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We obtain two existence results about multiple positive periodic solutions for a class of functional difference system. Two examples
are given to illustrate our results.

1. Introduction and Preliminaries

Throughout this paper, we denote by Z the set of all integers,
byR the set of all real numbers, and by𝑋 a real Banach space.
Moreover, let

R
𝑛

+
= {(𝑥
1
, . . . , 𝑥

𝑛
) : 𝑥
1
, . . . , 𝑥

𝑛
≥ 0} (1)

and let 𝑙∞
𝑇
(Z,R𝑛) (𝑙∞

𝑇
(Z,R𝑛
+
)) be the space of all 𝑇-periodic

functions 𝑓 : Z → R𝑛 (𝑓 : Z → R𝑛
+
), where 𝑇 > 1 is fixed

positive integer. It is well known that 𝑙∞
𝑇
(Z,R𝑛) is a Banach

space under the norm

𝑓
 = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛


𝑓
𝑗
(𝑘)


, (2)

where 𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
𝑇.

The aimof this paper is to investigate the existence ofmul-
tiple positive periodic solutions to the following functional
difference system:

𝑥 (𝑘 + 1) − 𝑥 (𝑘) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝑓 (𝑘, 𝑥
𝑘
) , 𝑘 ∈ Z, (3)

where 𝑥 : Z → R𝑛 is an 𝑛-dimensional vector function

𝐴 (𝑘) = diag [𝑎
1
(𝑘) , 𝑎
2
(𝑘) , . . . , 𝑎

𝑛
(𝑘)] , (4)

𝑎
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, are 𝑇-periodic functions from Z to R, 𝑓

is a function from Z × 𝑙
∞

𝑇
(Z,R𝑛) to R𝑛, and 𝑥

𝑘
is defined by

𝑥
𝑘
(𝑚) = 𝑥(𝑘 + 𝑚) for all𝑚 ∈ Z.

The existence of periodic solutions has been an important
topic in the qualitative theory of functional differential
equations and functional difference equations. There is a
large body of literature on this interesting topic. We refer
the reader to [1–17] and references therein for some recent
contributions. Especially, the existence of periodic solutions
for system (3) and its variants has been of great interest for
many authors (see, e.g., [5, 6, 8, 9, 17] and references therein).

It is needed to note that Raffoul [8] and Raffoul and
Tisdell [9] have made an important contribution to this
topic. In fact, Raffoul constructed Green function for system
(3) and transformed system (3) into an equivalent system.
This enables us to use some suitable fixed point theorems to
investigate the existence of periodic solutions for system (3).
In addition,wewould like to draw the reader’s attention to [6],
where Dix et al. initiated the study on the multiple periodic
solutions for a variant of system (3) in a 1-dimensional case.

Stimulated by [6, 8, 9], in this paper, we will make further
study on this topic for an 𝑛-dimensional case. Next, we recall
two fixed point theorems, which will be used in the proof
of our main results. We first recall some definitions and
notations.

A closed convex set𝐾 in𝑋 is called a cone if the following
conditions are satisfied:

(i) if 𝑥 ∈ 𝐾, then 𝜆𝑥 ∈ 𝐾 for any 𝜆 ≥ 0,

(ii) if 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾, then 𝑥 = 0.
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A nonnegative continuous functional𝜓 is said to be a concave
on𝐾 if 𝜓 is continuous and

𝜓 (𝜇𝑥 + (1 − 𝜇) 𝑦) ≥ 𝜇𝜓 (𝑥) + (1 − 𝜇)𝜓 (𝑦) ,

𝑥, 𝑦 ∈ 𝐾, 𝜇 ∈ [0, 1] .

(5)

Letting 𝑐
1
, 𝑐
2
, 𝑐
3
be three positive constants and letting 𝜙 be a

nonnegative continuous functional on𝐾, we denote

𝐾
𝑐
1

= {𝑦 ∈ 𝐾 :
𝑦

 < 𝑐
1
} ,

𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) < 𝑐

1
} ,

𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) ≤ 𝑐

1
} ,

𝜕𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) = 𝑐

1
} ,

𝐾 (𝜙, 𝑐
2
, 𝑐
3
) = {𝑦 ∈ 𝐾 : 𝑐

2
≤ 𝜙 (𝑦) ,

𝑦
 < 𝑐
3
} .

(6)

In addition, we call that 𝜙 is increasing on 𝐾 if 𝜙(𝑥) ≥ 𝜙(𝑦)

for all 𝑥, 𝑦 ∈ 𝐾 with 𝑥 − 𝑦 ∈ 𝐾.

Lemma 1 (see [18]). Let 𝐾 be a cone in 𝑋, let 𝛼 and 𝜑 be
increasing, nonnegative, continuous functionals on 𝐾, and let
𝜌 be a nonnegative continuous functional on 𝐾 with 𝜌(0) = 0

such that, for some 𝑐 > 0 and𝑀 > 0,

𝜑 (𝑢) ≤ 𝜌 (𝑢) ≤ 𝛼 (𝑢) , ‖𝑢‖ ≤ 𝑀𝜑 (𝑢) (7)

for all 𝑢 ∈ 𝐾(𝜑, 𝑐). Suppose that there exists a completely
continuous operator Φ : 𝐾(𝜑, 𝑐) → 𝐾 and 0 < 𝑎 < 𝑏 < 𝑐

such that

𝜌 (𝜆𝑢) ≤ 𝜆𝜌 (𝑢) , for 0 ≤ 𝜆 ≤ 1, 𝑢 ∈ 𝜕𝐾 (𝜌, 𝑏) , (8)

and

(i) 𝜑(Φ𝑢) > 𝑐, for all 𝑢 ∈ 𝜕𝐾(𝜑, 𝑐);
(ii) 𝜌(Φ𝑢) < 𝑏, for all 𝑢 ∈ 𝜕𝐾(𝜌, 𝑏);
(iii) 𝐾(𝛼, 𝑎) ̸= 0 and 𝛼(Φ𝑥) > 𝑎, for all 𝑢 ∈ 𝜕𝐾(𝛼, 𝑎).

Then Φ has at least two fixed points 𝑢
1
and 𝑢

2
belonging to

𝐾(𝜑, 𝑐) such that

𝑎 < 𝛼 (𝑢
1
) , with 𝜌 (𝑢

1
) < 𝑏,

𝑏 < 𝜌 (𝑢
2
) , with 𝜑 (𝑢

2
) < 𝑐.

(9)

Lemma 2 (see [19]). Let 𝐾 be a cone in 𝑋, let 𝑐
4
be a positive

constant, let Φ : 𝐾
𝑐
4

→ 𝐾
𝑐
4

be a completely continuous
mapping, and let 𝜓 be a concave nonnegative continuous
functional on 𝐾 with 𝜓(𝑢) ≤ ‖𝑢‖ for all 𝑢 ∈ 𝐾

𝑐
4

. Suppose that
there exist three constants 𝑐

1
, 𝑐
2
, 𝑐
3
with 0 < 𝑐

1
< 𝑐
2
< 𝑐
3
≤ 𝑐
4

such that

(i) {𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
) : 𝜓(𝑢) > 𝑐

2
} ̸= 0 and 𝜓(Φ𝑢) > 𝑐

2
for

all 𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
);

(ii) ‖Φ𝑢‖ < 𝑐
1
for all 𝑢 ∈ 𝐾

𝑐
1

;
(iii) 𝜓(Φ𝑢) > 𝑐

2
for all 𝑢 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑢‖ > 𝑐

3
.

Then Φ has at least three fixed points 𝑢
1
, 𝑢
2
, 𝑢
3
in 𝐾
𝑐
4

.
Furthermore, ‖𝑢

1
‖ ≤ 𝑐
1
< ‖𝑢
2
‖ and 𝜓(𝑢

2
) < 𝑐
2
< 𝜓(𝑢

3
).

2. Main Results

Throughout the rest of this paper, we assume that the
following assumptions for system (3) hold.

(H0) For every 𝑗 ∈ {1, 2, . . . , 𝑛}, 0 < 1 + 𝑎
𝑗
(𝑘) ≤ 1 for all

𝑘 ∈ Z and

𝑇

∏

𝑘=1

[1 + 𝑎
𝑗
(𝑘)] ̸= 1. (10)

(H1) 𝑘 → 𝑓(𝑘, 𝑥
𝑘
) belongs to 𝑙

∞

𝑇
(Z,R𝑛
+
) whenever 𝑥 ∈

𝑙
∞

𝑇
(Z,R𝑛
+
).

(H2) For every 𝐿 > 0 and 𝜀 > 0, there exists a 𝛿 > 0 such
that

𝑓 (𝑘, 𝜙
𝑘
) − 𝑓 (𝑘, 𝜓

𝑘
)
 < 𝜀, 𝑘 = 1, 2, . . . , 𝑇, (11)

for all 𝜙, 𝜓 ∈ 𝑙
∞

𝑇
(Z,R𝑛
+
) with ‖𝜙‖ ≤ 𝐿, ‖𝜓‖ ≤ 𝐿, and

‖𝜙 − 𝜓‖ < 𝛿.

Now, we define

𝐺
𝑗
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−𝑇+1
[1 + 𝑎

𝑗
(𝑚)]

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

, 𝑗 = 1, 2, . . . , 𝑛, (12)

for (𝑘, 𝑠) ∈ Z × Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1.
Then, by a proof similar to [8], we can transform (3) into

the following equivalent equation:

𝑥 (𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) , 𝑘 ∈ Z, (13)

where

𝐺 (𝑘, 𝑠) = diag [𝐺
1
(𝑘, 𝑠) , 𝐺

2
(𝑘, 𝑠) , . . . , 𝐺

𝑛
(𝑘, 𝑠)] . (14)

It is easy to see that

𝐺 (𝑘, 𝑠) = 𝐺 (𝑘 + 𝑇, 𝑠 + 𝑇) (15)

for all (𝑘, 𝑠) ∈ Z × Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1. In
addition, it follows from (H0)–(H2) that, for every 𝑗 ∈

{1, 2, . . . , 𝑛}, 𝐺
𝑗
(⋅, ⋅) has a positive denominator, while the

numerator is a positive and increasing function of 𝑠 ∈ [𝑘, 𝑘 +

𝑇−1]. Thus, for (𝑘, 𝑠) ∈ Z×Zwith 𝑘 ≤ 𝑠 ≤ 𝑘+𝑇−1, we have

∏
𝑘−1

𝑚=𝑘−𝑇+1
[1 + 𝑎

𝑗
(𝑚)]

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 𝐺
𝑗
(𝑘, 𝑘) ≤ 𝐺

𝑗
(𝑘, 𝑠) ,

𝐺
𝑗
(𝑘, 𝑠) ≤ 𝐺

𝑗
(𝑘, 𝑘 + 𝑇 − 1) =

1

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

.

(16)
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Letting

𝑝 = min
1≤𝑘≤𝑇

min
1≤𝑗≤𝑛

𝐺
𝑗
(𝑘, 𝑘) ,

𝑞 = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝐺
𝑗
(𝑘, 𝑘 + 𝑇 − 1) ,

(17)

we have

𝑝 ≤ 𝐺
𝑗
(𝑘, 𝑠) ≤ 𝑞, (𝑘, 𝑠) ∈ Z × Z, 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1,

𝑗 = 1, 2, . . . , 𝑛.

(18)

Next, we introduce a set

𝐾 = {𝑥 ∈ 𝑙
∞

𝑇
(Z,R

𝑛

) : min
1≤𝑘≤𝑇

𝑥
𝑗
(𝑘) ≥ 𝜎


𝑥
𝑗


, 𝑗 = 1, 2, . . . , 𝑛} ,

(19)

where 𝜎 = 𝑝/𝑞. It is not difficult to verify that 𝐾 is a cone in
𝑙
∞

𝑇
(Z,R𝑛). Finally, we define an operator Φ on𝐾 by

(Φ𝑥) (𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) , 𝑥 ∈ 𝐾, 𝑘 ∈ Z. (20)

Lemma 3. Φ is an operator from 𝐾 to 𝐾.

Proof. Let 𝑥 ∈ 𝐾. By (H1) and 𝐺(𝑘, 𝑠) = 𝐺(𝑘 + 𝑇, 𝑠 + 𝑇), we
get

(Φ𝑥) (𝑘 + 𝑇) =

𝑘+2𝑇−1

∑

𝑠=𝑘+𝑇

𝐺 (𝑘 + 𝑇, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
)

=

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘 + 𝑇, 𝑠 + 𝑇) 𝑓 (𝑠 + 𝑇, 𝑥
𝑠+𝑇

)

=

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) = (Φ𝑥) (𝑘) ,

(21)

for all 𝑘 ∈ Z. So Φ𝑥 ∈ 𝑙
∞

𝑇
(Z,R𝑛).

In addition, for 𝑗 = 1, 2, . . . , 𝑛, we have


(Φ𝑥)
𝑗


= max
1≤𝑘≤𝑇

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑞

𝑇

∑

𝑠=1

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ,

(22)

where 𝑓
𝑗
is the 𝑗th component of 𝑓. Then, we obtain

(Φ𝑥)
𝑗
(𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥ 𝑝

𝑇

∑

𝑠=1

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥

𝑝

𝑞


(Φ𝑥)
𝑗



(23)

for all 𝑘 ∈ Z. Thus, Φ𝑥 ∈ 𝐾. This completes the proof.

2.1. Existence of Two Positive Periodic Solutions of System (3).
In this section, we apply Lemma 1 to establish an existence
result about two positive periodic solutions of system (3). For
convenience, we list some assumptions.

(H3) There exists a constant 𝑐 > 0 such that

𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑐. (24)

(H4) There exists a constant 𝑏 > 0 such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑏 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑏. (25)

(H5) There exists a constant 𝑎 > 0 such that

𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑎 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑎. (26)

Theorem4. Assume that there exist three constants 𝑎, 𝑏, 𝑐with
0 < 𝑎 < 𝑏 < 𝑐 such that (H0)–(H5) hold. Then system (3) has
at least two positive 𝑇-periodic solutions.

Proof. Firstly, by Lemma 3, Φ is an operator from 𝐾 to 𝐾.
Secondly, by a proof similar to [9, Lemma 2.5], one can show
thatΦ : 𝐾 → 𝐾 is completely continuous.

Now, we begin to verify that all the assumptions of
Lemma 1 hold. Let

𝜑 (𝑥) = 𝜌 (𝑥) = 𝛼 (𝑥) = ‖𝑥‖ , 𝑥 ∈ 𝐾. (27)

It is clear that 𝛼, 𝜌, and 𝜑 are increasing, nonnegative,
continuous functionals on 𝐾 with 𝜌(0) = 0. Moreover, we
have

‖𝑥‖ ≤ 𝜎
−1

𝜑 (𝑥) , 𝜌 (𝜆𝑥) = 𝜆𝜌 (𝑥) , (28)

for all 𝑥 ∈ 𝐾 and 0 ≤ 𝜆 ≤ 1.
Next, we proceed to show that conditions (i)–(iii) of

Lemma 1 are also satisfied. For every 𝑥 ∈ 𝜕𝐾(𝜑, 𝑐), noting
that ‖𝑥‖ = 𝜑(𝑥) = 𝑐, by (H3), we conclude that

𝜑 (Φ𝑥) = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥ 𝑝 ⋅ max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

= 𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐;

(29)
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that is, condition (i) of Lemma 1 holds. For every 𝑥 ∈

𝜕𝐾(𝜌, 𝑏), since ‖𝑥‖ = 𝜌(𝑥) = 𝑏, by (H4), we get

𝜌 (Φ𝑥) = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≤ 𝑞 ⋅ max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

= 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑏;

(30)

that is, condition (ii) of Lemma 1 holds. Finally, it is easy to
see that

𝐾 (𝛼, 𝑎) = {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑎} ̸= 0, (31)

and for every 𝑥 ∈ 𝐾(𝛼, 𝑎), it follows from (H5) that

𝛼 (Φ𝑥) ≥ 𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑎. (32)

Thus, condition (iii) of Lemma 1 holds.
Now, by applying Lemma 1, there exist two fixed points

𝑢
1
, 𝑢
2
∈ 𝐾(𝜑, 𝑐), which are just two 𝑇-periodic solutions to

system (3). This completes the proof.

Remark 5. InTheorem 4, the two 𝑇-periodic solutions 𝑢
1
, 𝑢
2

do not equal zero. In fact, according to Lemma 1, we have

𝑎 <
𝑢1

 < 𝑏 <
𝑢2

 < 𝑐. (33)

Corollary 6. Assume that (H0)–(H2) and (H4) hold. More-
over,

lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
>

1

𝑝
, (34)

lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
>

1

𝑝
. (35)

Then system (3) has at least two positive 𝑇-periodic solutions.

Proof. By (34), there exists a constant 𝑐 > 𝑏 such that (H3)
holds. By (35), there exists a constant 𝑎 ∈ (0, 𝑏) such that (H5)
holds. Then, by applying Theorem 4, we complete the proof.

Next, we present a simple example, which does not aim at
generality but illustrates how to use our existence theorem.

Example 7. Consider the following system:

𝑥
1
(𝑘 + 1) − 𝑥

1
(𝑘) = −

1

2



sin 𝜋𝑘

2



𝑥
1
(𝑘) + 𝑓

1
(𝑘, 𝑥
𝑘
) ,

𝑥
2
(𝑘 + 1) − 𝑥

2
(𝑘) = −

1

2



cos 𝜋𝑘
2



𝑥
2
(𝑘) + 𝑓

2
(𝑘, 𝑥
𝑘
) ,

(36)

where

𝑓
1
(𝑘, 𝑥
𝑘
)

= 𝑓
2
(𝑘, 𝑥
𝑘
)

=
4 [𝑥
1
(𝑘) + 𝑥

2
(𝑘)] exp ((1/384) [𝑥

1
(𝑘) + 𝑥

2
(𝑘)])

1 + 𝑥
1
(𝑘) + 𝑥

2
(𝑘)

.

(37)

We have 𝑛 = 𝑇 = 2,

𝑎
1
(𝑘) = −

1

2



sin 𝜋𝑘

2



, 𝑎
2
(𝑘) = −

1

2



cos 𝜋𝑘
2



,

𝐺
1
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−1
[1 + 𝑎

1
(𝑚)]

1 − ∏
2

𝑚=1
[1 + 𝑎

1
(𝑚)]

= 2

𝑘−1

∏

𝑚=𝑠−1

[1 −
1

2


sin 𝜋𝑚

2


] ,

𝐺
2
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−1
[1 + 𝑎

2
(𝑚)]

1 − ∏
2

𝑚=1
[1 + 𝑎

2
(𝑚)]

= 2

𝑘−1

∏

𝑚=𝑠−1

[1 −
1

2


cos 𝜋𝑚

2


] ,

𝑝 = min
𝑘∈Z

min
1≤𝑗≤2

1 + 𝑎
𝑗
(𝑘 − 1)

1 − ∏
2

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 1,

𝑞 = max
𝑘∈Z

max
1≤𝑗≤2

1

1 − ∏
2

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 2,

𝜎 =
𝑝

𝑞
=
1

2
,

𝐾 = {𝑥 ∈ 𝑙
∞

2
(Z,R

2

+
) : min
𝑘∈Z

𝑥
𝑗
(𝑘) ≥

1

2


𝑥
𝑗


, 𝑗 = 1, 2} .

(38)

It is easy to verify that conditions (H0)–(H2) hold. Since, for
𝑥 ∈ 𝐾,

max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

=
4 [𝑥
1
(0) + 𝑥

2
(0)] exp ((1/384) [𝑥

1
(0) + 𝑥

2
(0)])

‖𝑥‖ [1 + 𝑥
1
(0) + 𝑥

2
(0)]

+
4 [𝑥
1
(1) + 𝑥

2
(1)] exp ((1/384) [𝑥

1
(1) + 𝑥

2
(1)])

‖𝑥‖ [1 + 𝑥
1
(1) + 𝑥

2
(1)]

≥
4 exp ((1/384) ‖𝑥‖)

1 + 2 ‖𝑥‖
,
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lim
‖𝑥‖→+∞

4 exp ((1/384) ‖𝑥‖)
1 + 2 ‖𝑥‖

= +∞,

lim
‖𝑥‖→0

+

4 exp ((1/384) ‖𝑥‖)
1 + 2 ‖𝑥‖

= 4 > 1,

(39)

we conclude that (34) and (35) are satisfied. It remains to
verify (H4). Letting 𝑏 = 192, for all 𝑥 ∈ 𝐾 with ‖𝑥‖ = 192, we
have

2max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

=
8 [𝑥
1
(0) + 𝑥

2
(0)] exp ((1/384) [𝑥

1
(0) + 𝑥

2
(0)])

1 + 𝑥
1
(0) + 𝑥

2
(0)

+
8 [𝑥
1
(1) + 𝑥

2
(1)] exp ((1/384) [𝑥

1
(1) + 𝑥

2
(1)])

1 + 𝑥
1
(1) + 𝑥

2
(1)

≤ 16 exp ( 1

192
‖𝑥‖) = 16𝑒 < 𝑏,

(40)

which means that (H4) holds. Therefore, by Corollary 6, we
know that system (36) has at least two positive 2-periodic
solutions.

Remark 8. In the above example, 0 is obviously a trivial
periodic solution for system (36). But by Remark 5, we know
that the two positive 2-periodic solutions do not equal zero.

2.2. Existence of Three Nonnegative Periodic Solutions of
System (3). In [6], Dix et al. investigated the existence of
multiple nonnegative periodic solutions for a first order func-
tional difference equation by the Leggett-Williams fixed point
theorem. In this section, we will investigate the existence of
multiple nonnegative periodic solutions for system (3) by
using an idea similar to that of [6]. For convenience, we also
list some assumptions.

(H6) There exists a constant 𝑐
1
> 0 such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑐
1

for 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝑐
1
. (41)

(H7) There exists a constant 𝑐
2
> 𝑐
1
> 0 such that

𝑝

𝑛
⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

for 𝑥 ∈ 𝐾 with 𝑐
2
≤ ‖𝑥‖ <

𝑛𝑐
2

𝜎
.

(42)

(H8) There exists a constant 𝑐
4
> 𝑛𝑐
2
/𝜎 := 𝑐

3
such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑐
4

for 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝑐
4
. (43)

Theorem 9. Assume that (H0)–(H2) and (H6)–(H8) hold.
Then system (3) has at least three nonnegative 𝑇-periodic
solutions.

Proof. By the proof of Theorem 4, we know that Φ is an
operator from𝐾 to 𝐾 and completely continuous. Let

𝜓 (𝑥) = min
1≤𝑘≤𝑇

∑
𝑛

𝑗=1
𝑥
𝑗
(𝑘)

𝑛
, 𝑥 ∈ 𝐾. (44)

It is easy to see that 𝜓 is a concave nonnegative continuous
functional on𝐾 and 𝜓(𝑥) ≤ ‖𝑥‖.

Firstly, we show that Φ maps 𝐾
𝑐
4

into 𝐾
𝑐
4

. For every 𝑥 ∈

𝐾
𝑐
4

, we have ‖𝑥‖ ≤ 𝑐
4
. Combining this with (H8), we get

‖Φ𝑥‖ = max
𝑘∈Z

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≤ 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑐
4
.

(45)

Secondly, let us verify condition (i) of Lemma 2. Since𝜎 <

1, 𝑐
3
> 𝑐
2
, then, it is easy to see that the set

{𝑥 ∈ 𝐾 (𝜓, 𝑐
2
, 𝑐
3
) : 𝜓 (𝑥) > 𝑐

2
} ̸= 0. (46)

In addition, for every 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
), we have 𝑐

2
≤ 𝜓(𝑥) ≤

‖𝑥‖ < 𝑐
3
= 𝑛𝑐
2
/𝜎. Then, by (H7), we have

𝜓 (Φ𝑥) =
1

𝑛
⋅ min
1≤𝑘≤𝑇

𝑛

∑

𝑗=1

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥
𝑝

𝑛
⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

(47)

which means that condition (i) of Lemma 2 holds.
Thirdly, for every 𝑥 ∈ 𝐾

𝑐
1

, since ‖𝑥‖ ≤ 𝑐
1
, it follows from

(H6) that

‖Φ𝑥‖ ≤ 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑐
1
; (48)

that is, condition (ii) of Lemma 2 holds.
Finally, for every 𝑥 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑥‖ > 𝑐

3
, we have

𝑐
2
≤ ‖𝑥‖ < 𝑐

4
and

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

s=0
𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥ ‖Φ𝑥‖ > 𝑐

3
, (49)

which yields that
𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) >

𝑐
3

𝑞
=
𝑛𝑐
2

𝑝
. (50)

Then, we have

𝜓 (Φ𝑥) ≥
𝑝

𝑛
⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2
; (51)

that is, condition (iii) of Lemma 2 holds.
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Now, by Lemma 2, we know that Φ has at least three
fixed points in 𝐾

𝑐
4

, and thus system (3) has at least three
nonnegative 𝑇-periodic solutions.

Corollary 10. Assume that (H0)–(H2) hold and there exists a
constant 𝑐

2
> 0 such that

𝑝

𝑛
⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

for 𝑐
2
≤ ‖𝑥‖ <

𝑛𝑐
2

𝜎
. (52)

Moreover, there hold

lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
<

1

𝑞
,

lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
<

1

𝑞
.

(53)

Then system (3) has at least three nonnegative 𝑇-periodic
solutions.

Proof. We only need to verify that (H6) and (H8) hold. Let

𝛼 = 𝑞 ⋅ lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
,

𝛽 = 𝑞 ⋅ lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖
.

(54)

Then𝛼, 𝛽 ∈ [0, 1).There exists a constant 𝛿 ∈ (0, 𝑐
2
) such that,

for all 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝛿, there holds

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) <

𝛼 + 1

2
‖𝑥‖ . (55)

Taking 𝑐
1
= 𝛿, (H6) holds. In addition, there exists a constant

𝑀 > 𝑛𝑐
2
/𝜎 such that, for all 𝑥 ∈ 𝐾 with ‖𝑥‖ ≥ 𝑀, there holds

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) <

𝛽 + 1

2
‖𝑥‖ . (56)

Taking

𝑐
4
= 𝑀 + sup

𝑥∈𝐾,‖𝑥‖≤𝑀

[𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)] , (57)

(H8) holds.

Next, we also provide a simple example to illustrate our
existence theorem.

Example 11. Let 𝑛 = 𝑇 = 2, 𝑎
1
, 𝑎
2
be the same as in Example 7,

and

𝑓
1
(𝑘, 𝑥
𝑘
) = 𝑓
2
(𝑘, 𝑥
𝑘
)

=
64[𝑥
1
(𝑘) + 𝑥

2
(𝑘)]
2

1 + [𝑥
1
(𝑘) + 𝑥

2
(𝑘) + 𝑥

1
(𝑘 + 1) + 𝑥

2
(𝑘 + 1)]

4
.

(58)

By Example 7, we have 𝑝 = 1, 𝑞 = 2, and 𝜎 = 1/2, and (H0)–
(H2) hold.

By a direct calculation, we get

max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

=
64[𝑥
1
(0) + 𝑥

2
(0)]
2

+ 64[𝑥
1
(1) + 𝑥

2
(1)]
2

‖𝑥‖ ⋅ [1 + (𝑥
1
(0) + 𝑥

2
(0) + 𝑥

1
(1) + 𝑥

2
(1))
4

]

≤
512 ‖𝑥‖

1 + ‖𝑥‖
4
.

(59)

Then, it is easy to see that (53) holds.
Let 𝑐
2
= 1/16. Then, for all

1

16
≤ ‖𝑥‖ ≤

1

4
=
𝑛𝑐
2

𝜎
, (60)

we have

𝑝

𝑛
⋅

2

∑

𝑗=1

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

=
64[𝑥
1
(0) + 𝑥

2
(0)]
2

+ 64[𝑥
1
(1) + 𝑥

2
(1)]
2

1 + [𝑥
1
(0) + 𝑥

2
(0) + 𝑥

1
(1) + 𝑥

2
(1)]
4

≥
64‖𝑥‖

2

2
= 32‖𝑥‖

2

≥
1

8
> 𝑐
2
.

(61)

Thus, all the assumptions ofCorollary 10 hold.Then,we know
that the considered functional difference system has at least
three nonnegative 2-periodic solutions.
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