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Let 𝐺 = (𝑉, 𝐸) be a connected simple graph and let𝑀 be a nonempty subset of 𝑉. The𝑀-distance pattern of a vertex 𝑢 in 𝐺 is the
set of all distances from 𝑢 to the vertices in𝑀. If the distance patterns of all vertices in 𝑉 are distinct, then the set𝑀 is a distance
pattern distinguishing set of 𝐺. A graph 𝐺 with a distance pattern distinguishing set is called a distance pattern distinguishing
graph. Minimum number of vertices in a distance pattern distinguishing set is called distance pattern distinguishing number of a
graph. This paper initiates a study on the problem of finding distance pattern distinguishing number of a graph and gives bounds
for distance pattern distinguishing number. Further, this paper provides an algorithm to determine whether a graph is a distance
pattern distinguishing graph or not and hence to determine the distance pattern distinguishing number of that graph.

1. Introduction

One of the basic problems in graph theory is to select a
minimum set 𝑆 of vertices in such a way that each vertex
in the graph is uniquely determined by the distances to the
chosen vertices. The vertices in that set uniquely determine
the positions of the remaining vertices of the graph. Slater
[1] defined the code of a vertex V with respect to a 𝑘-tuple of
vertices 𝑆 = (V

1
, V
2
, . . . , V

𝑘
) as (𝑑(V, V

1
), 𝑑(V, V

2
), . . . , 𝑑(V, V

𝑘
)),

where 𝑑(V, V
𝑗
) denotes the distance of the vertex V from the

vertex V
𝑗
. Thus, entries in the code of a vertex may vary from

0 to diameter of 𝐺. If the codes of the vertices are to be
distinct, then the subset 𝑆 is called resolving set of that graph.
A resolving set 𝑆 of minimum cardinality is called a metric
basis and |𝑆| is called the metric dimension of 𝐺.

In 2006, Dr. B. D. Acharya introduced a new concept
which is distance pattern distinguishing set of a graph. A
detailed study of this concept has been done in [2, 3]. A dis-
tance pattern distinguishing set identifies the automorphism
group of a graph and each vertex in the graph is uniquely
identified by its graph properties and its relationship to the
vertices of the distance pattern distinguishing set. However,
a distance pattern distinguishing set of a graph 𝐺 (if it exists)
need not be unique. Hence, determination of the minimum

cardinality of a distance pattern distinguishing set in 𝐺 is an
interesting problem to be investigated. This paper focuses on
the problem of determining the minimum cardinality, 󰜚(𝐺),
of a distance pattern distinguishing set in a graph𝐺 and gives
an algorithm to determine whether a graph 𝐺 has a distance
pattern distinguishing set and also to determine 󰜚(𝐺), if it
exists. In this paper we consider finite, simple, and connected
graphs.

Definition 1. For an arbitrarily fixed vertex 𝑢 in 𝐺 and for
any nonnegative integer 𝑗, let 𝑁

𝑗
[𝑢] = {V ∈ 𝑉(𝐺) :

𝑑(𝑢, V) = 𝑗} and𝑁
𝑗
[𝑢] = 𝑉(𝐺) − 𝑉(C

𝑢
) whenever 𝑗 exceeds

the eccentricity 𝜀(𝑢) of 𝑢 in the component C
𝑢
to which 𝑢

belongs. Thus, if 𝐺 is connected, then 𝑁
𝑗
[𝑢] = 0 if and

only if 𝑗 > 𝜀(𝑢). We can generalize this concept as, given an
arbitrary nonempty subset𝑀 ⊆ 𝑉(𝐺) and for each 𝑢 ∈ 𝑉(𝐺),
𝑁
𝑀

𝑗
(𝑢) = {V ∈ 𝑀 : 𝑑(𝑢, V) = 𝑗}.

Definition 2. Let 𝐺 be a given connected simple graph,
0 ̸=𝑀 ⊆ 𝑉(𝐺), and 𝑢 ∈ 𝑉(𝐺). Then, the𝑀-distance pattern
of 𝑢 is the set 𝑓

𝑀
(𝑢) = {𝑑(𝑢, V) : V ∈ 𝑀}. Clearly, 𝑓

𝑀
(𝑢) =

{𝑗 : 𝑁
𝑀

𝑗
[𝑢] ̸= 0}. If 𝑓

𝑀
: 𝑢 󳨃→ 𝑓

𝑀
(𝑢) is an injective function,

then the set𝑀 is said to be a distance pattern distinguishing
set of 𝐺. A graph 𝐺 with distance pattern distinguishing set
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is called a distance pattern distinguishing graph.The number
of vertices in a minimum distance pattern distinguishing set
is called the distance pattern distinguishing number of𝐺 and
it is denoted by 󰜚(𝐺).

The expressibility of graphs andmatrices in terms of each
other is well known. Each of these two mathematical models
has certain operational advantages. Definition 3 brings a
matrix, related to the distance patterns of the vertices of a
graph 𝐺 with respect to a subset𝑀 of vertices and Lemma 4
characterizes the distance pattern distinguishing set of a
graph in terms of (0, 1)-matrix that is defined as follows.

Definition 3. For an arbitrary nonempty subset 𝑀 ⊆ 𝑉(𝐺),
the 𝑝 × (𝑑

𝐺
+ 1) matrix 𝐷𝑀

𝐺
= (|𝑁

𝑀

𝑗−1
(V
𝑖
)|); 𝑖 = 1, 2, . . . , 𝑝;

𝑗 = 1, 2, . . . , (𝑑
𝐺
+ 1), where 𝑑

𝐺
that denotes the diameter of

𝐺 is called the𝑀 distance neighborhood pattern matrix of𝐺.
Let𝐷∗𝑀
𝐺

be the (0, 1)matrix build from𝐷
𝑀

𝐺
by replacing each

nonzero entry by 1.

Lemma 4 (see [3]). In any graph 𝐺, a nonempty𝑀 ⊆ 𝑉(𝐺) is
a distance pattern distinguishing set if and only if no two rows
of𝐷∗𝑀
𝐺

are identical.

Example 5. Consider the graph 𝐺 given in Figure 1. Now,
𝑀 = {𝑎, 𝑑, 𝑐} is a distance pattern distinguishing set of𝐺 since

𝑓
𝑀
(𝑎) = {0, 1, 3} , 𝑓

𝑀
(𝑏) = {1, 2, 3} ,

𝑓
𝑀
(𝑐) = {0, 2, 3} , 𝑓

𝑀
(𝑑) = {0, 1, 2} ,

𝑓
𝑀
(𝑒) = {1, 2} .

(1)

Also,

𝑁
𝑀

0
(𝑎) = {𝑎} , 𝑁

𝑀

1
(𝑎) = {𝑑} , 𝑁

𝑀

2
(𝑎) = 0,

𝑁
𝑀

3
(𝑎) = {𝑐} ,

𝑁
𝑀

0
(𝑏) = 0, 𝑁

𝑀

1
(𝑏) = {𝑑} , 𝑁

𝑀

2
(𝑏) = {𝑎} ,

𝑁
𝑀

3
(𝑏) = {𝑐} ,

𝑁
𝑀

0
(𝑐) = {𝑐} , 𝑁

𝑀

1
(𝑐) = 0, 𝑁

𝑀

2
(𝑐) = {𝑑} ,

𝑁
𝑀

3
(𝑐) = {𝑎} ,

𝑁
𝑀

0
(𝑑) = {𝑑} , 𝑁

𝑀

1
(𝑑) = {𝑎} , 𝑁

𝑀

2
(𝑑) = {𝑐} ,

𝑁
𝑀

3
(𝑑) = 0,

𝑁
𝑀

0
(𝑒) = 0, 𝑁

𝑀

1
(𝑒) = {𝑐, 𝑑} , 𝑁

𝑀

2
(𝑒) = {𝑎} ,

𝑁
𝑀

3
(𝑒) = 0,

(2)

a b c

d e

G: a distance pattern
distinguishing graph

H: no distance pattern
distinguishing graph

Figure 1

and the𝑀-distance pattern neighborhood matrix is

𝐷
𝑀

𝐺
=(

1 1 0 1

0 1 1 1

1 0 1 1

1 1 1 0

0 2 1 0

),

𝐷
∗𝑀

𝐺
=(

1 1 0 1

0 1 1 1

1 0 1 1

1 1 1 0

0 1 1 0

).

(3)

2. Distance Pattern Distinguishing
Number of a Graph

Theorem 6 (see [3]). A cycle 𝐶
𝑛
of order n admits a distance

pattern distinguishing set if and only if 𝑛 ≥ 7.

Theorem 7 (see [2]). Let 𝐺 be any distance pattern distin-
guishing graph with a distance pattern distinguishing set 𝑀.
Then, the induced graph 𝐺[𝑀] is disconnected.

The following theorem provides the distance pattern
distinguishing number of somewell-known classes of graphs.

Theorem 8. (a) The trivial graph 𝐾
1
is the only graph with

distance pattern distinguishing number as the order of that
graph.

(b) Path is the only graphwith distance pattern distinguish-
ing number one.

(c)There exists no graph with distance pattern distinguish-
ing number 2.

(d) 󰜚(𝐶
𝑛
) = 3, for all 𝑛 ≥ 7.

Proof. (a) Assume that 𝐺 is isomorphic to 𝐾
1
. Clearly, 𝐾

1

has the distance pattern distinguishing set 𝑀 = {V}, where
𝑉(𝐾
1
) = {V} and hence, 󰜚(𝐾

1
) = 𝑂(𝐾

1
).

Converse follows from the fact that if 𝑀 = 𝑉(𝐺), then
the distance patterns of diametrically opposite vertices are
identical.

(b) It can be easily verified that one of the two pendant
vertices of a path forms a distance pattern distinguishing set
and hence distance pattern distinguishing number of a path
is one. For the converse part, we assume that 𝐺 ≇ 𝑃

𝑛
and

that the distance pattern distinguishing set is a vertex 𝑢 of 𝐺.
First observe that the degree of 𝑢 is 1; otherwise, the vertices
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adjacent to 𝑢 have the same distance pattern as {1}. Since𝐺 is
not a path, it contains a vertex whose degree is at least three.
Let V be such a vertex of 𝐺 with the least 𝑑(𝑢, V) and let 𝐴 =

{V
1
, V
2
, . . . , V

𝑘
} be the set of all vertices adjacent to V. Then,

the distance pattern of each of the vertices in 𝐴 is any one of
{𝑑−1}, {𝑑}, or {𝑑+1}, where 𝑑 = 𝑑(𝑢, V). None of the vertices
in 𝐴 may have the distance pattern {𝑑}, as it is the distance
pattern of the vertex V. Therefore, since |𝐴| ≥ 3, at least two
vertices in𝐴 have the same distance pattern, a contradiction.

(c) Let two vertices 𝑢 and V form a distance pattern
distinguishing set of a graph 𝐺. Then the distance pattern
of 𝑢 and V is the same and 𝑓

𝑀
(𝑢) = 𝑓

𝑀
(V) = {0, 𝑑(𝑢, V)},

which is a contradiction to the concept of distance pattern
distinguishing set. Hence, (c) holds.

(d) Let 𝐶
𝑛
= V
1
V
2
⋅ ⋅ ⋅ V
𝑛
V
1
be a cycle on 𝑛 vertices. By

Theorem 6, 𝐶
𝑛
; 𝑛 ≤ 6 is not a distance pattern distinguishing

graph. Also from (b) and (c), it follows that distance pattern
distinguishing number of a cycle is not equal to one or two.
Consider 𝑀 = {V

1
, V
2
, V
4
}. Then, the rows representing the

𝑀-distance neighborhood pattern of V
1
, V
2
, . . . , V

𝑛
(taken in

order) in𝐷∗𝑀
𝐺

, are given as follows.

Case 1. 𝑛 is an even integer and 𝑛 ≥ 7. Consider

𝐷
∗𝑀

𝐺

=

(
(
(
(
(
(
(
(
(
(
(

(

1 1 0 1 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

1 1 1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 1 1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

1 0 1 1 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 1 0 1 1 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 0 1 0 1 1 ⋅ ⋅ ⋅ 0 0 0 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 1 0 1 1 0

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 1 0 1 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1 1 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1 1 0

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 1 1 0 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 1 1 0 1 0

0 0 0 0 0 0 ⋅ ⋅ ⋅ 1 1 0 1 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 1 1 0 1 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

)
)
)
)
)
)
)
)
)
)
)

)

.

(4)

Case 2. 𝑛 is an odd integer and 𝑛 ≥ 7. Consider

𝐷
∗𝑀

𝐺

=

(
(
(
(
(
(
(
(
(
(
(

(

1 1 0 1 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

1 1 1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 1 1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

1 0 1 1 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 1 0 1 1 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

0 0 1 0 1 1 ⋅ ⋅ ⋅ 0 0 0 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 1 0 1 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1 0 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 1 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1 1 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 1 1 0 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 1 1 0 1 0

0 0 0 0 0 0 ⋅ ⋅ ⋅ 1 1 0 1 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 1 1 0 1 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

)
)
)
)
)
)
)
)
)
)
)

)

.

(5)

In both of the cases it can be seen that none of the rows are
identical and so 𝑀 = {V

1
, V
2
, V
4
} forms a distance pattern

distinguishing set of 𝐶
𝑛
, which yields the desired result.

Theorem 8 motivates one to raise the following problem
of theoretical interest.

Problem 1. Given a natural number 𝑘, other than 2, does there
exist a graph𝐺whose distance pattern distinguishing number
is 𝑘? Is 𝐺 unique for that 𝑘?

The following three theorems establish sharp bounds for
the distance pattern distinguishing number of a graph.

Theorem 9. Let 𝐺 be a graph of order 𝑛 with diameter 𝑑 and
distance pattern distinguishing number 󰜚. Then, 𝑛 + 1 − 2𝑑 ≤
󰜚 ≤ 2
𝑑
− (𝑑 + 1).

Proof. Let 𝐺 be a graph with diameter 𝑑 and distance pattern
distinguishing number 󰜚. Then, for all V ∈ 𝑉, 𝑓

𝑀
: 𝑉(𝐺) →

2
𝑆
\ {0} where 𝑆 = {0, 1, . . . , 𝑑} is an injective function.

Upper Bound. Let 𝑢 ∈ 𝑀. There is at most 2𝑑 − 1 choices
for 𝑓
𝑀
(𝑢) and 0 ∈ 𝑓

𝑀
(𝑢). By Theorem 8, there is no distance

pattern distinguishing set of cardinality 2 and therefore we
exclude all 2-element sets, for which one of the two elements
is zero, from the choices.Thus, the upper bound 󰜚 ≤ 2𝑑−(𝑑+
1) holds.

Lower Bound. For the lower bound, since𝑓
𝑀
is injective, each

vertex in𝐺 has distinct distance pattern of cardinality at most
󰜚. Hence,𝐺 has at most 󰜚+∑𝑑

𝑗=1

𝑑
𝐶
𝑗
vertices. But∑𝑑

𝑗=0

𝑑
𝐶
𝑗
=

2
𝑑, which implies that 󰜚 ≥ 𝑛 + 1 − 2𝑑.

The inequality given in the lower bound of Theorem 9
can be strict. For example, by Theorem 8, the cycle 𝐶

7
of an

order 𝑛 = 7 and diameter 𝑑 = 3 has the distance pattern
distinguishing number 󰜚(𝐶

7
) = 3, but 𝑛 + 1 − 2

𝑑
= 0. On

the other hand, the path 𝑃
2
shows that the lower bound in

Theorem 9 can be sharp since𝑃
2
has order 𝑛 = 2 and diameter

𝑑 = 1, while either end-vertex of 𝑃
2
constitutes a distance

pattern distinguishing set and so 𝑛+1−2𝑑 = 1 and 󰜚(𝑃
2
) = 1.

The upper bound in Theorem 9 can be attained for the
path 𝑃

3
of order 𝑛 = 3 and diameter 𝑑 = 2 for which the

distance pattern distinguishing number 󰜚(𝑃
3
) = 1. But the

upper bound cannot be sharp for the paths 𝑃
𝑛
, 𝑛 ≥ 4.

It can be seen that every distance pattern distinguishing
set of a graph is a resolving set of that graph. But not every
resolving set is a distance pattern distinguishing set; the
smallest counterexample is 𝐾

3
. Hence, the distance pattern

distinguishing number of a graph may be the same as the
metric dimension of that graph. Chartrand et al. obtained a
sharp lower bound for the metric dimension of a graph in
terms of maximum degree of 𝐺 [4]. By similar arguments, it
can be shown that the same bound holds for distance pattern
distinguishing number also.We exclude the proof in this case.

Theorem 10. If 𝐺 is a distance pattern distinguishing graph
with diameter 𝑑 and maximum degree Δ, then 󰜚(𝐺) ≥

⌜log
3
(Δ + 1)⌝.
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The lower bound inTheorem 10 can be attained for graphs
𝐺 ≅ 𝑃

𝑛
. On the other hand, if 𝐺 ≅ 𝐶

𝑛
, then the lower bound

given inTheorem 10 cannot be sharp.

Remark 11. The upper bound 𝛽(𝐺) ≤ 𝑝 − 𝑑 for the metric
dimension of a graph in terms of diameter of 𝐺 given
by Chartrand et al. [4] is not valid for distance pattern
distinguishing number of that graph. For example, let 𝐺 be
a graph obtained from 𝐶

4
by attaching a path of length two

to an arbitrary vertex of 𝐶
4
. Then, 󰜚(𝐺) = 4, which implies

that the inequality does not hold for the distance pattern
distinguishing number of 𝐺.

The result that follows uses the following definitions and
notations recalled from [5].

Definition 12. Let 𝑇 = (𝑉, 𝐸) be a tree and let V be a specified
vertex in 𝑇. Partition the edges of 𝑇 by the equivalence
relation =V defined as follows: two edges 𝑒 =V 𝑓 if and only
if there is a path in 𝑇 including 𝑒 and 𝑓 that does not have V
as an internal vertex. The subgraphs induced by the edges of
the equivalent classes of 𝐸 are called the bridges of 𝑇 relative
to V. For each vertex V ∈ 𝑉 of a tree𝑇 = (𝑉, 𝐸), the legs at V are
the bridges which are paths. We use 𝑙V to denote the number
of legs at V.

Theorem 13. For a tree 𝑇 ≇ 𝑃
𝑛
, 󰜚 ≥ ∑V∈𝑉:𝑙V>1(𝑙V − 1).

Proof. Let 𝑇 ≇ 𝑃
𝑛
be a tree with distance pattern distinguish-

ing set 𝑀. Consider any vertex V with 𝑙V > 1. Then at least
𝑙V − 1 legs of V contain vertices in 𝑀. Otherwise, let 𝑙

1
and

𝑙
2
be two legs of V whose vertices are not the elements of𝑀.

Then the neighbors of V in those legs have the same distance
patternwith respect to𝑀, a contradiction.Therefore, for each
vertex V ∈ 𝑉 at least 𝑙V − 1 are in𝑀. Since 𝑇 is not a path, the
legs corresponding to distinct vertices are disjoint.Therefore,
distance pattern distinguishing number is at least the sum
stated above.

The following lemma gives a class of graphs attaining the
lower bound inTheorem 13.

Definition 14. An olive tree 𝑇
𝑘
is a rooted tree that consisted

of 𝑘 branches, and the 𝑖th branch is a path of length 𝑖.

Lemma 15. Olive tree 𝑇
𝑘
with 𝑘 ≥ 3 branches has distance

pattern distinguishing number 𝑘 − 1.

Proof. Since 𝑇
1
≅ 𝑃
2
and 𝑇

2
≅ 𝑃
4
, by Theorem 8, 󰜚(𝑇

1
) =

󰜚(𝑇
2
) = 1. Let 𝑇

𝑘
be an olive tree with branches 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑘
,

where 𝑘 ≥ 3 and let V be its root vertex.Then, 𝑙V = 𝑘 and for all
𝑢 ∈ 𝑉\ {V}, 𝑙

𝑢
= 1. Let𝑀 be a distance pattern distinguishing

set in 𝑇
𝑘
. Then by Theorem 13, 𝑀 contains vertices from at

least 𝑘 − 1 branches and 󰜚 ≥ ∑V∈𝑉:𝑙V>1(𝑙V − 1) = 𝑘 − 1.
Now, we prove the lemma by showing that pendant vertices
from the branches, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑘−1
, form a distance pattern

distinguishing set.
We denote the vertices on the 𝑖th branch of𝑇 successively

from the vertex adjacent to V to the pendant vertex of the
branch as V

𝑖1
, V
𝑖2
, V
𝑖3
, . . . , V

𝑖𝑖
. Let 𝑀 = {V

11
, V
22
, . . . , V

𝑘−1𝑘−1
}.

Then, the rows corresponding to the vertices in the 𝑘th
branch together with the row corresponding to V form a
submatrix of𝐷∗𝑀

𝑇
as follows:

(
(
(

(

0 0 0 0 ⋅ 0 0 0 1 ⋅ 1 1 1 1 1 ⋅ 1 1 1

0 0 0 0 ⋅ 0 0 1 1 ⋅ 1 1 1 1 1 ⋅ 1 1 0

0 0 0 0 ⋅ 0 1 1 1 ⋅ 1 1 1 1 1 ⋅ 1 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 1 1 ⋅ 1 1 1 1 1 ⋅ ⋅ 1 1 0 0 0 ⋅ 0

0 1 1 1 ⋅ 1 1 1 1 1 ⋅ ⋅ 1 0 0 0 0 ⋅ 0

)
)
)

)

,

(6)

where in the first row 1 appears at the (𝑘 + 2)th, (𝑘 +

3)th, . . . , (2𝑘)th positions and from the second row onwards
the entry 1 at each position is shifted one position to the left.
Rows corresponding to the vertices in the (𝑘 − 1)th branch
form a submatrix of𝐷∗𝑀

𝑇
as follows:

(

(

1 0 0 0 ⋅ 0 0 0 1 ⋅ 1 1 1 1 ⋅ 1 1 0 0

0 1 0 0 ⋅ 0 0 1 1 ⋅ 1 1 1 1 ⋅ 1 0 0 0

0 0 1 0 ⋅ 0 1 1 1 ⋅ 1 1 1 1 ⋅ 0 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 1 1 ⋅ 1 1 1 1 1 ⋅ ⋅ ⋅ 1 0 0 0 ⋅ 0

)

)

,

(7)

where in the first row 1 appears at the first, (𝑘 + 1)th, (𝑘 +
2)th, . . . , (2𝑘 − 2)th positions. From the second row onwards
the entry 1 at the first position is shifted one position to the
right and the entry 1 at (𝑘 + 2)th, (𝑘 + 3)th, . . . , (2𝑘 − 1)th
positions is shifted one position to the left.When 3 ≤ 𝑖 ≤ (𝑘−
2), the rows corresponding to the vertices in the 𝑖th branch
form a submatrix of𝐷∗𝑀

𝑇
are as follows:

(

1 0 0 0 ⋅ 0 0 0 1 ⋅ 1 1 1 0 1 ⋅ 1 1 1 0 ⋅ 0

0 1 0 0 ⋅ 0 0 1 1 ⋅ 1 1 0 1 1 ⋅ 1 1 0 0 ⋅ 0

0 0 1 0 ⋅ 0 1 1 1 ⋅ 1 0 1 1 1 ⋅ 1 0 0 0 ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 1 ⋅ 1 1 1 0 1 ⋅ ⋅ ⋅ 1 0 0 0 ⋅ 0 0 0 0

),

(8)

where in the first row 1 appears at the first, (𝑖 + 2)th, (𝑖 +
3)th, . . . , (2𝑖)th, (2𝑖 + 2)th, (2𝑖 + 3)th, . . . , (𝑖 + 𝑘)th positions.
From the second row onwards the entry 1 at the first position
is shifted one position to the right and the entry 1 at (𝑖 +
2)th, (𝑖 + 3)th, . . . , (2𝑖)th, (2𝑖 + 2)th, (2𝑖 + 3)th, . . . , (𝑖 + 𝑘)th
positions is shifted one position to the left.

Thus, all the rows in𝐷∗𝑀
𝑇

are nonidentical and hence,𝑀
is a distance pattern distinguishing set. Hence, an olive tree
with 𝑘 branches has distance pattern distinguishing number
𝑘 − 1.

Lemma 16. Let 𝐾
𝑛
with 𝑛 ≥ 4 be a complete graph with

𝑉(𝐾
𝑛
) = {V

1
, V
2
, . . . , V

𝑛
}. Let 𝐺 be the graph obtained from 𝐾

𝑛

by attaching path 𝑃
𝑖
: V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑖
to V
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛.

Then, 󰜚(𝐺) = 𝑛 − 1.

Proof. Let 𝐾
𝑛
be a complete graph with 𝑉(𝐾

𝑛
) = {V

1
, V
2
,

. . . , V
𝑛
}. Let 𝐺 be the graph obtained from 𝐾

𝑛
by attaching



Journal of Applied Mathematics 5

path 𝑃
𝑖
: V
𝑖
V
𝑖1
V
𝑖2
⋅ ⋅ ⋅ V
𝑖𝑖
to V
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛. Then, at least

𝑛 − 1 paths 𝑃
𝑖
contain vertices in 𝑀. Otherwise, let 𝑃

𝑖
and

𝑃
𝑗
be two paths whose vertices are not in𝑀. Then, 𝑓

𝑀
(V
𝑖
) =

𝑓
𝑀
(V
𝑗
), a contradiction. Therefore, at least 𝑛 − 1 vertices are

in 𝑀. Choose 𝑀 = {V
11
, V
22
, . . . , V

𝑛−1,𝑛−1
}. Then, the rows

corresponding to the vertices in the path 𝑃
𝑖
; 𝑖 = 1, 2, . . . , 𝑛 − 1

in𝐷∗𝑀
𝐺

are of the form

(

1 0 0 0 ⋅ 0 0 0 1 ⋅ 1 1 1 0 1 ⋅ 1 1 1 0 ⋅ 0

0 1 0 0 ⋅ 0 0 1 1 ⋅ 1 1 0 1 1 ⋅ 1 1 0 0 ⋅ 0

0 0 1 0 ⋅ 0 1 1 1 ⋅ 1 0 1 1 1 ⋅ 1 0 0 0 ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 1 1 ⋅ 1 1 0 1 ⋅ 1 1 1 1 0 ⋅ 0 0 0 0 ⋅ 0

0 1 1 1 ⋅ 1 0 1 1 ⋅ 1 1 1 0 0 ⋅ 0 0 0 0 ⋅ 0

),

(9)

where in the first row the entry 1 appears at the 1st, (𝑖 +
3)th, (𝑖 + 4)th, . . . , (2𝑖 + 1)th, (2𝑖 + 3)th, . . . , (𝑛 + 𝑖 + 1)th
columns. From the second rowonwards the entry 1 in the first
position shifts one position to the right and the entry 1 in (𝑖 +
3)th, (𝑖+4)th, . . . , (2𝑖+1)th, (2𝑖+3)th, . . . , (𝑛+𝑖+1)th positions
shifts one position to the left. The rows corresponding to the
vertices of the path 𝑃

𝑛
in𝐷∗𝑀
𝐺

are of the form

(
(
(

(

1 0 0 0 ⋅ 0 0 0 1 ⋅ 1 1 1

0 1 0 0 ⋅ 0 0 1 1 ⋅ 1 1 0

0 0 1 0 ⋅ 0 1 1 1 ⋅ 1 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 1 1 ⋅ 1 1 1 0 ⋅ 0 0 0

0 1 1 1 ⋅ 1 1 0 0 ⋅ 0 0 0

)
)
)

)

, (10)

where in the first row the entry 1 appears at the 1st, (𝑛 +
3)th, (𝑛 + 4)th, . . . , (2𝑛 + 1)th columns. From the second row
onwards the entry 1 in the first position shifts one position to
the right and the entry 1 in (𝑛 + 3)th, (𝑛 + 4)th, . . . , (2𝑛 + 1)th
positions shifts one position to the left. It is easy to see that the
rows in 𝐷∗𝑀

𝐺
are nonidentical and therefore,𝑀 is a distance

pattern distinguishing set.

Theorem 17. Given any positive integer 𝑘 ̸= 2, there exists a
graph 𝐺 with 󰜚(𝐺) = 𝑘. Furthermore, 𝐺 is not unique except
for 𝑘 = 1.

Proof. By Theorem 8, 𝑃
𝑛
is the only graph with 󰜚 = 1. From

Lemmas 15 and 16 we have that, given any positive integer 𝑘 ≥
3, there exists more than one class of graphs with 󰜚 = 𝑘.

3. Algorithm

Let 𝐷 = (𝑑
𝑖𝑗
) denote the distance matrix of a graph 𝐺 and

let 0 ̸=𝑀 ⊆ 𝑉 with |𝑀| = 𝑘. Let 𝐷󸀠 be an 𝑛 × 𝑘; 1 ≤ 𝑘 ≤ 𝑛

submatrix of𝐷 whose columns correspond to the vertices in
𝑀. Then each row of 𝐷󸀠 (considered as a set) gives the 𝑀
distance patterns of the corresponding vertices in 𝐺. Thus,
we can check whether𝑀 is a distance pattern distinguishing
set or not. We design the following algorithm to determine
whether a graph is a distance pattern distinguishing graph
or not and to determine the distance pattern distinguishing
number of that graph.

�1 �2 �3

u1 u2

u4 u3

Figure 2

Algorithm 18.

Preprocess. Apply Floyd-Warshall algorithm to compute the
distance matrix of 𝐺.

Step 1 (input: distance matrix). Input is the distance matrix of
the graph 𝐺 of order 𝑛.

Step 2 (selection of columns of 𝐷 to find all the distance
pattern distinguishing sets of 𝐺). Select all 𝑛 × 𝑘 : 1 ≤ 𝑘 ≤ 𝑛

and 𝑘 ̸= 2 submatrices𝐷
𝑖
of𝐷. ByTheorem 8, cardinality of a

distance pattern distinguishing set is not equal to 2.

Step 3 (formation of distance patterns of vertices in 𝐺 from
the rows of 𝐷

𝑖
). Make distance patterns of the vertices in 𝐺

by considering each row of𝐷󸀠 as sets.

Step 4 (identify the distance pattern distinguishing sets). If
all the distance patterns are distinct, then a set of vertices𝑀
corresponding to the columns in𝐷󸀠 form the distance pattern
distinguishing set. Otherwise, 𝑀 is not a distance pattern
distinguishing set.

Step 5 (find distance pattern distinguishing number of 𝐺).
If there is no distance pattern distinguishing set for 𝐺,
then distance pattern distinguishing number of 𝐺 is zero.
Otherwise, distance pattern distinguishing number of 𝐺 is
the minimum cardinality of distance pattern distinguishing
sets.

The following examples illustrate the correctness and
efficiency of the algorithm given above.

Example 19. ByTheorem 8, the distance pattern distinguish-
ing number of a path is 1. Now we calculate the same for 𝑃

3

of Figure 2 using the above algorithm.

Step 1 (input: distance matrix of 𝑃
3
). Consider

𝐷 = (

0 1 2

1 0 1

2 1 0

) . (11)
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dpd← function (𝑎)
{

𝑛 ← 𝑛𝑟𝑜𝑤(𝑎) # dimension of 𝑎
𝑠 ← 0

𝑝 ← 0

ℎ ← 0

𝑘 ← 𝑚𝑎𝑡𝑟𝑖𝑥(0, 1, 𝑛) # outer loop for 𝑛 times
𝑓𝑜𝑟(𝑖 𝑖𝑛 1 : 𝑛)

{

𝑏 ← 𝑐𝑜𝑚𝑏𝑛(𝑛, 𝑖)

𝑐 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏[1, ]) # inner loop for (2𝑛) − 1 sub matrices
𝑓𝑜𝑟(𝑗 𝑖𝑛 1 : 𝑐)

{

𝑖𝑛𝑑 ← 𝑏[ , 𝑗]

𝑑 ← 𝑎[ , 𝑖𝑛𝑑]

𝑑2 ← 𝑎𝑠.𝑚𝑎𝑡𝑟𝑖𝑥(𝑑) # sub matrix of 𝑖 columns
𝑓𝑜𝑟(𝑙 𝑖𝑛 1 : (𝑛 − 1))

{

𝑡1 ← 𝑠𝑜𝑟𝑡(𝑢𝑛𝑖𝑞𝑢𝑒(𝑑2[𝑙, ])) # checking distinct rows
𝑓𝑜𝑟(𝑟 𝑖𝑛 (𝑙 + 1) : 𝑛)

{

𝑡2 ← 𝑠𝑜𝑟𝑡(𝑢𝑛𝑖𝑞𝑢𝑒(𝑑2[𝑟, ]))

𝑓 ← 𝑠𝑜𝑟𝑡(𝑢𝑛𝑖𝑞𝑢𝑒(𝑐(𝑡1, 𝑡2)))

𝑖𝑓(𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1) == 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓) && 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡2) == 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓))

{

𝑠 ← 𝑠 + 1

}

}

}

𝑖𝑓(𝑠! = 0)

{

𝑝 ← 𝑝 + 1

}

𝑖𝑓(𝑠 == 0)

{

𝑝𝑟𝑖𝑛𝑡(𝑏[ , 𝑗]) # find dpd set
𝑝𝑟𝑖𝑛𝑡(“is a distance pattern distinguishing set”)
ℎ ← 𝑛𝑐𝑜𝑙(𝑑2)

}

𝑠 ← 0

}

𝑘[1, 𝑖] ← ℎ

}

𝑖𝑓(𝑝 == (2
𝑛
) − 1)

{

𝑝𝑟𝑖𝑛𝑡(“Given graph has no distance pattern distinguishing sets”)
}

𝑝𝑟𝑖𝑛𝑡(“distance pattern distinguishing number is”) # find dpd number
𝑝𝑟𝑖𝑛𝑡(𝑚𝑖𝑛(𝑘))

}

Algorithm 1
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Step 2 (selection of all 3 × 𝑘 : 1 ≤ 𝑘 ≤ 3 and 𝑘 ̸= 2 submatrices
of𝐷). Consider

𝐷
1
= (

0

1

2

) , 𝐷
2
= (

1

0

1

) , 𝐷
3
= (

2

1

0

) ,

𝐷
4
= (

0 1 2

1 0 1

2 1 0

) .

(12)

Step 3 (formation of distance patterns of vertices of 𝑃
3
from

the rows of above submatrices). Possible distance patterns of
the vertices of 𝑃

3
are 𝐷󸀠
1
= {{0}, {1}, {2}}, 𝐷󸀠

2
= {{1}, {0}, {1}},

𝐷
󸀠

3
= {{2}, {1}, {0}}, and𝐷󸀠

4
= {{0, 1, 2}, {0, 1}, {0, 1, 2}}.

Step 4 (identify the distance pattern distinguishing sets from
Step 3). FromStep 3,𝐷󸀠

1
and𝐷󸀠

3
give distinct distance patterns

for the vertices of 𝑃
3
and hence either the vertices V

1
or V
3

forms a distance pattern distinguishing set.

Step 5 (find distance pattern distinguishing number of 𝐺).
From Step 4, distance pattern distinguishing number of 𝑃

3
is

1.

Example 20. By Theorem 6, the cycle 𝐶
4
is not a distance

pattern distinguishing graph.

Step 1 (input: distance matrix of 𝐶
4
). Consider

𝐷 = (

0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0

) . (13)

Step 2 (selection of all 4 × 𝑘 : 1 ≤ 𝑘 ≤ 4 and 𝑘 ̸= 2 submatrices
of𝐷). Consider

𝐷
1
= (

0

1

2

1

) , 𝐷
2
= (

1

0

1

2

) , 𝐷
3
= (

2

1

0

1

) ,

𝐷
4
= (

1

2

1

0

) , 𝐷
5
= (

0 1 2

1 0 1

2 1 0

1 2 1

) ,

𝐷
6
= (

0 1 1

1 0 2

2 1 1

1 2 0

) , 𝐷
7
= (

0 2 1

1 1 2

2 0 1

1 1 0

) ,

𝐷
8
= (

1 2 1

0 1 2

1 0 1

2 1 0

) , 𝐷
9
= (

0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0

) .

(14)

Step 3 (formation of distance patterns of vertices of 𝑃
3
from

the rows of above submatrices). Possible distance patterns of
the vertices of 𝑃

3
are

𝐷
󸀠

1
= {{0} , {1} , {2} , {1}} , 𝐷

󸀠

2
= {{1} , {0} , {1} , {2}} ,

𝐷
󸀠

3
= {{2} , {1} , {0} , {1}} , 𝐷

󸀠

4
= {{1} , {2} , {0} , {1}} ,

𝐷
󸀠

5
= {{0, 1, 2} , {0, 1} , {0, 1, 2} , {1, 2}} ,

𝐷
󸀠

6
= {{0, 1} , {0, 1, 2} , {1, 2} , {0, 1, 2}} ,

𝐷
󸀠

7
= {{0, 1, 2} , {1, 2} , {0, 1, 2} , {0, 1}} ,

𝐷
󸀠

8
= {{1, 2} , {0, 1, 2} , {0, 1} , {0, 1, 2}} ,

𝐷
󸀠

9
= {{0, 1, 2} , {0, 1, 2} , {0, 1, 2} , {0, 1, 2}} .

(15)
Step 4 (identify the distance pattern distinguishing sets from
Step 3). From Step 3, it can be seen that at least one set is
repeated in all the above given distance patterns. Hence, 𝐶

4

has no distance pattern distinguishing sets.

Remark 21. An R program has been developed based on this
algorithm and calculated the distance pattern distinguishing
number of several classes of graphs.The same program tested
whether the input graph is distance pattern distinguishing
graph or not.

Appendix

An R program for finding the distance pattern distinguishing
number of a graphwhen the user supplies the distancematrix
of that graph has been developed. See Algorithm 1.
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