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We prove the existence and uniqueness of solution for a system of fractional differential equations. Our results are based on the
nonlinear alternative of Leray-Schauder type and Banach’ fixed-point theorem.

1. Introduction
This paper is mainly concerned with the uniqueness and
existence of solution for a system of fractional g-difference
equations given by
CDZu(t) = ftv(), l<a<2, tel01],
B
‘D) =gtu®), 1<B<2 telo01],
o u (0) = BD,u (0) = yu(ny),
au (1) + B,Dgu (1) = yyu (1),
;v (0) = B3D,v (0) = y3v (113) »

agv (1) + Dy (1) = yuv (1)

@

where CD:, ¢ Ds is the fractional g-derivatives of the Caputo
type, 1 <o, f<2,0; (1 =1,2,3,4), 5 (i =1,2,3,4),y, (i =
1,2,3,4), and #; (i = 1,2,3,4) are arbitrary real constants,
and f,g:[0,1] x R — R are given continuous functions.
In the last few years, fractional differential equations (in
short FDEs) have been studied extensively. The motivation
for those works stems from both the development of the
theory of fractional calculus itself and the applications of such
constructions in various sciences such as physics, mechanics,
chemistry, and engineering. For an extensive collection of

such results, we refer the readers to the monographs by
Kilbas et al. [1], Miller and Ross [2], Oldham and Spanier [3],
Podlubny [4], and Samko et al. [5].

Some basic theory for the initial value problems of
fractional differential equations involving Riemann-Liouville
differential operator has been discussed by Lakshmikantham
and Vatsala ([6-8]), Babakhani and Daftardar-Gejji ([9-11]),
Bai [12], and so on. Also, there are some papers which deal
with the existence and multiplicity of solutions (or positive
solution) for nonlinear FDE of BVPs by using techniques
of nonlinear analysis (fixed-point theorems, Leray-Shauder
theory, topological degree theory, etc.)—see ([13-18]) and the
references therein. The study of a coupled system of fractional
order is also very significant because this kind of system
can often occur in applications. The reader is referred to the
papers ([19-22]) and the references cited therein.

The pioneer work on g-difference calculus or quantum
calculus dates back to Jackson’s papers ([23, 24]), while a
systematic treatment of the subject can be found in [25, 26].
For some recent existence results on g-difference equations,
see [27-29] and the references therein.

There has also been a growing interest on the subject
of discrete fractional equations on the time scale Z. Some
interesting results on the topic can be found in a series
of papers [30-38]. Fractional g-difference equations have
recently attracted the attention of several researchers. For
some earlier work on the topic, we refer to [39, 40], whereas
some recent work on the existence theory of fractional
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g-difference equations can be found in [41-45]. However, the
study of boundary value problems of fractional g-difference
equations is at its infancy and much of the work on the topic
is yet to be done.

From the above works, we can see a fact, although the
fractional boundary value problems have been investigated
by some authors. To the best of our knowledge, there have
been few papers which deal with problem (1) for nonlinear
fractional differential equation. Motivated by all the works
above, in this paper we discuss problem (1). Using nonlinear
alternative of Leray-Schauder type, we will give the existence
and uniqueness of solution for a system of fractional differ-
ential equations with Riemann-Liouville integral boundary
conditions of different order (1).

The paper is organized as follows. In Section 2, we give
some preliminary results that will be used in the proof of the
main results. In Section 3, we establish the uniqueness and
existence of a solution for the nonlinear fractional differential
equation boundary value problem (1). In last section, we give
two examples to illustrate our work.

2. Preliminaries and Lemmas

In this section, we cite some definitions and fundamental
results of the g-calculus as well as of the fractional g-calculus
([46, 47]). We also give a lemma that will be used in obtaining
the main results of the paper.

Let g € (0, 1) and define [47]

41
=L —-a"'4...41, acR 2)
qg-1
The g-analogue of the power (a — b)" is
(a-b)0 =
n—1 (3)
(a-b)" = (a bg ) a,beR, neN.

=
Il

0

If o is not a positive integer, then

o (1-(b/a)q')
-bn)@ =g" ( 4
@-b) =o' [ =gy (4)

Note that if b = 0, then a® = a*. The g-gamma function is
defined by

(1-q)""

r >
q(x) (l_q)x 1

xeR\{0,-1,-2,...}, 0<g<1

©)

and satisfies Fq(x +1)= [x]ql“q(x) (see [47]).
The g-derivative of a function f is here defined by

_dyf (%) _ fgx) - f(x)
Dyf (o) = dgx (g-1)x
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and g-derivatives of higher order by

g _ f (x) >
Dy f (x) = {qug-l F),

The g-integral of a function f defined in the interval [0, b] is
given by

ifn=0,

if n e N. @

Jof(t)dqt=x(1—q);f(xq)q, o
0£|q|< 1, xe€][0,b].

If a € [0,b] and f is defined in the interval [0, b], its integral
from a to b is defined by

b b a
| rode=[ rode-| rode  ©

Similarly, as done for derivatives, an operator Ig can be
defined, namely, by

(If) (x) = f (%),
(1) ) =1, (17" f) ),

The fundamental theorem of calculus applies to these opera-
tors I, and D,; that is,

(10)
neN.

(DyI,f) () = f (%), (1
and if f is continuous at x = 0, then
(1,Dyf) () = f (%) = £ (0). (12)

Basic properties of the two operators can be found in the book
that is mentioned in [8]. We now point out three formulas that
will be used later (; D, denotes the derivative with respect to

variable 7) [43]:

la(t—s)] =a%(t-5)",

D, (t =) = [ (t - 97,

< xDy L f(x,1) dqt) (x) = L xqu (x, 1) dqt + f (gx, x).
(13)

Remark 1. We note that if « > Oanda < b < t, then
(t-a)® > (t - b)@ [43].

Definition 2 (see [40]). Let « > 0 and let f be a function
defined on [0, 1]. The fractional g-integral of the Riemann-
Liouville type is (RLIZ f)(x) = f(x) and

. < (x-qt)"
= B — d
(RLqu) (%) L r (@) f@®d.pt, (14)

aecR", xel0,1].
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Definition 3 (see [48]). The fractional g-derivative of the
Riemann-Liouville type of order « > 0 is defined by

(reD)f)(x) = f(x) and

(nDf) @) = (DA f) (), a>0,  (15)

where [«] is the smallest integer greater than or equal to «.

Definition 4 (see [48]). The fractional g-derivative of the
Caputo type of order « > 0 is defined by

(CDZf) (x) = (Iéa]_“Dg“]f) (x), a>0, (16)

where [«] is the smallest integer greater than or equal to «.

Lemma 5. Let o, 3 > 0 and let f be a function defined on
[0, 1]. Then the next formulas hold:

(1) (P13 f)(x) = (157 f)(x),
(2) (DSIE)(x) = f().

Lemma 6 (see [42]). Let « > 0 and n € N. Then the following
equality holds:

(RLIZ RLD;f) (X) = RLDZ RLIZf (X)

- txn+k
ZF (x+ k- n+1)( f)(O)
(17)

Lemma 7 (see [48]). Let o« > 0 and n € R \ N. Then the
following equality holds:

[a]-1 k

X
2 T

kOq

(I5°D, f) () = f () - (DEf) . @s8)
q q

For convenience, one introduces the following notations:

b = 7 (2 —,) b = Y (@ + By = vama)
1 — > 2 >
A A
b (a; — 1) by = (B +yim)
3 > 4 — >
A A
A=(y, =) (B +yim) + (1 — ) (e + By = 1a112) -

(19)
From Lemmas 5 and 7, we can obtain the following lemma.

Lemma 8. Let h € C[0, 1] and A # 0; then the unique solution
of the linear fractional boundary value problem

“Du®)=h(t), 1<as<2, telo1],
BiDgu (0) = yyu (1), (20)

ou (1) + B, Dgu (1) = yyu ()

o u(0) -

3
is given by
(g9
u(t) = JO Wh (s) dqs
M — (a-1)
+(b1t+b2)J0 %h(s) d,s
q
n (g, - qs) "
+ (byt+ ) [—Yz JO B h@ds oD
q

P(1-gs)*"
+a, Jo —rq @ h(s) dqs

L(1-gs)”
+ﬁ2L reeiCE

The following lemma is fundamental in the proofs of our
main result.

Lemma 9 (see [49]; nonlinear alternative of Leray-Schauder
type). Let E be a Banach space with M € E closed and convex.
Assume that U is a relatively open subset of C with 0 € U and
F:U — Cis continuous, compact (i.e., F(U) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in U or
(ii) there exist u € oU and A € (0,1) with u = AFu.
3. Main Results

In this section, we will discuss the uniqueness and existence
of solutions for boundary value problem (1).

First of all, we define the Banach space X = {u | u €
Cl[0, 1]} endowed with the norm [lul| = max;¢g;|u(t)|. For
(u,v) € X x X, let |[(u,v)| = max{|ul,|v|}; then (X x
X, I, -)Il) is a Banach space.

For convenience, we set

A= (p o) (Bs+ysms) + (13— as) (g + By = Vatla) »

(22)
and let A # 0. Note
Y (g = y4) Y (ay + By = yatla)
bl = > B2 - >
A A

(23)

b — GO b — (Bs + v5113)

35T 4 4= 4

Employing Lemma 8, system (1) can be expressed as

RPN
u() = L ¢ 5 ()) Fsv(s) dgs

(- qs)™"

(@ f(s,v(s))dqs

+ (bt +b,) J



)(06—1)

L -
+ (byt + by) [—yz J (-4 fsv(s))dgs

0 [, (@)

(1-gs)*"
+a, L Wf (s,v(s)) dqs

1 (1- qs)(“*Z)
|| Gy e

tr B
v(t):J (- as) g(s,u(s))dgs

o LB

s (e — a5 D
+ (51t + 52) J:I (;13 T q(ﬁ))
q
)(ﬁ*l)

+ (bst +,) [‘h L”‘* %

g(s,u(s)) dqs
g (s,u(s)) dqs

1(1_ (B-1)
+ oy L %g (s,u(s)) dqs

G

-1) T.(8-1) 7
where b, b,, b;, b, are given by (21), and b, b,, b5, b, are given
by (22)
From Lemma 8 in Section 2, we can obtain the following
lemma.

(s, u(s)) dqs ,

(24)

Lemma 10. Suppose that f(t,v) and g(t,u) are continuous;
then (u,v) € XxX is a solution of BVP (1) ifand only if (u, v) €
X x X is a solution of the integral equations (24).
Let (u,v) € X xX; define an operatorT : XxX — XxX
as
T (u,v) (t) = (Tyv(t), Tou (1)), (25)
where

Tyv(t)

_ (a—1)
L (t-4s) f(s,v(s))d s

I, ()

(= gs) "
(bt +by) L w0

N2 — (a-1)
+ (bst + by) [_Yz Io %
q

_ S)(a—l)

1 (1
o) 2T

)(06—2)

t(1-gs
+ﬁzL I, (- 1)

f(sv(s)dgs

fsv(s)dys

f(s,v(s) dqs

f(s,v(s) dqs ,

(26)

Abstract and Applied Analysis

Tyu (t)
- Lt (t}f—f)l;)wg(s,u@))dqs
+(b,t +b,) J:} %g(s,u(s))dqs
+ (bt +by) [—n Lm (m%&;ﬁ_n (5,1 (s)) d,s
oy Ll (1};—(/);;_1)9 (5,0 (5)) dys
a %g (s () dys |3

(27)

then, by Lemma 10, the fixed point of operator T coincides with
the solution of system (1).

In the first result, we prove uniqueness of solution of the
boundary value problem (1) via Banach’s contraction principle.

Theorem 11. Assume that f,g : [0,1] x R — R are
continuous functions and the following conditions hold:

(H1) there exist two g-integrable functions L, L, : [0,1] —
R that satisfy
|f(t,u) —f(t,v)| <L, ®)|lu-v|, Vtel0,1], u,velR;
|g(t,u) —g(t,v)| <L,(#)|lu—-v|, Vtel0,1], u,veR.
(28)

In addition, assume that
1= (1+]ao| 8 (I7L,) (1) + [y | 8, (I5L,) ()

)

+ 12| 8, (I;Ll)(ﬂ2)+|/32|82( L1>(1)< 1
) (s
)

(29)
0, = (1+ || 8, (1L, ) (1) + |y3] 8 (I5L,) (3))
+ |4l 84 (I8L2) (na) + 1Bl 84 (17'L,) (1) < 1,
where
5 = |“2 - Yzl + |‘x2 +pB, - Y2’72|
1 |A| 5
5. = |‘X1 - Y1| + Iﬁl - Y1’71|
2= A ,
|Al (30)
5. = |ty = yal + loa + By = vattal
3 N ,
5. = |“3 - Y3| + |ﬁ3 - V3’13|
4= ,

A

where A and A are given by (19) and (22), respectively. Then
system (1) has a unique solution.
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Proof. Let us set sup,c(o | f(£,0)] = M; < ©0, sup,¢[o;
l9(£,0) = M, < oo,

1 a- o
he m (1 + |V1|81’75 s |V2|82’7§ ey |“2|82)
IBie:
Iy (@)
(31)

1 i !
A= gy (L ™ e o™ + o)

R
(32)
Define
U={uv) e XxX: ()l <r},
B, ={ueC[0,1]: |ul <}, (33)
B, ={veC[0,1]: |[v| < 1,}.
Forv € B, , we obtain
|f &v@)] < |f (6v(©) - f (0] +]|f (£,0)]
<L) vl +|f (0)] (34)

<L (t)r +M,.
Then, for v € B, te [0, 1], we have
IT:v]

< sup
te(0,1]

)(06*1)

Jt (t-gs

. T, @ |f (s,v (s))| dqs

+

L (o = 72) = (o + By = )]

(a=1)
m —
y J (m, — qs)

. I @ |f (s,v(s)] dgs

+

B [ -yt + B+ vim)]

(a-1)
"2 —
y J (1, - gs)

. T @ |f (s,v (s))| dqs

07
+|*
A

(e —y)t+ (B +yim)]

(1-gs)“”
x L T M@l

B e )+ B+ von)

(a=2)
y J'l % |f (s,v(s))|dq5}

0 Fq(oc—l

+

)(06—1)

J‘f (t—gs

. W [Ll (S) r +M1] dqs

< sup
te[0,1]

+

% [(oy = p) t = (03 + By = 1o112)]

m (g, - )"
X JO W [Ll (S) " +M1] dqs

+

2 @ -t + Bornm)]
X rz (, — s)“™"

. I, (@ [Ly ()1 + M, ]dys

% (@ =)+ (B +yim)]

L%
A

)(06—1)

1 _
XI (1-gs
0

T [Ly(s)ry + M, ]ds
q

+

B e ) e+ B+ von)

1(1— (a=2)
y J (1-gs)

o L(a-1)

L(1-gs) m (- q5) "
<M J ————d s+ 1) J ———d_s
‘{0 L e tlo T

[L,(s)r, + M,] dqs}

(e=1)
" (1, - gs)

+|y2|82 L ds

L

)((x—l)

L(1-gs
6, | ———d
+ |}’2| 2 L rq @ "

(1= gs)*?
+|y2|82 Jo ﬁd s}

L(e-1) 1

(1-g9)“”
+1 {J.O WLI (S)d N



1
<M, 1 T, (a+1)
e (1 * |Y1|51’75“71) |Y2|82’7(“ Y |“2|52)

s

I, (@)

)(06*1)

t(1-gs
*“{L T, (@)

(e=1)
m —gs
+n|, L MLI (8)d,s

Ly(s)dgs

I (@)
(06 1)

+ || 8, . F ( ) L, (s)dys
P(1-gs))
+|a2|82J0 T, @ L, (s)ds
1 1 (=2)
|ﬁ2|52 0 (F (oc) Ly(s)d 5}

q

(35)
In view of (31), we obtain
[TVl < My A, + 75y (36)

From the last estimate we deduce that r; = M; A/(1 — ;).
By a similar way as done above we have

ITou]
1
SM45w+n
X (1 + |3 ‘Ssﬂgﬁ_l) + {74l 64’74(1;;_1) + oy 54)
|/34| 3, }
T, (B)

(B-1)

(1-9s)
+7, {L WLZ (s)dgs

+[ys] 65 Lﬂs %Lz (5)d,s (37)
+ 1] 3, Lm %Lz (s)d,s

+ Jora s JOI u—rtzq—(s[);)ﬁ‘”% (s) dys

+|B| 8, Ll (qu_(zsz(ﬁl;) L, (s) dqs]»

<M, A, + 1k,

andr, = M,A,/(1 - k,).
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Therefore, we obtain

IT (u,v)| = max {(T,v, Tou)} = max {|T,v|, |Toul} = r

From the last estimate we can choose r = max{r,r,}; then,
for every (u,v) € U, we have TU c U.

In order to show that T'is a contraction, let u, v, u;, v, € X,
and, for any t € [0, 1], we get

[T,y = Tywy

(t-
< sup J
te0,1] I, (

‘Z

)(a 1)
|f (5,v(5) = f (s, (9)] dys

10 (o = 1) = (@ + By~ yama)]

A

) _ (1)
% Jr’ M |f (5, v(s) = f (s,v, (9))] dgs

0 I, (@)
# 2 Lo = )+ B+ v

(a-1)
y J " (1, — gs)
0 [ (@)

+ & [(y —y)t+ (B, + Y1’71)]|

|f (5 v(9) = f (5.3, (9)] dys

3
)(01*1)

t(1-gs
XL T, @)

Ba
+ X[(

£ (576D = £ (571 (9)]dys

ay = y)t+ (B +yim)]

)(04—2)

XII (1-gs
0 l"q((x—l)

t _ (e=1)
< sup {J %Ll(s)dqs
q

If@ﬂm—f@w@m%%

te[0,1]
+ % [(0‘2 - Yz) t- (“2 +B, - Y2’72)]
(g, — gs)®"
X JO WLl (S) dqs
# 2 Lo = )+ B+ v
n (7, — qs)®"
< PO

n |% (s —p)t+ (B, + Y1’71)]’

1(1— (1)
y J (1-gs)
0

I (@ Ll(s)dqs
q
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B e —p) e (B ym)

L(1-gs)“”
J, T O Il

t f— (a—1)
< sup {J %Ll(s)dqs

te[0,1] I, (@)
(06 1)
|y1|8 J T ( ) ——L (s)dqs
(06 1)
|y, 6 L T ( ) L, (s)dys

- ><“ ;
+[Ba] 8, JO T 1O s} [v=wl
(39)
which, in view of x; < 1 and (31), implies that
[Tyv @) = Tyvy @] < %1 v =y - (40)
Similarly, we have |T,u — Tou, || < x,[lu — uy|.
Thus, we have
|7 () = T (1 01)|
= |(Tyv = Tyvy, Tou = Tou)||
= max {|T,v — Ty, ||, | Tou - Tou, ||} (41)

< max {rcy, &y} max {[[v — v ||, lu - u |}
=max {x, 5, } |(v - v, u—u;)|.

Since x; < 1, k, < 1, therefore, the operator T is a
contraction. Hence, by Banach’s contraction principle, the
operator T has a unique fixed point, which is the unique
solution of the system (1). This completes the proof. O

The second result is based on the nonlinear alternative of
Leray-Schauder type (Lemma 9).

Theorem 12. Assume that f,g : [0,1] x R — R are
continuous functions and the following conditions hold:

(H2) there exist four functions p;(t),q;(t) € L'([0,1],R"),
i = 1,2, and two nondecreasing functions o,y : R* —
R*, such that
|f )] < pr ® @ () + g, (),
lg (&) < p @y (Iyl) +q. @),

where (t, x), (t, y) € [0,1] x R.

(H3) There exists a constant M > 0 such that
o (M) w, +w, <M,

(43)
v(M)o, +@, < M,
where
wp = (1+]y]6,) (Igpl) (1) + |p| &, (Iapl) (m)
+ 12| 8, (I P1) ) + || 8, ( 1)(1),
Wy = (14 o] 8,) (Inq,) (1) + | 6, (Ian) (my
+ 1| 6 (Ig%)(”lz) + |/32|52( :; )(1
(44)

@ = (1+ |0‘4| d,) (Iﬁpz) (1) + |Y3| 95 (Iﬁpz) (1)
+ [ya| 84 (Iﬁpz)(’h) |B4] 84 (Iﬁl 2)(1):
@, = (1+ ]| 8,) (Iﬂ‘Z2)(1)+|Y3|5 ( ‘Zz)(

|Y4|6 (I %) M) |/34|5 (Iﬁ 16]2)(1)
Then system (1) has at least one solution on [0, 1].

Proof. Consider the operator T': X x X — X x X defined
by (25). The proof consists of several steps. As a first step, it
will be shown that T'maps bounded sets into bounded sets in
X x X. For a positive number 7, let U = {(u,v) € X x X :
(i, v)|| < 7} be bounded set in X x X; then, for (1, v) € U, we
have

||T1v||

t _ (a—1)
< sup {J &U(s,v(s)ﬂdqs

te0,1] I, (@)

— (o + By = 1am)]

+

[(062 )t

(a=1)

y J’“ (m, - qs)

T ) |f (s,v ()] dys
q

+ [y (B )|
X an (n, - qs)(%l)
0 I, (@)

2 [ -n)t+ (B +nm)]

|f (s,v (s))| dqs

+

X J.1 (1- qs)(“_l)
o I«

B e -y (B ym)

|f (s,v(s))| dys

XJ (1—q5)(“ !

rq( lf(s v(s))]d s}



F(t-g9)“”

(g, —gs) "
|)’1|‘S J W

X [p1 (5 9 (V) + g, (5)] s

(a=1)
™ (1, = q5)

+ 1) J e

|)/2| : 0 l"q ()

X [p1 ()9 (V) + g, (5)] s

(1)

1(1-gs
+|“2|62J0 &

T, (@

<[P ()@ (VD) + gy (5)] dgs

1 (1 _qs)("‘_z)
+|B,] 8 L —rq 7E)

x[p1 (@ lvi) +g; ()] d 5} t (g _ o@D
1 S - o9 v ydys

1 (1 _qs)(a—l)

<@(r) {JO Wpl (s) dqs
(a—1)

+Inld, J E )) Py (s)ds
(a—1)

2| 6 J N )) pr(s)d,s
1 a-1)

|0£2| 2 L rq;)) P (s)d S

1 «x 2)

|/52|5zj F pl (s)d s}

< sup “ T e g 0lds
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As before, it can be shown that
ITv] < ¢ () 0, + w,. (46)
Similarly, we have
[Tou| < v (r) @, + @, (47)

Thus, T maps bounded sets into bounded sets in X x X.

Next, we show that T maps bounded sets into equicon-
tinuous sets of X x X. Let t,,¢, € [0,1] with f; < t, and
(u,v) € U,whereU is abounded set of XxX. Then taking into
consideration the inequality (£, — gs)*™ — (¢, — gs)©®™"
(t, —t;), for 0 < t; < t,, we obtain

|(T1 v) (t,) = (Tyv) (tl)l

(a-1)

rz (t, - gs)
0 I, (x)

f (S’ v (5)) qu

0 I, ()
1
+ A [y (g = ,)| (8, = 1))

(g, — gs) "

RARSAICESN

™ (1, — qS)(“'l)
x JO T |f (s,v(s)| dys

+ oy oy = | (22 = 1)

1 (1 _qs)(‘x_l)
<J, T el

|ﬁ2| |‘x1 V1| t, — t1)

XJ (l—q)“’

(oo |f (s v(s)|d s}

Jtl [(t2- a9 = (t, - 957"

I, (o)

X [p1 () 9 (V) + @y (5)] s

t, _ (a-1)
(43) g % (21 (9 (VD) + 41 (9)] ds
ty 4
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" % {lyl (o = 1)| (t, - 1)

(a=1)
y J " (m - g5)
o L)

T2 |“1 - Y1| (tz _t1)

(1 ()@ (IVI) + g, ()] ds

(a=1)
Xr4m—$)
o IL(a)

_V1|(t2 —t))

(21 g (V) + g (5)] s

+ o oy
< L(1-gs)
0 I (x)

q
+|Bal oty = 1| (£ = 1)
X J-l _(1 - qs)(“_Z)
0 I (x)

q

[P ()@ (Ivl) + g, ()] dgs

(P19 (D) + 4 (5)] dqs]»

< Jtl (t,-t)

o T ()

[P ()@ (r) +q, (5)] d,s

)(06*1)

+ Jtz (t, - gs
v I

+ % ‘[|Y1 (o —7)| (1, - 1)

[P ()@ (r) +q, ()] d,s

(a-1)
y J " (m - g5)

0 I, (x)
-nl(t - t,)

(a=1)
y J " (1~ 95)
0 I, ()

-l —t)

(P (@) +q, (s)] dgs
+7, ]

(p1 ()@ (r) + g, (5)] dqs
+ oy oty

X Jl (1- qs)(a_l)
0 rq (&)

1Bl o = m| (2 - 11)

><J—l (1 _qs)(a—z)
0 I, ()

[P ()@ (r) +4g, (s)] dqs

[P (8) @ (r) +q, (5)] dqs} )
(48)

Clearly, the right-hand side of the above inequality tends to
zero independently of v € U as t, — t,. Thus, it follows by
the Arzeld-Ascoli theorem that T is completely continuous.
Similarly, T, is completely continuous. Therefore, T : X x
X — X x X is completely continuous.

Let us set Q = {(u,v) € U : |[(u,v)|| < M}. Note that
the operator T : ) — X x X is continuous and completely

continuous. From the choice of (), assume that there is (1, v) €
0Q such that (u,v) = AT (u, v), for some A € (0, 1). By (H3),
we obtain

Gt I = AT @ VI < 1T (u, V)l

= max {|Tyv|, |Toul} < M,

which is a contradiction. In consequence, by the nonlinear
alternative of Leray-Schauder type (Lemma 9), we deduce
that T has a fixed point (u,v) € Q which is a solution of the
system (1). The proof is complete. O

In the sequel we present two examples which illustrate
Theorems 11 and 12.
4. Examples

Example 1. Consider the following fractional g-difference
nonlocal boundary value problem:

3/2

‘D u(t) = (v+tan v+s1nt) 0<t<l,
7/4 L _ .

CDq v(t)=?2(u+tan 1u+s1nt), 0<t<l,

u(0) - %un(O) - u(%)
. 3 ) (50)
S+ 2D =u(3),

v - 3D =v(3),

1 3 2
ZV(I) + Zqu(l) = v<§>

In this case, « = 3/2, 3 =7/4, ¢, = 1, 3, = 1/2, ;) = 1/4,
By =3/ ay =10 =1/2,a, = 1/4, B, = 3/4, 5, = 1/3,
Mo =231 =1/3, 1, =2/3,py =1 =9,y; =1=y,and
L,, L, are constants to be fixed later on. Moreover, A = 5/8,
A =5/8,8, = 26/15,8, = 4/3,8; = 26/15, and §, = 4/3.
Consider

ftv) = (v+tan 'y +sint),
g(t,u) = %(u+tan’lu+smt), (51)
te[0,1], u,v e C[0,1].
Clearly, we have
If (v = f(Ev)] <Ly v -,
lg (t,u) — g (t,u))| < L, Ju—u,
e <1+ 2\/5(13+10\/§+15\/§)>’ )
L2 G/2) 15V3(2v2- 1)
L, 2v2(13 +10V2 + 15V3)
2T, 74 <1+ 15V3(2v2 - 1) )
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Choose

1

b [ruz /2 (1 '
1

L,:= [1"1/2 774 (l +

Hence all the assumptions of Theorem 11 are satisfied.
Therefore, by Theorem 11, the problem (50) has a unique
solution.

2v2 (13+10v2 +15v3)\ ]
15V3(2v2- 1) )] ’

2vZ(13+10v2+153)\ 1"
15v3(2v2-1) )]

(53)

Example 2. Consider the following fractional boundary value
problem:

2042
379 —x“(t°+1) 1
‘D / u(t) = —cost sm(m>+e—+—,
2 1+(+1) 3
0<t<l,
32 t 1
D vt = —sm(27m(t))+&+—,
20+ u(@)) 2
0<t<l,

(54)
u(0) - %un 0) = u <%)

iu(l) + iunu) - u<§>
v(O)—%qu(0)=v<§>,

—v(1)+ quv(l) = v(%)

In this case, « = 3/2, B =3/2, 0, = 1, 3, = 1/2, 0, = 1/4,
By =3/ 0y =10 =1/2, a0 = 1/4, B, = 3/4, 1, = 1/3,
M =2/3,15=1/3,1, = 2/3, 71 =1 =7y, 93 = 1=y, and
L,, L, are constants to be fixed later on. Moreover, A = 5/8,
A =5/8,8, =26/15,8, = 4/3,8; = 26/15, and 6, = 4/3.
Clearly

2042
|V| > e—x (t°+1) 1

1 2 . <
t,v)|=|-cost sin| — |+ ————— + —
F @) 4 2 1+(2+1) 3
1
= v+ 1,
iE (55)
1 |u (£)] 1’
t,u)| =|—sinRru(t)) + ——m + —
lg ¢ |167r @ O) S+ @D
1
— |ul + 1.
8
Clearly p, = 1/8,q, = 1, M) = M, p, = 1/8,
q, = 1, and y(M) = M. Consequently, w, = 0.567129414,
=~ 4.536963312, @; = 0.567129414, @, = 4.536963312,

and conditions (43) imply that M > 10.48055997. Thus, all
the assumptions of Theorem 12 are satisfied. Therefore, the
conclusion of Theorem 12 applies to problems (54).
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