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We investigate a three-species food chain model in a patchy environment where prey species, mid-level predator species, and top
predator species can disperse among 𝑛 different patches (𝑛 ≥ 2). By using the method of constructing Lyapunov functions based
on graph-theoretical approach for coupled systems, we derive sufficient conditions under which the positive equilibrium of this
model is unique and globally asymptotically stable if it exists.

1. Introduction

Coupled systems on networks are used to describe a wide
variety of physical, natural, and artificial complex dynamical
systems, such as neural networks, biological systems, and
the spread of infectious diseases in heterogeneous popula-
tions (see [1–6] and the references therein). A mathematical
description of a network is a directed graph consisting of
vertices and directed arcs connecting them. At each vertex,
the dynamics are given by a system of differential equations
called vertex system. The directed arcs indicate interconnec-
tions and interactions among vertex systems.

Diffusion in patchy environment is one of the most
prevalent phenomena of nature. Since the spatiotemporal
heterogeneity incurs great impacts on the species’ diversity,
structure, and genetical polymorphism, scientists of biology,
ecology, and biomathematics paid great attention on the pop-
ulation dynamics with diffusion. The stability of equilibrium
is the precondition of applications of dispersal models in
practice. Therefore, there are a great amount of literatures
on this topic (see [7–10] and the references therein). In [10],
Kuang and Takeuchi considered a predator-prey model in
which preys disperse among two patches and proved the
uniqueness and global stability of a positive equilibrium by
constructing a Lyapunov function.

Recently, a graph theoretic approach was proposed to
construct Lyapunov functions for some general coupled

systems of ordinary differential equations on networks, and
the global stability was explored in [11, 12]. We refer to [13, 14]
for recent applications.

In [12], Li and Shuai considered the following predator-
preymodel where prey species disperse among 𝑛 patches (𝑛 ≥
2):

𝑥̇
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑥
𝑗
− 𝛼
𝑖𝑗
𝑥
𝑖
) ,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑛. They provided a systematic method
for constructing a global Lyapunov function for the coupled
systems onnetworks and then gave some sufficient conditions
of stability for system (1). In fact, there may be more species
in some habitats and they can construct a food chain; in
this case it is more realistic to consider a multiple species
predator-prey system. Based on this fact, in this paper, we
investigate the following three-species food chain model in
a patchy environment:

𝑥̇
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝜎
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
−

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
𝑥
𝑖
,
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̇𝑦
𝑖
= 𝑦
𝑖
(−𝜃
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
− 𝜌
𝑖
𝑧
𝑖
)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑗
−

𝑛

∑

𝑗=1

𝑏
𝑗𝑖
𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑧̇
𝑖
= 𝑧
𝑖
(−𝛾
𝑖
− 𝛼
𝑖
𝑧
𝑖
+ 𝜂
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑧
𝑗
−

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
𝑧
𝑖
,

(2)

where 𝑥
𝑖
, 𝑦
𝑖
, and 𝑧

𝑖
denote the densities of prey species, mid-

level predator species, and top predator species, respectively;
all the parameters are nonnegative constants, and 𝜀

𝑖
, 𝑒
𝑖
, 𝜂
𝑖
, and

𝜌
𝑖
are positive. Constant 𝑎

𝑖𝑗
≥ 0 is the dispersal rate of prey

species frompatch 𝑗 to patch 𝑖, constant 𝑏
𝑖𝑗
≥ 0 is the dispersal

rate of mid-level predator species from patch 𝑗 to patch 𝑖, and
constant 𝑐

𝑖𝑗
≥ 0 is the dispersal rate of top predator species

from patch 𝑗 to patch 𝑖. We refer the reader to [10, 15] for
interpretations of predator-prey models and parameters.

This paper is organized as follows. In Section 2, we
introduce some preliminaries on graph theory which will
be used in Section 3. In Section 3, the global stability of
the positive equilibrium of system (2) is proved. Finally, a
conclusion is given in Section 4.

2. Preliminaries

Since the coupled system considered in this paper is built on
a directed graph, the following basic concepts and theorems
on graph theory can be found in [12].

A directed graph or digraph G = (𝑉, 𝐸) contains a set
𝑉 = {1, 2, . . . , 𝑛} of vertices and a set 𝐸 of arcs (𝑖, 𝑗) leading
from initial vertex 𝑖 to terminal vertex 𝑗. A subgraphH ofG
is said to be spanning ifH andG have the same vertex set. A
digraph G is weighted if each arc (𝑗, 𝑖) is assigned a positive
weight 𝑎

𝑖𝑗
. Here 𝑎

𝑖𝑗
> 0 if and only if there exists an arc from

vertex 𝑗 to vertex 𝑖 in G. The weight 𝑤(H) of a subgraph H
is the product of the weights on all its arcs.

Given a weighted digraph G with 𝑛 vertices, define the
weight matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

whose entry 𝑎
𝑖𝑗
equals the weight

of arc (𝑗, 𝑖) if it exists and 0 otherwise. For our purpose, we
denote a weighted digraph as (G, 𝐴). A digraphG is strongly
connected if, for any pair of distinct vertices, there exists
a directed path from one to the other. A weighted digraph
(G, 𝐴) is strongly connected if and only if the weight matrix
𝐴 is irreducible. The Laplacian matrix of (G, 𝐴) is defined as

𝐿 =

(

(

(

(

∑

𝑘 ̸=1

𝑎
1𝑘

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

∑

𝑘 ̸=2

𝑎
2𝑘
⋅ ⋅ ⋅ −𝑎

2𝑛

...
... d

...
−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ ∑

𝑘 ̸=𝑛

𝑎
𝑛𝑘

)

)

)

)

. (3)

Let 𝑐
𝑖
denote the cofactor of 𝑖th diagonal element of 𝐿. The

following results are listed as follows from [12].

Proposition 1 (see [12]). Assume 𝑛 ≥ 2. Then,

𝑐
𝑖
= ∑

T∈T𝑖

𝑤 (T) , 𝑖 = 1, 2, . . . , 𝑛, (4)

where T
𝑖
is the set of all spanning trees T of (G, 𝐴) that are

rooted at vertex 𝑖 and 𝑤(T) is weight of T. In particular, if
(G, 𝐴) is strongly connected, then 𝑐

𝑖
> 0 for 1 ≤ 𝑖 ≤ 𝑛.

Theorem 2 (see [12]). Assume 𝑛 ≥ 2. Let 𝑐
𝑖
be given in

Proposition 1. Then the following identity holds:

∑

𝑖,𝑗=1

𝑐
𝑖
𝑎
𝑖𝑗
𝐺
𝑖
(𝑥
𝑖
) = ∑

𝑖,𝑗=1

𝑐
𝑖
𝑎
𝑖𝑗
𝐺
𝑗
(𝑥
𝑗
) , (5)

where 𝐺
𝑖
(𝑥
𝑖
), 1 ≤ 𝑖 ≤ 𝑛, are arbitrary functions.

3. Main Results

In this section, the stability for the positive equilibrium of a
three-species food chain model in a patchy environment is
considered.

Theorem 3. Assume that a positive equilibrium 𝐸
∗

=

(𝑥
∗

1
, 𝑦
∗

1
, 𝑧
∗

1
, . . . , 𝑥

∗

𝑛
, 𝑦
∗

𝑛
, 𝑧
∗

𝑛
) exists for system (2) and the follow-

ing assumptions hold.

(H
1
) Dispersal matrixes 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐶 =
(𝑐
𝑖𝑗
)
𝑛×𝑛

are irreducible.
(H
2
) There exist nonnegative constants 𝜆 and 𝛽 such that
𝜀
𝑖
𝑎
𝑖𝑗
𝑥
∗

𝑗
= 𝜆𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
and (𝑒

𝑖
𝜌
𝑖
/𝜂
𝑖
)𝑧
∗

𝑗
= 𝛽𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
for all

1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Then the positive equilibrium 𝐸
∗ of system (2) is unique and

globally asymptotically stable in 𝑅3𝑛
+
.

Proof. From equilibrium equations of (2), we obtain

𝜎
𝑖
𝑥
∗

𝑖
+ 𝑒
𝑖
𝑦
∗

𝑖
−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
∗

𝑗

𝑥
∗

𝑖

+

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
= 𝑟
𝑖
,

𝜀
𝑖
𝑥
∗

𝑖
− 𝛿
𝑖
𝑦
∗

𝑖
− 𝜌
𝑖
𝑧
∗

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

𝑦
∗

𝑗

𝑦
∗

𝑖

−

𝑛

∑

𝑗=1

𝑏
𝑗𝑖
= 𝜃
𝑖
,

−𝛼
𝑖
𝑧
∗

𝑖
+ 𝜂
𝑖
𝑦
∗

𝑖
+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑧
∗

𝑗

𝑧
∗

𝑖

−

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
= 𝛾
𝑖
.

(6)

Next, we show that 𝐸∗ is globally asymptotically stable in
𝑅
3𝑛

+
, and thus it is unique. Let

𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) = 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
− 𝑥
∗

𝑖
ln
𝑥
𝑖

𝑥
∗

𝑖

)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
− 𝑦
∗

𝑖
ln
𝑦
𝑖

𝑦
∗

𝑖

)

+

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

(𝑧
𝑖
− 𝑧
∗

𝑖
− 𝑧
∗

𝑖
ln
𝑧
𝑖

𝑧
∗

𝑖

) .

(7)
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Note that 1 − 𝑥 + ln𝑥 ≤ 0 for 𝑥 > 0 and equality holds if and
only if 𝑥 = 1. Differentiating 𝑉

𝑖
along the solution of system

(2), we obtain

𝑉̇
𝑖
= 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)(𝑟
𝑖
− 𝜎
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
𝑗

𝑥
𝑖

−

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)(−𝜃

𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
− 𝜌
𝑖
𝑧
𝑖

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

𝑦
𝑗

𝑦
𝑖

−

𝑛

∑

𝑗=1

𝑏
𝑗𝑖
)

+

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

(𝑧
𝑖
− 𝑧
∗

𝑖
)(−𝛾

𝑖
− 𝛼
𝑖
𝑧
𝑖
+ 𝜂
𝑖
𝑦
𝑖
+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑧
𝑗

𝑧
𝑖

−

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
)

= 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)

×
[

[

−𝜎
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) − 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(

𝑥
𝑗

𝑥
𝑖

−

𝑥
∗

𝑗

𝑥
∗

𝑖

)
]

]

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)

×
[

[

−𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) + 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) − 𝜌
𝑖
(𝑧
𝑖
− 𝑧
∗

𝑖
)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(

𝑦
𝑗

𝑦
𝑖

−

𝑦
∗

𝑗

𝑦
∗

𝑖

)
]

]

+

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

(𝑧
𝑖
− 𝑧
∗

𝑖
)

×
[

[

−𝛼
𝑖
(𝑧
𝑖
− 𝑧
∗

𝑖
) + 𝜂
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(

𝑧
𝑗

𝑧
𝑖

−

𝑧
∗

𝑗

𝑧
∗

𝑖

)
]

]

≤

𝑛

∑

𝑗=1

𝜀
𝑖
𝑎
𝑖𝑗
𝑥
∗

𝑗
(

𝑥
𝑗

𝑥
∗

𝑗

−

𝑥
𝑖

𝑥
∗

𝑖

−

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ 1)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
(

𝑦
𝑗

𝑦
∗

𝑗

−

𝑦
𝑖

𝑦
∗

𝑖

−

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ 1)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

𝑐
𝑖𝑗
𝑧
∗

𝑗
(

𝑧
𝑗

𝑧
∗

𝑗

−

𝑧
𝑖

𝑧
∗

𝑖

−

𝑧
∗

𝑖
𝑧
𝑗

𝑧
𝑖
𝑧
∗

𝑗

+ 1)

=

𝑛

∑

𝑗=1

𝜀
𝑖
𝑎
𝑖𝑗
𝑥
∗

𝑗
(

𝑥
𝑗

𝑥
∗

𝑗

−

𝑥
𝑖

𝑥
∗

𝑖

−

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ 1

+ ln
𝑥
𝑖

𝑥
∗

𝑖

− ln
𝑥
𝑗

𝑥
∗

𝑗

+ ln
𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
(

𝑦
𝑗

𝑦
∗

𝑗

−

𝑦
𝑖

𝑦
∗

𝑖

−

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ 1

+ ln
𝑦
𝑖

𝑦
∗

𝑖

− ln
𝑦
𝑗

𝑦
∗

𝑗

+ ln
𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

𝑐
𝑖𝑗
𝑧
∗

𝑗
(

𝑧
𝑗

𝑧
∗

𝑗

−

𝑧
𝑖

𝑧
∗

𝑖

−

𝑧
∗

𝑖
𝑧
𝑗

𝑧
𝑖
𝑧
∗

𝑗

+ 1

+ ln
𝑧
𝑖

𝑧
∗

𝑖

− ln
𝑧
𝑗

𝑧
∗

𝑗

+ ln
𝑧
∗

𝑖
𝑧
𝑗

𝑧
𝑖
𝑧
∗

𝑗

)

≤

𝑛

∑

𝑗=1

𝜀
𝑖
𝑎
𝑖𝑗
𝑥
∗

𝑗
(

𝑥
𝑗

𝑥
∗

𝑗

−

𝑥
𝑖

𝑥
∗

𝑖

+ ln
𝑥
𝑖

𝑥
∗

𝑖

− ln
𝑥
𝑗

𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
(

𝑦
𝑗

𝑦
∗

𝑗

−

𝑦
𝑖

𝑦
∗

𝑖

+ ln
𝑦
𝑖

𝑦
∗

𝑖

− ln
𝑦
𝑗

𝑦
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑒
𝑖
𝜌
𝑖

𝜂
𝑖

𝑐
𝑖𝑗
𝑧
∗

𝑗
(

𝑧
𝑗

𝑧
∗

𝑗

−

𝑧
𝑖

𝑧
∗

𝑖

+ ln
𝑧
𝑖

𝑧
∗

𝑖

− ln
𝑧
𝑗

𝑧
∗

𝑗

)

=

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗

× [(𝜆

𝑥
𝑗

𝑥
∗

𝑗

+ 𝜆 ln
𝑥
∗

𝑗

𝑥
𝑗

+ 𝛽

𝑧
𝑗

𝑧
∗

𝑗

+ 𝛽 ln
𝑧
∗

𝑗

𝑧
𝑗

+

𝑦
𝑗

𝑦
∗

𝑗

+ ln
𝑦
∗

𝑗

𝑦
𝑗

)

− (𝜆

𝑥
𝑖

𝑥
∗

𝑖

+ 𝜆 ln
𝑥
∗

𝑖

𝑥
𝑖

+ 𝛽

𝑧
𝑖

𝑧
∗

𝑖

+ 𝛽 ln
𝑧
∗

𝑖

𝑧
𝑖

+

𝑦
𝑖

𝑦
∗

𝑖

+ ln
𝑦
∗

𝑖

𝑦
𝑖

)]

=

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
[𝐺
𝑗
(𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
) − 𝐺
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)] ,

(8)

where

𝐺
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) = 𝜆

𝑥
𝑖

𝑥
∗

𝑖

+ 𝜆 ln
𝑥
∗

𝑖

𝑥
𝑖

+ 𝛽

𝑧
𝑖

𝑧
∗

𝑖

+ 𝛽 ln
𝑧
∗

𝑖

𝑧
𝑖

+

𝑦
𝑖

𝑦
∗

𝑖

+ ln
𝑦
∗

𝑖

𝑦
𝑖

.

(9)

Consider a weight matrix 𝑊 = (𝑤
𝑖𝑗
)
𝑛×𝑛

with entry 𝑤
𝑖𝑗
=

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
, and denote the corresponding weighted digraph as

(G,𝑊). Let

𝐿 =

(

(

(

(

∑

𝑘 ̸=1

𝑤
1𝑘

−𝑤
12

⋅ ⋅ ⋅ −𝑤
1𝑛

−𝑤
21

∑

𝑘 ̸=2

𝑤
2𝑘
⋅ ⋅ ⋅ −𝑤

2𝑛

...
... d

...
−𝑤
𝑛1

−𝑤
𝑛2

⋅ ⋅ ⋅ ∑

𝑘 ̸=𝑛

𝑤
𝑛𝑘

)

)

)

)

. (10)
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Note that 𝐿 is the Laplacian matrix of (G,𝑊). Since (𝑏
𝑖𝑗
)
𝑛×𝑛

is irreducible, we know that (𝑤
𝑖𝑗
)
𝑛×𝑛

is irreducible; by
Proposition 1, we obtain that 𝑐

𝑖
> 0 for all 𝑖. Then, from

Theorem 2, the following identity holds:
𝑛

∑

𝑖=1

𝑐
𝑖

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
(𝐺
𝑗
(𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
) − 𝐺
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)) = 0. (11)

Set

𝑉 (𝑥
1
, 𝑦
1
, 𝑧
1
, 𝑥
2
, 𝑦
2
, 𝑧
2
, . . . , 𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) .

(12)

Using (8) and (11), we obtain

𝑉̇ =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑉̇
𝑖

≤

𝑛

∑

𝑖=1

𝑐
𝑖

𝑛

∑

𝑗=1

𝑒
𝑖
𝑏
𝑖𝑗
𝑦
∗

𝑗
(𝐺
𝑗
(𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
) − 𝐺
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)) = 0

(13)

for all (𝑥
1
, 𝑦
1
, 𝑧
1
, 𝑥
2
, 𝑦
2
, 𝑧
2
, . . . , 𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ∈ 𝑅

3𝑛

+
. Therefore,

𝑉 = ∑
𝑛

𝑖=1
𝑐
𝑖
𝑉
𝑖
as defined in Theorem 3.1 of [12] is a

Lyapunov function for the system (2); namely, 𝑉̇ ≤ 0 for all
(𝑥
1
, 𝑦
1
, 𝑧
1
, 𝑥
2
, 𝑦
2
, 𝑧
2
, . . . , 𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ∈ 𝑅
3𝑛

+
; 𝑉̇ = 0 implies that

𝑥
𝑖
= 𝑥
∗

𝑖
, 𝑦
𝑖
= 𝑦
∗

𝑖
, and 𝑧

𝑖
= 𝑧
∗

𝑖
for all 𝑖. By LaSalle Invariance

Principle [16], 𝐸∗ is globally asymptotically stable in 𝑅3𝑛
+
; this

also implies that𝐸∗ is unique in𝑅3𝑛
+
.This completes the proof

of Theorem 3.

Remark 4. 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

are
dispersal matrices; a typical assumption we impose on these
matrices is that they are irreducible. In biological terms, this
means individuals in each patch can disperse between any
two patches directly or indirectly.

Applying the similar proof as that forTheorem 3, we have
the following corollaries.

Corollary 5. Consider the model

𝑥̇
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝜎
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) ,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝜃
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
− 𝜌
𝑖
𝑧
𝑖
)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑗
−

𝑛

∑

𝑗=1

𝑏
𝑗𝑖
𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑧̇
𝑖
= 𝑧
𝑖
(−𝛾
𝑖
− 𝛼
𝑖
𝑧
𝑖
+ 𝜂
𝑖
𝑦
𝑖
) ,

(14)

where all the parameters are nonnegative constants, 𝜀
𝑖
, 𝑒
𝑖
, 𝜂
𝑖
,

and 𝜌
𝑖
are positive, and the dispersal matrix 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

is
irreducible. Then, if a positive equilibrium 𝐸

∗
exists in (14), it

is unique and globally asymptotically stable in the positive cone
𝑅
3𝑛

+
.

Corollary 6. Consider the model

𝑥̇
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝜎
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
−

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
𝑥
𝑖
,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝜃
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
− 𝜌
𝑖
𝑧
𝑖
) , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,

𝑧̇
𝑖
= 𝑧
𝑖
(−𝛾
𝑖
− 𝛼
𝑖
𝑧
𝑖
+ 𝜂
𝑖
𝑦
𝑖
) ,

(15)

where all the parameters are nonnegative constants, 𝜀
𝑖
, 𝑒
𝑖
, 𝜂
𝑖
,

and 𝜌
𝑖
are positive, and the dispersal matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

is
irreducible. Then, if a positive equilibrium 𝐸

∗
exists in (15), it

is unique and globally asymptotically stable in the positive cone
𝑅
3𝑛

+
.

4. Conclusion

In this paper, we generalize the model of the 𝑛-patch
predator-prey model of [12] to a three-species food chain
model where prey species, mid-level predator species, and
top predator species can disperse among 𝑛 different patches
(𝑛 ≥ 2). Our proof of global stability of the positive equilib-
rium utilizes a graph-theoretical approach to the method of
Lyapunov function.

Biologically, Theorem 3 implies that if a three-species
food chain system is dispersing among strongly connected
patches (which is equivalent to the irreducibility of the
dispersal matrixes) and if the system is permanent (which
guarantees the existence of positive equilibrium), then the
numbers of prey species, mid-level predator species, and top
predator species in each patch will eventually be stable at
some corresponding positive values given the well-coupled
dispersal (condition (H

2
) of Theorem 3).

Corollaries 5 and 6 imply that if a three-species food chain
system is dispersing among strongly connected patches (only
one species can disperse among 𝑛 different patches (𝑛 ≥ 2))
and if the system is permanent, then the numbers of prey
species, mid-level predator species, and top predator species
in each patch will eventually be stable at some corresponding
positive values.

Theorem 3 requires the extra condition (H
2
); the global

stability for the positive equilibrium of system (2) without
condition (H

2
) is still unclear. It remains an interesting

problem for a three-species food chain model in patchy
environment.
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