸀠

𝑖
] − 2
𝑀

∑
𝑗=0

𝑑
𝑖𝑗
𝑢
𝑗
= 0,

𝑖 = 0, 1, 2, . . . ,𝑀.

(8)

If the initial condition for (1) is given at 𝑡 = 0
(corresponding to 𝜏

𝑀
= −1), we write (8) as follows:

𝐹 [𝑢
𝑖
, 𝑢
󸀠

𝑖
, 𝑢
󸀠󸀠

𝑖
] + 𝐺 [𝑢

𝑖
, 𝑢
󸀠

𝑖
, 𝑢
󸀠󸀠

𝑖
] − 2
𝑀−1

∑
𝑗=0

𝑑
𝑖𝑗
𝑢
𝑗
= 2𝑑
𝑖𝑀

𝑢
𝑀
,

𝑖 = 0, 1, 2, . . . ,𝑀 − 1,

(9)

where 𝑢
𝑀
(𝑥) = 𝑢(𝑥, 0) is the known initial condition.

Equation (9) forms a system of 𝑀 coupled nonlinear
ordinary differential equations with unknowns 𝑢

𝑖
(𝑥), 𝑖 =

0, 1, 2, . . . ,𝑀 − 1. Below, we describe the spectral homotopy
analysis method used to solve (9).

The algorithm of the HAM begins with the construction
of the homotopy for a given linear operatorL[𝑈

𝑖
] defined as

follows:
0 ≡ H (𝑈

𝑖
, 𝑢
𝑖,0
; 𝑞) = (1 − 𝑞)L [𝑈

𝑖
(𝑥; 𝑞) − 𝑢

𝑖,0
(𝑥)]

− 𝑞ℎ {N [𝑈
𝑖
(𝑥; 𝑞)] − 2𝑑

𝑖𝑀
𝑢
𝑀
} ,

(10)

where

L [𝑈
𝑖
] = 𝐹 [𝑈

𝑖
, 𝑈
󸀠

𝑖
, 𝑈
󸀠󸀠

𝑖
] − 2
𝑀−1

∑
𝑗=0

𝑑
𝑖𝑗
𝑈
𝑗
, (11)

N [𝑈
𝑖
] = L [𝑈

𝑖
] + 𝐺 [𝑈

𝑖
, 𝑈
󸀠

𝑖
, 𝑈
󸀠󸀠

𝑖
] , 𝑖 = 0, 1, 2, . . . ,𝑀;

(12)

𝑞 ∈ [0, 1] is an embedding parameter; ℎ denotes a
nonzero convergence controlling auxiliary parameter; 𝑢

𝑖,0
(𝑥)

is the initial approximation of the solution of 𝑢
𝑖
for 𝑖 =

0, 1, 2, . . . ,𝑀 − 1. It should be emphasised that, in the
specialized language of the HAM, the homotopy equation
(10) is referred to as the zeroth order deformation equation.
From (10) it can be noted that, as 𝑞 increases from 0 to 1,
𝑈
𝑖
(𝑥; 𝑞) varies from the initial approximation 𝑢

𝑖,0
(𝑥) to the

solution 𝑢
𝑖
(𝑥) of nonlinear equation (9). Expanding 𝑈

𝑖
(𝑥; 𝑞)

using Taylor series about 𝑞 gives

𝑈
𝑖
(𝑥; 𝑞) = 𝑈

𝑖
(𝑥; 0) +

+∞

∑
𝑚=1

𝑢
𝑖,𝑚

(𝑥) 𝑞
𝑚
, (13)

where

𝑢
𝑖,𝑚

(𝑥) =
1

𝑚!

𝜕𝑚𝑈
𝑖
(𝑥; 𝑞)

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0
. (14)

Thus, since 𝑈
𝑖
(𝑥; 1) = 𝑢

𝑖
(𝑥) and 𝑈

𝑖
(𝑥; 0) = 𝑢

𝑖,0
(𝑥), we obtain

𝑢
𝑖
(𝑥) = 𝑢

𝑖,0
(𝑥) +

+∞

∑
𝑚=1

𝑢
𝑖,𝑚

(𝑥) . (15)

The series (15) converges when the auxiliary parameter ℎ
is carefully chosen. The functions 𝑢

𝑖,𝑚
appearing in series

(15) are obtained as solutions of the so-called higher order
deformations which are obtained by differentiating the zero-
order deformation equation (10), 𝑚 times with respect to 𝑞,
then dividing by 𝑚!, and finally setting 𝑞 = 0. This gives

L [𝑢
𝑖,𝑚

(𝑥) − (𝜒
𝑚

+ ℎ) 𝑢
𝑖,𝑚−1

(𝑥)]

= ℎ𝑅
𝑖,𝑚−1

[𝑢
𝑖,0
, 𝑢
𝑖,1
, . . . , 𝑢

𝑖,𝑚−1
] − 2 (1 − 𝜒

𝑚
) ℎ𝑑
𝑖𝑀

𝑢
𝑀
,
(16)

where

𝑅
𝑖,𝑚−1

[𝑢
𝑖,0
, 𝑢
𝑖,1
, . . . , 𝑢

𝑖,𝑚−1
] =

1

(𝑚 − 1)!

𝜕𝑚−1𝐺

𝜕𝑞𝑚−1
, (17)

𝜒
𝑚

= {
0, 𝑚 ⩽ 1,

1, 𝑚 > 1.
(18)

The initial approximations 𝑢
𝑖,0
(𝑥) are chosen in such a way

that

L [𝑢
𝑖,0
] = 2𝑑

𝑖𝑀
𝑢
𝑀
, (19)

which, when using the definition ofL in (11), can be written
as follows:

𝐹 [𝑢
𝑖,0
, 𝑢
󸀠

𝑖,0
, 𝑢
󸀠󸀠

𝑖,0
] − 2
𝑀−1

∑
𝑗=0

𝑑
𝑖𝑗
𝑢
𝑗,0

= 2𝑑
𝑖𝑀

𝑢
𝑀
,

𝑖 = 0, 1, 2, . . . ,𝑀 − 1.

(20)

Equation (20) to be solved for the initial approximations 𝑢
𝑖,0

together with higher order deformation equations giving 𝑢
𝑖,𝑚

constitute sequence of linear ordinary differential equations
and are solved using the Chebyshev spectral collocation
method which is applied independently in the 𝑥 direction
(where 𝑥 ∈ [𝑎, 𝑏]) using 𝑁 + 1 Chebyshev-Gauss-Lobatto
points. Consider

𝑎 = 𝜂
0
< 𝜂
1
< ⋅ ⋅ ⋅ < 𝜂

𝑁
= 𝑏, (21)

defined as

𝑥
𝑁−𝑟

= (𝑏 − 𝑎)
𝜂
𝑟
+ 1

2
, 𝜂
𝑟
= cos 𝑟𝜋

𝑁
, 𝑟 = 0, 1, 2, . . . , 𝑁.

(22)

The derivatives with respect to 𝑥 are defined is terms of the
Chebyshev differentiation matrix as

𝑑𝑝𝑢
𝑖,𝑚

𝑑𝑥𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑟

= (
2

(𝑏 − 𝑎)
)
𝑝 𝑁

∑
𝑠=0

𝐷
𝑝

𝑟,𝑠
𝑢
𝑖,𝑚

(𝜂
𝑠
) = D𝑝U

𝑖,𝑚
,

𝑟 = 0, 1, 2, . . . , 𝑁,

(23)

where 𝑝 is the order of the derivative, D = (2/(𝑏 − 𝑎))[𝐷
𝑟,𝑠
]

(𝑟, 𝑠 = 0, 1, 2, . . . , 𝑁) with [𝐷
𝑟,𝑠
] being an (𝑁 + 1) × (𝑁 + 1)

Chebyshev derivative matrix, and the vector U
𝑖,𝑚

is defined
as

U
𝑖,𝑚

= [𝑢
𝑖,𝑚

(𝜂
0
) , 𝑢
𝑖,𝑚

(𝜂
1
) , . . . , 𝑢

𝑖,𝑚
(𝜂
𝑁
)]
𝑡

. (24)
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Thus, substituting (23) in the equations that give the
initial approximations (20), we obtain the following 𝑀(𝑁 +
1) × 𝑀(𝑁 + 1)matrix system:

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑀−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑀−1

...
... d

...
𝐴
𝑀−1,0

𝐴
𝑀−1,1

⋅ ⋅ ⋅ 𝐴
𝑀−1,𝑀−1

]
]
]
]

]

[
[
[
[

[

U
0,0

U
1,0

...
U
𝑀−1,0

]
]
]
]

]

=
[
[
[
[

[

2𝑑
0,𝑀

U
𝑀

2𝑑
1,𝑀

U
𝑀

...
2𝑑
𝑀−1,𝑀

U
𝑀

]
]
]
]

]

,

(25)

where

𝐴
𝑖,𝑖

= 𝐹 [I,D,D2] − 2𝑑
𝑖,𝑖
I, 𝑖 = 0, 1, . . . ,𝑀 − 1,

𝐴
𝑖,𝑗

= −2𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

(26)

U
𝑀

= [𝑢
𝑀

(𝜂
0
) , 𝑢
𝑀

(𝜂
1
) , . . . , 𝑢

𝑀
(𝜂
𝑁
)]
𝑡

, (27)

and I is the identity matrix of size (𝑁 + 1) × (𝑁 + 1), the
superscript 𝑡 denotes transpose, and the function 𝐹[I,D,D2]
is the coefficient of U

𝑖,0
after the spectral method has been

applied to the linear function 𝐹[𝑢
𝑖,0
, 𝑢󸀠
𝑖,0
, 𝑢󸀠󸀠
𝑖,0
]. Solving (25)

gives the initial approximation𝑢
𝑖,0
. To obtain the approximate

solutions for 𝑢
𝑖,𝑚

(for 𝑚 ≥ 1), the spectral collocation
method, with discretisation in the 𝑥 direction, is applied in
a similar manner to the higher order deformation equations
(16). This gives the following 𝑀(𝑁 + 1) × 𝑀(𝑁 + 1) matrix
system:

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑀−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑀−1

...
... d

...
𝐴
𝑀−1,0

𝐴
𝑀−1,1

⋅ ⋅ ⋅ 𝐴
𝑀−1,𝑀−1

]
]
]
]

]

[
[
[
[

[

U
0,𝑚

U
1,𝑚

...
U
𝑀−1,𝑚

]
]
]
]

]

=
[
[
[
[

[

K
0,𝑚−1

K
1,𝑚−1

...
K
𝑀−1,𝑚−1

]
]
]
]

]

,

(28)

where 𝐴
𝑖,𝑖
and 𝐴

𝑖,𝑗
are as defined in (26) and

K
𝑖,𝑚−1

= (ℎ + 𝜒
𝑚
)

× [

[

𝐹 (U
𝑖,𝑚−1

,DU
𝑖,𝑚−1

,D2U
𝑖,𝑚−1

) − 2
𝑀−1

∑
𝑗=0

𝑑
𝑖,𝑗
U
𝑗,𝑚−1

]

]

− 2 (1 − 𝜒
𝑚
) ℎ𝑑
𝑖,𝑀

U
𝑀

+ ℎR
𝑖,𝑚−1

.

(29)

In the above equation, R
𝑖,𝑚−1

is obtained by converting
the continuous derivatives in 𝑅

𝑖,𝑚−1
to Chebyshev spectral

derivatives.

3. Numerical Experiments

To demonstrate the applicability of the proposed Bi-SHAM
algorithm as an appropriate tool for solving nonlinear partial
differential equations, we apply the proposed algorithm to
well-known nonlinear PDEs of the form (1) with exact
solutions. In order to determine the level of accuracy of the
BI-SHAM approximate solution, at a particular time level,
in comparison with the exact solution we report maximum
error which is defined by

𝐸
𝑁

= max
𝑟

{
󵄨󵄨󵄨󵄨𝑢 (𝑥
𝑟
, 𝑡) − 𝑢̃ (𝑥

𝑟
, 𝑡)

󵄨󵄨󵄨󵄨 , : 0 ≤ 𝑟 ≤ 𝑁} , (30)

where 𝑢̃(𝑥
𝑟
, 𝑡) is the solution obtained by (28) and is the

𝑢(𝑥
𝑟
, 𝑡) exact solution at the time level 𝑡.

Example 1. We consider Fisher’s equation as follows:

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢 (1 − 𝑢) , (31)

subject to the initial condition

𝑢 (𝑥, 0) =
1

(1 + 𝑒√𝛼/6 𝑥)
2
, (32)

and exact solution [14]

𝑢 (𝑥, 𝑡) =
1

(1 + 𝑒√𝛼/6𝑥−5𝛼𝑡/6)
2
, (33)

where 𝛼 is a constant. Fisher’s equation represents a reactive-
diffusive system and is encountered in chemical kinetics
and population dynamics applications. For this example, the
linear 𝐹 and nonlinear operator𝐺 to be used in the Bi-SHAM
algorithm are chosen as follows:

𝐹 (𝑢) = 𝑢
󸀠󸀠
+ 𝛼𝑢, 𝐺 (𝑢) = −𝛼𝑢

2
. (34)

Thus, using (17) we obtain

𝑅
𝑖,𝑚−1

= −𝛼
𝑚−1

∑
𝑛=0

𝑢
𝑛,𝑖
𝑢
𝑚−1−𝑛,𝑖

. (35)

The approximate solution at the (𝑥
𝑟
, 𝑡
𝑠
) is obtained by solving

(28).

Example 2. We consider the generalized Burgers-Fisher’s
equation [15] as follows:

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿 𝜕𝑢

𝜕𝑥
=

𝜕2𝑢

𝜕𝑥2
+ 𝛽𝑢 (1 − 𝑢

𝛿
) , (36)

with initial condition

𝑢 (𝑥, 0) = {
1

2
+

1

2
tanh(

−𝛼𝛿

2(𝛿 + 1)
𝑥)}
1/𝛿

, (37)
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and exact solution

𝑢 (𝑥, 𝑡)

= {
1

2

+
1

2
tanh(

−𝛼𝛿

2 (𝛿 + 1)
[𝑥 − (

𝛼

𝛿 + 1
+

𝛽 (𝛿 + 1)

𝛼
) 𝑡])}

1/𝛿

,

(38)

where 𝛼, 𝛽, and 𝛿 are parameters which, for illustration
purposes, are chosen to be one in this paper. In this example,
when 𝛼 = 𝛽 = 𝛿 = 1, the linear 𝐹 and nonlinear operator 𝐺
to be used in the Bi-SHAM algorithm are chosen as follows:

𝐹 (𝑢) = 𝑢
󸀠󸀠
+ 𝑢, 𝐺 (𝑢) = −𝑢𝑢

󸀠
− 𝑢
2
. (39)

Thus, using (17) we obtain

𝑅
𝑖,𝑚−1

= −
𝑚−1

∑
𝑛=0

(𝑢
𝑛,𝑖
𝑢
𝑚−1−𝑛,𝑖

+ 𝑢
𝑛,𝑖
𝑢
󸀠

𝑚−1−𝑛,𝑖
) . (40)

Example 3. Consider the Fitzhurg-Nagumo equation as fol-
lows:

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑢 (𝑢 − 𝛼) (1 − 𝑢) , (41)

with initial condition

𝑢 (𝑥, 0) =
1

2
[1 − coth(−

𝑥

2√2
)] , (42)

and exact solution [16]

𝑢 (𝑥, 𝑡) =
1

2
[1 − coth(−

𝑥

2√2
+

2𝛼 − 1

4
𝑡)] , (43)

where 𝛼 is a parameter. In this example the linear 𝐹 and
nonlinear operator 𝐺 to be used in the Bi-SHAM algorithm
are chosen as follows:

𝐹 (𝑢) = 𝑢
󸀠󸀠
− 𝛼𝑢, 𝐺 (𝑢) = (1 + 𝛼) 𝑢

2
− 𝑢
3
. (44)

Thus, using (17) we obtain

𝑅
𝑖,𝑚−1

= (1 + 𝛼)
𝑚−1

∑
𝑛=0

𝑢
𝑛,𝑖
𝑢
𝑚−1−𝑛,𝑖

−
𝑚−1

∑
𝑛=0

𝑢
𝑚−1−𝑛,𝑖

𝑛

∑
𝑘=0

𝑢
𝑘,𝑖
𝑢
𝑛−𝑘,𝑖

.

(45)

Example 4. Consider the Burgers-Huxley’s equation as fol-
lows:

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿
𝑢
𝑥
=

𝜕2𝑢

𝜕𝑥2
+ 𝛽𝑢 (1 − 𝑢

𝛿
) (𝑢
𝛿
− 𝛾) , (46)

where 𝛼, 𝛽 ≥ 0 are constant parameters, 𝛿 is a positive integer
(set to be 𝛿 = 1 in this study), and 𝛾 ∈ (0, 1).

The exact solution subject to the initial condition,

𝑢 (𝑥, 0) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
𝑥] , (47)

is reported in [17, 18] as

𝑢 (𝑥, 𝑡) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
(𝑥 − 𝑐𝑡)] , (48)

where 𝑟 = √𝛼2 + 8𝛽 and 𝑐 = ((𝛼 − 𝑟)(2𝛾 − 1) + 2𝛼)/4. The
general solution of the exact solution (48) was reported in [19,
20].

In this example the linear 𝐹 and nonlinear operator 𝐺 to
be used in the Bi-SHAM algorithm are chosen as follows:

𝐹 (𝑢) = 𝑢
󸀠󸀠
− 𝛽𝛾𝑢, 𝐺 (𝑢) = −𝛼𝑢𝑢

󸀠
+ 𝛽 (1 + 𝛾) 𝑢

2
− 𝛽𝑢
3
.

(49)

Thus, using (17) we obtain

𝑅
𝑖,𝑚−1

= 𝛽 (1 + 𝛾)
𝑚−1

∑
𝑛=0

𝑢
𝑛,𝑖
𝑢
𝑚−1−𝑛,𝑖

− 𝛼
𝑚−1

∑
𝑛=0

𝑢
𝑛,𝑖
𝑢
󸀠

𝑚−1−𝑛,𝑖

− 𝛽
𝑚−1

∑
𝑛=0

𝑢
𝑚−1−𝑛,𝑖

𝑛

∑
𝑘=0

𝑢
𝑘,𝑖
𝑢
𝑛−𝑘,𝑖

.

(50)

4. Results and Discussion

In this section we present the numerical solutions of the
implementation of the BI-SHAM algorithm on the nonlinear
evolution equations as described in the previous section.
The number of collocation points in the space 𝑥 variable
used to generate the results presented here was 𝑁 = 10 in
all cases. Furthermore, unless otherwise specified, the order
(total number of terms of the HAM series) of the HAM series
was set to be𝑚 = 10. It was found that sufficient accuracy was
achieved using these values in all numerical computations of
the examples considered in this paper.

Using finite terms of the SHAM series we define 𝑚th
order approximation at the collocation points 𝑥

𝑟
and 𝑡
𝑠
(for

𝑟 = 0, 1, 2, . . . , 𝑁 and 𝑠 = 0, 1, 2, . . . ,𝑀) as follows:

𝑚

∑
𝑘=0

𝑁

∑
𝑟=0

𝑀

∑
𝑠=0

𝑢
𝑀,𝑁

𝑚
(𝑥
𝑟
, 𝑡
𝑠
) . (51)

Assuming that 𝑈(𝑥
𝑟
, 𝑡
𝑠
) is the BI-SHAM approximate

solution at the collocation (grid) points, the residual error is
defined as

Res (𝑢) = N [𝑈 (𝑥
𝑟
, 𝑡
𝑠
; ℎ)] , (52)

whereN is defined as

N (𝑢) = 𝑢
𝑡
− 𝐻 (𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥

) . (53)

The residual error is used in establishing the suitable
convergence controlling parameter ℎ. A carefully selected ℎ
is paramount in obtaining accurate and converging SHAM
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Figure 1: Residual ℎ-curve for Fisher’s equation at 𝑡 = 1.

series solutions. The infinity norm of the residual error at a
particular time level, defined as

𝐸
𝑠
(ℎ) =

󵄩󵄩󵄩󵄩N [𝑈 (𝑥
𝑠
, 𝑡; ℎ)]

󵄩󵄩󵄩󵄩∞, (54)

was used to identify the optimal value of ℎ that gives the best
accuracy.

In Figures 1, 2, 3, and 4 we give illustrations of typical
residual error curves that can be used to calculate the optimal
value of ℎ for the Fisher, Burgers-Fisher, Fitzhugh-Nagumo,
and Burgers-Huxley equations, respectively, when 𝑡 = 1.
The residual ℎ-curves are plotted using different orders of
the BI-SHAM series. The optimal values of ℎ are chosen
to be the clearly defined minimum of the residual curve.
It can be seen from the figures that the optimal ℎ value
lies in the range −1 < ℎ < −0.9 for Fisher’s equation,
Fitzhugh-Nagumo’s equation, and Burgers-Fisher’s equation.
In the case of Burgers-Huxley’s equation, it can be observed
from Figure 4 that the optimal ℎ value is near −1.1. We also
note that the residual error decreases with an increase in the
order of the BI-SHAMseries.This denotes convergence of the
proposed method. It was also observed that convergence also
improves with an increase in 𝑀, the number of collocations
used in the 𝑡-variable. This observation is in accord with an
earlier observation made in a related study by [21] where an
interpolation based spectral homotopy analysis method was
used to solve PDE based unsteady boundary layer flows.

In Tables 1, 2, 3, and 4 we give the maximum errors
between the exact and BI-SHAM results (defined using
(30)) for the Fisher, Burgers-Fisher, Fitzhugh-Nagumo, and
Burgers-Huxley equations, respectively, at selected values of
𝑡 for different collocation points, 𝑀, in the 𝑡-variable. It is
worth mentioning here that the results in all tables were
computed on the space domain 𝑥 ∈ [0, 1]. To give a sense
of the computational efficiency of the proposed method,
the computational time taken to generate the results is also

−1.2 −1 −0.8 −0.6 −0.4
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m = 4

m = 8

m = 12

Figure 2: Residual ℎ-curve for Burger-Fisher’s equation at 𝑡 = 1.
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m = 8

Figure 3: Residual ℎ-curve for Fitzhugh-Nagumo’s equation at
𝑡 = 1.

displayed in the tables. The results displayed in Tables 1, 2, 3,
and 4 clearly show the accuracy of the proposed method.The
accuracy is seen to improve with an increase in the number
of collocation points𝑀. It is remarkable to note that accurate
results with errors of order up to 10−10 are obtained using
very few collocation points in both the 𝑥 and 𝑡 variables𝑀 ≤
10, 𝑁 ≤ 10. This is a clear indication that the BI-SHAM is
powerfulmethod that is very appropriate in solving nonlinear
PDEs of the type discussed in this investigation. We remark,
also, that the BI-SHAM is computationally fast as the desired
accurate results are generated in a fraction of a second in all
the examples considered in this work.
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Figure 4: Residual ℎ-curve for Fisher’s equation at 𝑡 = 1.

Table 1:Maximumerrors𝐸
𝑁
for Fisher’s equationwhen𝛼 = 1 using

ℎ = −0.9.

𝑡 \ 𝑀 4 6 8 10
0.2 5.066𝑒 − 06 5.066𝑒 − 06 3.768𝑒 − 07 4.751𝑒 − 10

0.4 1.108𝑒 − 05 1.108𝑒 − 05 3.515𝑒 − 07 6.542𝑒 − 10

0.6 7.782𝑒 − 06 7.782𝑒 − 06 5.009𝑒 − 07 7.509𝑒 − 10

0.8 1.405𝑒 − 05 1.414𝑒 − 05 4.383𝑒 − 07 5.496𝑒 − 10

1.0 7.926𝑒 − 06 7.926𝑒 − 06 4.112𝑒 − 07 3.082𝑒 − 10

1.2 1.244𝑒 − 05 1.244𝑒 − 05 4.378𝑒 − 07 5.628𝑒 − 10

1.4 1.244𝑒 − 05 1.252𝑒 − 05 3.006𝑒 − 07 7.171𝑒 − 10

1.6 6.823𝑒 − 06 6.823𝑒 − 06 3.782𝑒 − 07 6.142𝑒 − 10

1.8 8.171𝑒 − 06 8.204𝑒 − 06 2.602𝑒 − 07 4.406𝑒 − 10

2.0 1.316𝑒 − 06 1.316𝑒 − 06 3.387𝑒 − 08 4.012𝑒 − 10

CPU Time
(sec) 0.023 0.026 0.039 0.051

5. Conclusion

This paper has presented a new variant of the spectral
homotopy analysismethod for solving general nonlinear evo-
lution partial differential equations. The new method, called
bivariate spectral homotopy analysis method (BISHAM), was
developed from a combination of the homotopy analysis
method algorithm with bivariate Lagrange interpolation and
spectral collocation differentiation. The main goal of the
current study was to assess the accuracy, applicability, and
effectiveness of the proposed method in solving nonlinear
partial differential equations. Numerical simulations were
conducted on the Fisher equation, Burger-Fisher equation,
Fitzhurg-Nagumo, and Burger-Huxley equations. This study
has shown that the BISHAM gives very accurate results
in a computationally efficient manner. Further evidence
from this study is that the BISHAM gives solutions that

Table 2: Maximum errors 𝐸
𝑁
for Burgers-Fisher’s equation when

𝛼 = 𝛽 = 1 and ℎ = −0.9.

𝑡 \ 𝑀 4 6 8 12
0.2 5.594𝑒 − 05 1.367𝑒 − 06 3.805𝑒 − 08 1.679𝑒 − 10

0.4 6.853𝑒 − 05 1.700𝑒 − 06 4.734𝑒 − 08 2.339𝑒 − 10

0.6 1.365𝑒 − 04 1.726𝑒 − 06 1.196𝑒 − 08 9.384𝑒 − 10

0.8 9.929𝑒 − 05 2.605𝑒 − 06 5.635𝑒 − 08 1.031𝑒 − 09

1.0 2.036𝑒 − 05 4.324𝑒 − 07 8.307𝑒 − 09 1.523𝑒 − 10

1.2 8.880𝑒 − 05 2.330𝑒 − 06 5.040𝑒 − 08 9.225𝑒 − 10

1.4 1.091𝑒 − 04 1.379𝑒 − 06 6.720𝑒 − 09 7.497𝑒 − 10

1.6 4.889𝑒 − 05 1.213𝑒 − 06 3.377𝑒 − 08 1.140𝑒 − 10

1.8 3.500𝑒 − 05 8.680𝑒 − 07 2.417𝑒 − 08 1.166𝑒 − 10

2.0 1.300𝑒 − 05 1.437𝑒 − 07 2.167𝑒 − 09 3.737𝑒 − 11

CPU Time
(sec) 0.012 0.024 0.029 0.048

Table 3:Maximumerrors𝐸
𝑁
for Fitzhurg-Nagumo’s equationwhen

𝛼 = 1 using ℎ = −0.9.

𝑡 \ 𝑀 4 6 8 10
0.2 5.594𝑒 − 05 1.367𝑒 − 06 3.805𝑒 − 08 1.679𝑒 − 10

0.4 6.853𝑒 − 05 1.700𝑒 − 06 4.734𝑒 − 08 2.339𝑒 − 10

0.6 1.365𝑒 − 04 1.726𝑒 − 06 1.196𝑒 − 08 9.384𝑒 − 10

0.8 9.929𝑒 − 05 2.605𝑒 − 06 5.635𝑒 − 08 1.031𝑒 − 09

1.0 2.036𝑒 − 05 4.324𝑒 − 07 8.307𝑒 − 09 1.523𝑒 − 10

1.2 8.880𝑒 − 05 2.330𝑒 − 06 5.040𝑒 − 08 9.225𝑒 − 10

1.4 1.091𝑒 − 04 1.379𝑒 − 06 6.720𝑒 − 09 7.497𝑒 − 10

1.6 4.889𝑒 − 05 1.213𝑒 − 06 3.377𝑒 − 08 1.140𝑒 − 10

1.8 3.500𝑒 − 05 8.680𝑒 − 07 2.417𝑒 − 08 1.166𝑒 − 10

2.0 1.300𝑒 − 05 1.437𝑒 − 07 2.167𝑒 − 09 3.737𝑒 − 11

CPU Time
(sec) 0.012 0.024 0.029 0.048

Table 4: Maximum errors 𝐸
𝑁

for the Burgers-Huxley equation
when 𝛼 = 𝛽 = 𝛿 = 1 and 𝛾 = 0.1 using ℎ = −1.

𝑡 \ 𝑀 4 6 8 10
0.2 9.847𝑒 − 05 9.148𝑒 − 07 3.162𝑒 − 08 2.211𝑒 − 10

0.4 5.388𝑒 − 05 1.944𝑒 − 06 3.336𝑒 − 08 4.044𝑒 − 10

0.6 1.209𝑒 − 04 1.418𝑒 − 06 2.188𝑒 − 08 8.455𝑒 − 10

0.8 1.172𝑒 − 04 2.522𝑒 − 06 4.879𝑒 − 08 8.368𝑒 − 10

1.0 4.334𝑒 − 05 8.399𝑒 − 07 1.319𝑒 − 08 2.507𝑒 − 10

1.2 9.546𝑒 − 05 2.411𝑒 − 06 5.037𝑒 − 08 9.155𝑒 − 10

1.4 1.238𝑒 − 04 1.729𝑒 − 06 7.098𝑒 − 09 7.605𝑒 − 10

1.6 7.347𝑒 − 05 1.395𝑒 − 06 3.821𝑒 − 08 3.837𝑒 − 10

1.8 4.307𝑒 − 05 1.171𝑒 − 06 2.808𝑒 − 08 3.283𝑒 − 10

2.0 2.131𝑒 − 05 2.944𝑒 − 07 5.083𝑒 − 09 4.876𝑒 − 10

CPU Time
(sec) 0.041 0.065 0.099 0.182

are uniformly accurate and valid in large intervals of the
governing space and time domains. The apparent success of
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the method can be attributed to the use of the nontrivial
linear operators and the spectral collocation method for
differentiating. This work contributes to the existing body
of literature on homotopy analysis method based tools for
solving complicated nonlinear partial differential equations.
Further work needs to be done to establish whether the
BISHAM can be equally successful in solving higher order
nonlinear partial differential equations and coupled systems
of two of more equations.
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