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This paper studied an asset and liability management problem with stochastic interest rate, where interest rate is assumed to be
governed by an affine interest rate model, while liability process is driven by the drifted Brownian motion. The investors wish
to look for an optimal investment strategy to maximize the expected utility of the terminal surplus under hyperbolic absolute
risk aversion (HARA) utility function, which consists of power utility, exponential utility, and logarithm utility as special cases. By
applying dynamic programming principle and Legendre transform, the explicit solutions forHARAutility are achieved successfully
and some special cases are also discussed. Finally, a numerical example is provided to illustrate our results.

1. Introduction

In practice of investments, it is all well known that some
investors or financial institutions are often confronted with
liability factor. It is very clear that considering liability factor
in the portfolio selection problems will be more practical. In
recent years, portfolio selection problems with liability have
inspired literally hundreds of extensions and applications.
For example, Chiu and Li [1] supposed liability process to
be driven by a geometric Brownian motion and studied
the efficient strategy and the efficient frontier under mean-
variance criterion. Xie et al. [2] studied a mean-variance
model with random liability, which is assumed to be gov-
erned by the drifted Brownian motion. Zeng and Li [3]
investigated a mean-variance model with a jump diffusion
liability process. Chen et al. [4] studied the asset and liability
management (ALM) problems with regime switching, which
described the effect of the changes in macroeconomic con-
ditions. Chiu and Wong [5] investigated an ALM problem
under the assumption that risky assets were cointegrated.
Those models studied the ALM problems with exogenous
liabilities, which cannot be controlled. Along another line, the
ALM problems with endogenous liabilities have been paid

more and more attention nowadays. Being different from
exogenous liabilities, endogenous liabilities can be controlled
by various financial instruments and investors’ decisions.The
interested readers can refer to the works of Leippold et al. [6]
and Yao et al. [7].

However, the above mentioned research results were
generally achieved under the assumption of constant interest
rate. As a matter of fact, interest rate is always changing with
time and can be delineated by some term structure models,
for example, the Vasicek model [8] or the CIR model [9].
Therefore, some scholars began to be concerned with the
portfolio selection problems with stochastic interest rate. For
example, Korn and Kraft [10] investigated the portfolio selec-
tion problems with stochastic interest rates and proved the
verification theorem. Deelstra et al. [11] studied the optimal
investment strategies in the affine interest rate environment.
Gao [12] applied dynamic programming principle and Leg-
endre transform to study the DC pension problems with
affine interest rate. Liu [13] and Chang and Rong [14] consid-
ered the optimal investment and consumption strategy with
stochastic interest rate and stochastic volatility.These models
were all studied in the utility maximization framework and
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the optimal investment strategies were established under
power utility or logarithm utility.

Power utility, logarithm utility, and exponential utility are
all special cases of HARA utility, which used to be studied
by Grasselli [15], Çanakoǧlu and Özekici [16], and Jung and
Kim [17]. Due to the complexity of HARA utility, there is
little work onHARAutility in the existing literature. In recent
years, some scholars found that Legendre transform is an
effective method in solving sophisticated portfolio section
problems. One can refer to the works of Jonsson and Sircar
[18], Gao [12], and Jung and Kim [17].

This paper introduces liability process into a continuous-
time dynamic portfolio selection problem and assumes inter-
est rate to be driven by affine interest ratemodel.Theobjective
of the investor is to look for an optimal investment strategy
to maximize the expected utility of the terminal surplus.
Considering the generality of HARA utility, we take HARA
utility for our analysis. Applying dynamic programming
principle, we obtain the Hamilton-Jacobi-Bellman (HJB)
equation for the value function. Due to the nonlinearity of
HARA utility, it is very difficult for us to conjecture the form
of the solution for the HJB equation. Therefore, we apply
Legendre transform to change the nonlinear HJB equation
into a linear dual one. What is more, the form of the solution
for the dual equation is linear and is easy to construct.
Finally, we establish the explicit expression of the optimal
investment strategy for HARA utility. Some special cases are
also discussed.There are three highlights: (i) we study an asset
and liability management problem under the affine interest
rate model; (ii) interest rate is supposed to be governed by
the affine interest rate model, while liability is assumed to
be driven by the drifted Brownian motion; (iii) the optimal
investment strategies forHARAutility are obtained explicitly.

This paper proceeds as follows. In Section 2, an asset
and liability management problem with affine interest rate
is formulated. In Section 3, we use dynamic programming
principle to obtain the HJB equation and apply Legendre
transform to change the HJB equation into a linear dual
one. In Section 4, we derive the optimal investment strategy
for HARA utility explicitly. Section 5 discusses some special
cases of the optimal policies. Section 6 provides a numerical
example to illustrate our results. Some interesting results are
concluded in Section 7.

2. Model and Assumptions

In this paper, we assume that the financial market consists of
three assets: one risk-free asset, one risky asset, and one zero-
coupon bond. [0, 𝑇] represents certain investment horizon,
where 𝑇 < ∞. An investor is confronted with two key
sources of risk, that is, interest rate risk and stock information
risk, which are described by two one-dimensional standard
and adapted independent Brownianmotion𝑊

𝑟
(𝑡) and𝑊

𝑆
(𝑡).

𝑊
𝑟
(𝑡) and𝑊

𝑆
(𝑡) are all defined on complete probability space

(Ω,F, {F
𝑡
}, 𝑃).

The price process of the risk-free asset (i.e., cash), denoted
by 𝑆
0
(𝑡), is given by

𝑑𝑆
0
(𝑡) = 𝑟 (𝑡) 𝑆

0
(𝑡) 𝑑𝑡, 𝑆

0
(0) = 1, (1)

where 𝑟(𝑡) is the risk-free interest rate. In this paper, 𝑟(𝑡) is
supposed to be stochastic process and is governed by

𝑑𝑟 (𝑡) = (𝑎 − 𝑏𝑟 (𝑡)) 𝑑𝑡 − √𝑘
1
𝑟 (𝑡) + 𝑘

2
𝑑𝑊
𝑟
(𝑡) ,

𝑟 (0) = 𝑟
0
> 0,

(2)

where the parameters 𝑎, 𝑏, 𝑘
1
, and 𝑘

2
are positive real

constants.

Remark 1. Notice that (2) consists of theVasicekmodel (resp.,
the CIR model) as special cases, when 𝑘

1
(resp., 𝑘

2
) is equal

to zero. Under these dynamics, the term structure of interest
rate is affine.

The price process of the risky asset (i.e., the stock),
denoted by 𝑆

1
(𝑡), can be described by the following stochastic

differential equation (SDE) (referring to Deelstra et al. [11]):

𝑑𝑆
1
(𝑡)

𝑆
1
(𝑡)

= 𝑟 (𝑡) 𝑑𝑡 + 𝜎
1
(𝑑𝑊
𝑆
(𝑡) + 𝜆

1
𝑑𝑡)

+ 𝜎
2
√𝑘
1
𝑟 (𝑡) + 𝑘

2

× (𝑑𝑊
𝑟
(𝑡) + 𝜆

2
√𝑘
1
𝑟 (𝑡) + 𝑘

2
𝑑𝑡) ,

𝑆
1
(0) = 1,

(3)

where 𝜆
1
, 𝜆
2
(resp., 𝜎

1
, 𝜎
2
) are constants (resp., positive

constants).
The third asset is one zero-coupon bond with maturity

𝑇, whose price process is denoted by 𝐵(𝑡, 𝑇). Then 𝐵(𝑡, 𝑇)

evolves (referring to Deelstra et al. [11])

𝑑𝐵 (𝑡, 𝑇)

𝐵 (𝑡, 𝑇)
= 𝑟 (𝑡) 𝑑𝑡 + 𝜎

𝐵
(𝑡, 𝑟 (𝑡))

× (𝑑𝑊
𝑟
(𝑡) + 𝜆

2
√𝑘
1
𝑟 (𝑡) + 𝑘

2
𝑑𝑡) ,

𝐵 (𝑇, 𝑇) = 1,

(4)

where 𝜎
𝐵
(𝑡, 𝑟(𝑡)) = ℎ(𝑡)√𝑘

1
𝑟(𝑡) + 𝑘

2
and ℎ(𝑡) is given by

ℎ (𝑡) =
2 (𝑒
𝑚(𝑇−𝑡)

− 1)

𝑚 − (𝑏 − 𝑘
1
𝜆
2
) + 𝑒𝑚(𝑇−𝑡) (𝑚 + 𝑏 − 𝑘

1
𝜆
2
)
,

𝑚 = √(𝑏 − 𝑘
1
𝜆
2
)
2

+ 2𝑘
1
.

(5)

Remark 2. Equations (3) and (4) have been investigated by
Deelstra et al. [11] and Gao [12], but their results were only
achieved under power utility or logarithm utility. From (3),
we can see that the price process of the stock is affected by
uncertainty of interest rate, which is consistent with reality. In
addition, we find that the price process of zero-coupon bond
and interest rate is driven by the same Brownian motion. It
implies that the zero-coupon bond is reduced to the risk-free
asset when interest rate is reduced to a constant.

Assume that the liability process satisfies the following
SDE:

𝑑𝐿 (𝑡) = 𝑢𝑑𝑡 + V𝑑𝑊
𝑆
(𝑡) , 𝐿 (0) = 𝑙

0
> 0, (6)

where 𝑢 and V are positive constants.
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Assume that the initial capital of an investor is given by𝑤
0

and the initial liability is denoted by 𝑙
0
; then the initial surplus

is𝑤
0
−𝑙
0
, which is denoted by 𝑥

0
.The investor wishes to invest

the surplus in the financial assets to maximize the expected
utility of the terminal surplus. The amount invested in the
stock and zero-coupon bond is denoted by 𝜋

1
(𝑡) and 𝜋

2
(𝑡),

respectively. Therefore, the surplus process 𝑋(𝑡) at time 𝑡

under the strategy 𝜋(𝑡) = (𝜋
1
(𝑡), 𝜋
2
(𝑡)) satisfies the following

SDE:

𝑑𝑋 (𝑡) = (𝑋 (𝑡) 𝑟 (𝑡) + 𝜋
1
(𝑡) 𝜎
1
𝜆
1

+ 𝜋
1
(𝑡) 𝜎
2
𝜆
2
(𝑘
1
𝑟 (𝑡) + 𝑘

2
)

+ 𝜋
2
(𝑡) 𝜎
𝐵
𝜆
2
√𝑘
1
𝑟 (𝑡) + 𝑘

2
− 𝑢)𝑑𝑡

+ (𝜋
1
(𝑡) 𝜎
1
− V) 𝑑𝑊

𝑆
(𝑡)

+ (𝜋
1
(𝑡) 𝜎
2
√𝑘
1
𝑟 (𝑡) + 𝑘

2
+ 𝜋
2
(𝑡) 𝜎
𝐵
)𝑑𝑊
𝑟
(𝑡) ,

(7)

with the initial surplus𝑋(0) = 𝑥
0
> 0.

Definition 3 (admissible strategy). An investment strategy
𝜋(𝑡) = (𝜋

1
(𝑡), 𝜋
2
(𝑡)) is said to be admissible if the following

conditions are satisfied:
(i) 𝜋
1
(𝑡) and 𝜋

2
(𝑡) are allF

𝑡
-measurable;

(ii) 𝐸(∫𝑇
0

((𝜋
1
(𝑡)𝜎
1
−V)2+(𝜋

1
(𝑡)𝜎
2
√𝑘
1
𝑟(𝑡) + 𝑘

2
+𝜋
2
(𝑡)𝜎
𝐵
)
2

)

𝑑𝑡) < +∞;
(iii) SDE (7) has a unique solution for all 𝜋(𝑡) = (𝜋

1
(𝑡),

𝜋
2
(𝑡)).

Assume that the set of all admissible strategies is denoted
by Π. The investor wishes to look for an optimal strategy to
maximize the expected utility of the terminal surplus; that is,

Maximize
𝜋(𝑡)∈Π

E (𝑈 (𝑋 (𝑇))) , (8)

where 𝑈(⋅) represents utility function, which is strictly con-
cave and satisfies the Inada conditions: 𝑈̇(0) = +∞ and
𝑈̇(+∞) = 0.

In this paper, we choose hyperbolic absolute risk aversion
(HARA) utility function for our analysis. The HARA utility
function with parameters 𝜂, 𝑝, and 𝑞 is given by

𝑈 (𝑥) = 𝑈 (𝜂, 𝑝, 𝑞, 𝑥) =
1 − 𝑝

𝑞𝑝
(

𝑞

1 − 𝑝
𝑥 + 𝜂)

𝑝

,

𝑞 > 0, 𝑝 < 1, 𝑝 ̸= 0.

(9)

As a matter of fact, HARA utility function recovers power
utility and exponential utility as special cases.

(i) If we choose 𝜂 = 0 and 𝑞 = 1 − 𝑝, then we have

𝑈(0, 𝑝, 1 − 𝑝, 𝑥) =
𝑥
𝑝

𝑝
= 𝑈power (𝑥) . (10)

(ii) If we choose 𝜂 = 1 and 𝑝 → −∞, then we have

𝑈 (1, 𝑝, 𝑞, 𝑥) = −
𝑒
−𝑞𝑥

𝑞
= 𝑈exp (𝑥) . (11)

3. HJB Equation and Legendre Transform

According to dynamic programming principle, we define the
value function as

𝑉 (𝑡, 𝑟, 𝑥) = sup
𝜋(𝑡)∈Π

E (𝑈 (𝑋 (𝑇)) | 𝑋 (𝑡) = 𝑥, 𝑟 (𝑡) = 𝑟) (12)

with boundary condition given by 𝑉(𝑇, 𝑟, 𝑥) = 𝑈(𝑥).
By applying the principle of optimality, we obtain the

following proposition.

Proposition 4. If the value function𝑉(𝑡, 𝑟, 𝑥) ∈ 𝐶1,2,2([0, 𝑇]×
R ×R), then 𝑉(𝑡, 𝑟, 𝑥) satisfies the following HJB equation:

sup
𝜋(𝑡)∈Π

A𝑉 (𝑡, 𝑟, 𝑥) = 0, (13)

where A is a variational operator, and by letting 𝜎
𝑟

=

√𝑘
1
𝑟(𝑡) + 𝑘

2
we obtain

A𝑉 (𝑡, 𝑟, 𝑥)

= 𝑉
𝑡
+ (𝑟𝑥 + 𝜋

1
(𝑡) 𝜎
1
𝜆
1
+ 𝜋
1
(𝑡) 𝜎
2
𝜆
2
𝜎
2

𝑟

+ 𝜋
2
(𝑡) 𝜎
𝐵
𝜆
2
𝜎
𝑟
− 𝑢)𝑉

𝑥

+
1

2
((𝜋
1
(𝑡) 𝜎
1
− V)2

+ (𝜋
1
(𝑡) 𝜎
2
𝜎
𝑟
+ 𝜋
2
(𝑡) 𝜎
𝐵
)
2

)𝑉
𝑥𝑥

+ (𝑎 − 𝑏𝑟) 𝑉
𝑟
+
1

2
𝜎
2

𝑟
𝑉
𝑟𝑟

− (𝜋
1
(𝑡) 𝜎
2
𝜎
2

𝑟
+ 𝜋
2
(𝑡) 𝜎
𝐵
𝜎
𝑟
)𝑉
𝑟𝑥
.

(14)

Here, 𝑉
𝑡
, 𝑉
𝑥
, 𝑉
𝑥𝑥
, 𝑉
𝑟
, 𝑉
𝑟𝑟
, and 𝑉

𝑟𝑥
represent first-order and

second-order partial derivatives with respect to the variables 𝑡,
𝑟, and 𝑥.

Proof. The proof is standard. The interested readers can refer
to the work of Korn and Kraft [10].

Assume that 𝐻(𝑡, 𝑟, 𝑥) is a solution of the HJB equation
(13); then we get

𝜋
1
(𝑡) = −

𝜆
1

𝜎
1

⋅
𝐻
𝑥

𝐻
𝑥𝑥

+
V
𝜎
1

,

𝜋
2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
2
𝜆
1
− 𝜎
1
𝜆
2

𝜎
1

⋅
𝐻
𝑥

𝐻
𝑥𝑥

+
𝜎
𝑟

𝜎
𝐵

⋅
𝐻
𝑟𝑥

𝐻
𝑥𝑥

−
𝜎
2

𝜎
1

⋅
𝜎
𝑟

𝜎
𝐵

V.

(15)

Putting (15) into (13), we derive

𝐻
𝑡
+ (𝑟𝑥 + 𝜆

1
V − 𝑢)𝐻

𝑥
+ (𝑎 − 𝑏𝑟)𝐻

𝑟
+
1

2
𝜎
2

𝑟
𝐻
𝑟𝑟

−
1

2
(𝜆
2

1
+ 𝜆
2

2
𝜎
2

𝑟
)
𝐻
2

𝑥

𝐻
𝑥𝑥

+ 𝜆
2
𝜎
2

𝑟

𝐻
𝑥
𝐻
𝑟𝑥

𝐻
𝑥𝑥

−
1

2
𝜎
2

𝑟

𝐻
2

𝑟𝑥

𝐻
𝑥𝑥

= 0,

(16)

with boundary condition given by𝐻(𝑇, 𝑟, 𝑥) = ((1 − 𝑝)/𝑞𝑝)

((𝑞/(1 − 𝑝))𝑥 + 𝜂)
𝑝.
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Noting that (16) is a nonlinear second-order partial
differential equation and it is not easy for us to conjecture the
structure of a solution to (16) for HARA utility, we introduce
the following Legendre transform to change (16) into a linear
second-order partial differential equation such that we can
obtain the explicit solution to (16).

Definition 5. Let 𝑓 : R𝑛 → R be a concave function. For all
𝑧 > 0, Legendre transform can be defined as follows:

𝐿 (𝑧) = max
𝑥

{𝑓 (𝑥) − 𝑧𝑥} , (17)

and then the function 𝐿(𝑧) is called the Legendre dual
function of 𝑓(𝑥) (cf. [12, 17, 18]).

If 𝑓(𝑥) is strictly concave, the maximum in (17) will be
attained at just one point, which we denoted by 𝑥

0
. We can

attain at the unique solution by the first-order condition

𝑑𝑓 (𝑥)

𝑑𝑥
− 𝑧 = 0. (18)

So we have

𝐿 (𝑧) = 𝑓 (𝑥
0
) − 𝑧𝑥

0
. (19)

Following Jonsson and Sircar [18], Gao [12], and Jung and
Kim [17], Legendre transform can be defined by

𝐻̂ (𝑡, 𝑟, 𝑧) = sup
𝑥>0

{𝐻 (𝑡, 𝑟, 𝑥) − 𝑧𝑥} , (20)

where 𝑧 > 0 denotes the dual variable to 𝑥. The value of 𝑥
where this optimum is attained is denoted by 𝑔(𝑡, 𝑟, 𝑧), so we
have

𝑔 (𝑡, 𝑟, 𝑧) = inf
𝑥>0

{𝑥 | 𝐻 (𝑡, 𝑟, 𝑥) ⩾ 𝑧𝑥 + 𝐻̂ (𝑡, 𝑟, 𝑧)} . (21)

The relationship between 𝐻̂(𝑡, 𝑟, 𝑧) and 𝑔(𝑡, 𝑟, 𝑧) is given
by

𝑔 (𝑡, 𝑟, 𝑧) = −𝐻̂
𝑧
(𝑡, 𝑟, 𝑧) . (22)

Hence, we can choose either one of two functions 𝑔(𝑡, 𝑟, 𝑧)
and 𝐻̂(𝑡, 𝑟, 𝑧) as the dual function of𝐻(𝑡, 𝑟, 𝑥). In this paper,
we choose 𝑔(𝑡, 𝑟, 𝑧). Moreover, we have

𝐻
𝑥
= 𝑧, 𝐻̂ (𝑡, 𝑟, 𝑧) = 𝐻 (𝑡, 𝑟, 𝑔) − 𝑧𝑔, 𝑔 (𝑡, 𝑟, 𝑧) = 𝑥.

(23)

Differentiating (23) with respect to 𝑡, 𝑟, and 𝑥, we get

𝐻
𝑡
= 𝐻̂
𝑡
, 𝐻

𝑥
= 𝑧, 𝐻

𝑥𝑥
= −

1

𝐻̂
𝑧𝑧

,

𝐻
𝑟
= 𝐻̂
𝑟
, 𝐻

𝑟𝑟
= 𝐻̂
𝑟𝑟
−
𝐻̂
2

𝑟𝑧

𝐻̂
𝑧𝑧

, 𝐻
𝑥𝑟
= −

𝐻̂
𝑟𝑧

𝐻̂
𝑧𝑧

.

(24)

Notice that 𝐻(𝑇, 𝑟, 𝑥) = 𝑈(𝑥); then at the terminal time
𝑇, we can define

𝐻̂ (𝑇, 𝑟, 𝑧) = sup
𝑥>0

{𝑈 (𝑥) − 𝑧𝑥} ,

𝑔 (𝑇, 𝑟, 𝑧) = inf
𝑥>0

{𝑥 | 𝑈 (𝑥) ⩾ 𝑧𝑥 + 𝐻̂ (𝑇, 𝑟, 𝑧)} .
(25)

So we have 𝑔(𝑇, 𝑟, 𝑧) = (𝑈̇)
−1

(𝑧), where (𝑈̇)−1(𝑧) is taken as
the inverse of marginal utility.

Substituting (24) back into (16) yields

𝐻̂
𝑡
+ 𝑟𝑧𝑔 + (𝜆

1
V − 𝑢) 𝑧 + (𝑎 − 𝑏𝑟) 𝐻̂

𝑟
+
1

2
𝜎
2

𝑟
𝐻̂
𝑟𝑟

+
1

2
(𝜆
2

1
+ 𝜆
2

2
𝜎
2

𝑟
) 𝑧
2

𝐻̂
𝑧𝑧
+ 𝜆
2
𝜎
2

𝑟
𝑧𝐻̂
𝑟𝑧
= 0.

(26)

Differentiating (26) with respect to 𝑧 and using (22), we
obtain

𝑔
𝑡
− 𝑟𝑔 + (𝜆

2

1
+ 𝜆
2

2
𝜎
2

𝑟
− 𝑟) 𝑧𝑔

𝑧

+
1

2
(𝜆
2

1
+ 𝜆
2

2
𝜎
2

𝑟
) 𝑧
2

𝑔
𝑧𝑧
+ (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) 𝑔
𝑟

+
1

2
𝜎
2

𝑟
𝑔
𝑟𝑟
+ 𝜆
2
𝜎
2

𝑟
𝑧𝑔
𝑟𝑧
+ 𝑢 − 𝜆

1
V = 0,

(27)

with boundary condition given by 𝑔(𝑇, 𝑟, 𝑧) = (𝑈̇)
−1

(𝑧).
Under HARA utility function (9), we have

𝑔 (𝑇, 𝑟, 𝑧) =
1 − 𝑝

𝑞
(𝑧
1/(𝑝−1)

− 𝜂) . (28)

4. The Optimal Portfolio

Assume that a solution of (27) is conjectured as follows:

𝑔 (𝑡, 𝑟, 𝑧) =
1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝑓 (𝑡, 𝑟) −
1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟) + 𝐽 (𝑡, 𝑟) ,

(29)

with boundary conditions given by 𝑓(𝑇, 𝑟) = 1, ℎ(𝑇, 𝑟) = 1,
and 𝐽(𝑇, 𝑟) = 0.

Further, the partial derivatives of 𝑔(𝑡, 𝑟, 𝑧) with respect to
𝑡, 𝑟, and 𝑧 are as follows:

𝑔
𝑡
=
1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝑓
𝑡
−
1 − 𝑝

𝑞
𝜂ℎ
𝑡
+ 𝐽
𝑡
,

𝑔
𝑧
= −

1

𝑞
𝑧
(2−𝑝)/(𝑝−1)

𝑓,

𝑔
𝑟
=
1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝑓
𝑟
−
1 − 𝑝

𝑞
𝜂ℎ
𝑟
+ 𝐽
𝑟
,

𝑔
𝑟𝑧
= −

1

𝑞
𝑧
(2−𝑝)/(𝑝−1)

𝑓
𝑟
,

𝑔
𝑟𝑟
=
1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝑓
𝑟𝑟
−
1 − 𝑝

𝑞
𝜂ℎ
𝑟𝑟
+ 𝐽
𝑟𝑟
,

𝑔
𝑧𝑧
= −

1

𝑞
⋅
2 − 𝑝

𝑝 − 1
⋅ 𝑧
(3−2𝑝)/(𝑝−1)

𝑓.

(30)

Plugging (30) into (27), after some simple calculations, we
derive

1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

(𝑓
𝑡
+

𝑝

2(1 − 𝑝)
2
(𝜆
2

1
+ 𝜆
2

2
𝜎
2

𝑟
) 𝑓 +

𝑝

1 − 𝑝
𝑟𝑓

+ (𝑎 − 𝑏𝑟 −
𝑝

1 − 𝑝
𝜆
2
𝜎
2

𝑟
)𝑓
𝑟
+
1

2
𝜎
2

𝑟
𝑓
𝑟𝑟
)
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−
1 − 𝑝

𝑞
𝜂 (ℎ
𝑡
− 𝑟ℎ + (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) ℎ
𝑟
+
1

2
𝜎
2

𝑟
ℎ
𝑟𝑟
)

+ 𝐽
𝑡
− 𝑟𝐽 + (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) 𝐽
𝑟

+
1

2
𝜎
2

𝑟
𝐽
𝑟𝑟
+ 𝑢 − 𝜆

1
V = 0.

(31)

Equation (31) can be decomposed into the following three
equations:

𝑓
𝑡
+

𝑝

2(1 − 𝑝)
2
(𝜆
2

1
+ 𝜆
2

2
𝜎
2

𝑟
) 𝑓 +

𝑝

1 − 𝑝
𝑟𝑓

+ (𝑎 − 𝑏𝑟 −
𝑝

1 − 𝑝
𝜆
2
𝜎
2

𝑟
)𝑓
𝑟
+
1

2
𝜎
2

𝑟
𝑓
𝑟𝑟
= 0,

𝑓 (𝑇, 𝑟) = 1;

(32)

𝐽
𝑡
− 𝑟𝐽 + (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) 𝐽
𝑟
+
1

2
𝜎
2

𝑟
𝐽
𝑟𝑟
+ 𝑢 − 𝜆

1
V = 0,

𝐽 (𝑇, 𝑟) = 0;

(33)

ℎ
𝑡
− 𝑟ℎ + (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) ℎ
𝑟
+
1

2
𝜎
2

𝑟
ℎ
𝑟𝑟
= 0,

ℎ (𝑇, 𝑟) = 1.

(34)

Lemma 6. Assume that a solution of (32) is conjectured as
𝑓(𝑡, 𝑟) = 𝑒

𝐷
1
(𝑡)+𝐷

2
(𝑡)𝑟, with boundary conditions given by

𝐷
1
(𝑇) = 0 and 𝐷

2
(𝑇) = 0; then under the condition of

𝑝 < min{1, 𝑏2/(2𝑘
1
+ (𝑏−𝜆

2
𝑘
1
)
2

)} and 𝑝 ̸= 0,𝐷
1
(𝑡) and𝐷

2
(𝑡)

are given by (44) and (42), respectively.

Proof. Putting 𝑓(𝑡, 𝑟) = 𝑒
𝐷
1
(𝑡)+𝐷

2
(𝑡)𝑟 into (32) and taking 𝜎

𝑟
=

√𝑘
1
𝑟(𝑡) + 𝑘

2
into consideration, we obtain

𝑒
𝐷
1
(𝑡)+𝐷

2
(𝑡)𝑟

(𝐷̇
1
(𝑡) +

𝑝

2(1 − 𝑝)
2
(𝜆
2

1
+ 𝜆
2

2
𝑘
2
)

+ (𝑎 −
𝑝

1 − 𝑝
𝜆
2
𝑘
2
)𝐷
2
(𝑡) +

1

2
𝑘
2
𝐷
2

2
(𝑡)

+ 𝑟(𝐷̇
2
(𝑡) +

𝑝

2(1 − 𝑝)
2
𝜆
2

2
𝑘
1
+

𝑝

1 − 𝑝

− (𝑏 +
𝑝

1 − 𝑝
𝜆
2
𝑘
1
)𝐷
2
(𝑡)

+
1

2
𝑘
1
𝐷
2

2
(𝑡) )) = 0.

(35)

Comparing the coefficients yields

𝐷̇
2
(𝑡) +

𝑝

2(1 − 𝑝)
2
𝜆
2

2
𝑘
1
+

𝑝

1 − 𝑝

− (𝑏 +
𝑝

1 − 𝑝
𝜆
2
𝑘
1
)𝐷
2
(𝑡) +

1

2
𝑘
1
𝐷
2

2
(𝑡) = 0,

(36)

𝐷̇
1
(𝑡) +

𝑝

2(1 − 𝑝)
2
(𝜆
2

1
+ 𝜆
2

2
𝑘
2
)

+ (𝑎 −
𝑝

1 − 𝑝
𝜆
2
𝑘
2
)𝐷
2
(𝑡) +

1

2
𝑘
2
𝐷
2

2
(𝑡) = 0.

(37)

For the quadratic equation

−
1

2
𝑘
1
𝐷
2

2
(𝑡) + (𝑏 +

𝑝

1 − 𝑝
𝜆
2
𝑘
1
)𝐷
2
(𝑡)

− (
𝑝

2(1 − 𝑝)
2
𝜆
2

2
𝑘
1
+

𝑝

1 − 𝑝
) = 0,

(38)

it is easy to calculate its discriminant, which is given by

Δ
1
=

𝑝

1 − 𝑝
(
1

𝑝
𝑏
2

− 2𝑘
1
− (𝑏 − 𝜆

2
𝑘
1
)
2

) . (39)

(i) If 0 < 𝑝 < 1, then when 𝑝 < 𝑏
2

/(2𝑘
1
+ (𝑏 − 𝜆

2
𝑘
1
)
2

),
that is, 0 < 𝑝 < min{1, 𝑏2/(2𝑘

1
+(𝑏−𝜆

2
𝑘
1
)
2

)}, we have
Δ
1
> 0.

(ii) If 𝑝 < 0, we find that Δ
1
> 0 always holds.

Hence, under the condition of 𝑝 < min{1, 𝑏2/(2𝑘
1
+ (𝑏 −

𝜆
2
𝑘
1
)
2

)} and 𝑝 ̸= 0, we have Δ
1
> 0. In addition, two different

roots of (38) are given by

𝑚
1,2

=
𝑏 + (𝑝/ (1 − 𝑝)) 𝜆

2
𝑘
1

𝑘
1

±
√Δ
1

𝑘
1

. (40)

Further, (36) can be rewritten as

1

𝑚
1
− 𝑚
2

∫
𝑇

𝑡

(
1

𝐷
2
(𝑠) − 𝑚

1

−
1

𝐷
2
(𝑠) − 𝑚

2

)𝑑𝐷
2
(𝑠)

= −
1

2
𝑘
1
(𝑇 − 𝑡) .

(41)

After easy calculations, we have

𝐷
2
(𝑡) =

𝑚
1
𝑚
2
(1 − exp {− (1/2) 𝑘

1
(𝑚
1
− 𝑚
2
) (𝑇 − 𝑡)})

𝑚
1
− 𝑚
2
⋅ exp {− (1/2) 𝑘

1
(𝑚
1
− 𝑚
2
) (𝑇 − 𝑡)}

.

(42)

By using (37) × 𝑘
1
− (36) × 𝑘

2
, we get

𝐷̇
1
(𝑡) =

𝑘
2

𝑘
1

𝐷̇
2
(𝑡) +

𝑎𝑘
1
+ 𝑏𝑘
2

𝑘
1

𝐷
2
(𝑡)

+
𝑝

2(1 − 𝑝)
2
⋅
𝜆
2

1

𝑘
1

−
𝑝

1 − 𝑝
⋅
𝑘
2

𝑘
1

.

(43)

Integrating (43) from 𝑡 to 𝑇, we derive

𝐷
1
(𝑡) =

𝑘
2

𝑘
1

𝐷
2
(𝑡) −

𝑎𝑘
1
+ 𝑏𝑘
2

𝑘
1

∫
𝑇

𝑡

𝐷
2
(𝑠) 𝑑𝑠

− (
𝑝

2(1 − 𝑝)
2
⋅
𝜆
2

1

𝑘
1

−
𝑝

1 − 𝑝
⋅
𝑘
2

𝑘
1

) (𝑇 − 𝑡) .

(44)

As a result, Lemma 6 is completed.
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Lemma 7. Assume that a solution of (33) is given by the
structure 𝐽(𝑡, 𝑟) = (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝐽(𝑠, 𝑟)𝑑𝑠; then 𝐽(𝑡, 𝑟) satisfies
the following PDE:

𝐽
𝑡
− 𝑟𝐽 + (𝑎 − 𝑏𝑟 + 𝜆

2
𝜎
2

𝑟
) 𝐽
𝑟
+
1

2
𝜎
2

𝑟
𝐽
𝑟𝑟
= 0, 𝐽 (𝑇, 𝑟) = 1.

(45)

Proof. Introducing the following variational operator on any
function 𝐽(𝑡, 𝑟):

∇𝐽 (𝑡, 𝑟) = −𝑟𝐽 + (𝑎 − 𝑏𝑟 + 𝜆
2
𝜎
2

𝑟
) 𝐽
𝑟
+
1

2
𝜎
2

𝑟
𝐽
𝑟𝑟
, (46)

(33) can be rewritten as

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑡
+ ∇𝐽 (𝑡, 𝑟) + 𝑢 − 𝜆

1
V = 0, 𝐽 (𝑇, 𝑟) = 0. (47)

On the other hand, we have

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑡
= − (𝑢 − 𝜆

1
V) 𝐽 (𝑡, 𝑟)

= (𝑢 − 𝜆
1
V) (∫

𝑇

𝑡

𝜕𝐽 (𝑠, 𝑟)

𝜕𝑠
𝑑𝑠 − 𝐽 (𝑇, 𝑟)) ,

∇𝐽 (𝑡, 𝑟) = (𝑢 − 𝜆
1
V) ∫
𝑇

𝑡

∇𝐽 (𝑠, 𝑟) 𝑑𝑠.

(48)

Putting (48) into (47), we get

(𝑢 − 𝜆
1
V) (∫

𝑇

𝑡

(
𝜕𝐽 (𝑠, 𝑟)

𝜕𝑠
+ ∇𝐽 (𝑠, 𝑟)) 𝑑𝑠 − 𝐽 (𝑇, 𝑟) + 1) = 0.

(49)

Therefore, we obtain

𝜕𝐽 (𝑠, 𝑟)

𝜕𝑠
+ ∇𝐽 (𝑠, 𝑟) = 0, 𝐽 (𝑇, 𝑟) = 1. (50)

That is, (45) holds.

Lemma 8. Assume that a solution of (45) is of the form
𝐽(𝑡, 𝑟) = 𝑒

𝐷
3
(𝑡)+𝐷

4
(𝑡)𝑟, with terminal conditions 𝐷

3
(𝑇) = 0 and

𝐷
4
(𝑇) = 0; then 𝐷

4
(𝑡) and 𝐷

3
(𝑡) are given by (56) and (58),

respectively.

Proof. Plugging 𝐽(𝑡, 𝑟) = 𝑒
𝐷
3
(𝑡)+𝐷

4
(𝑡)𝑟 into (45), we derive

𝑒
𝐷
3
(𝑡)+𝐷

4
(𝑡)𝑟

(𝐷̇
3
(𝑡) + (𝜆

2
𝑘
2
+ 𝑎)𝐷

4
(𝑡) +

1

2
𝑘
2
𝐷
2

4
(𝑡)

+ 𝑟 (𝐷̇
4
(𝑡) − 1 + (𝜆

2
𝑘
1
− 𝑏)𝐷

4
(𝑡)

+
1

2
𝑘
1
𝐷
2

4
(𝑡))) = 0.

(51)

Comparing the coefficients on both sides of (51), we get the
following two equations:

𝐷̇
4
(𝑡) − 1 + (𝜆

2
𝑘
1
− 𝑏)𝐷

4
(𝑡) +

1

2
𝑘
1
𝐷
2

4
(𝑡) = 0,

𝐷
4
(𝑇) = 0;

(52)

𝐷̇
3
(𝑡) + (𝜆

2
𝑘
2
+ 𝑎)𝐷

4
(𝑡) +

1

2
𝑘
2
𝐷
2

4
(𝑡) = 0,

𝐷
3
(𝑇) = 0.

(53)

For (52), we find that the discriminant of the quadratic
equation

−
1

2
𝑘
1
𝐷
2

4
(𝑡) − (𝜆

2
𝑘
1
− 𝑏)𝐷

4
(𝑡) + 1 = 0 (54)

is given byΔ
2
= (𝜆
2
𝑘
1
−𝑏)
2

+2𝑘
1
> 0.Therefore, two different

roots of (54) are given by

𝑚
3,4

=
𝑏 − 𝜆
2
𝑘
1

𝑘
1

±
√Δ
2

𝑘
1

. (55)

Using the same approach as (36), we obtain

𝐷
4
(𝑡) =

𝑚
3
𝑚
4
(1 − exp {− (1/2) 𝑘

1
(𝑚
3
− 𝑚
4
) (𝑇 − 𝑡)})

𝑚
3
− 𝑚
4
⋅ exp {− (1/2) 𝑘

1
(𝑚
3
− 𝑚
4
) (𝑇 − 𝑡)}

.

(56)

By applying (53) × 𝑘
1
− (52) × 𝑘

2
, we get

𝐷̇
3
(𝑡) =

𝑘
2

𝑘
1

𝐷̇
4
(𝑡) −

𝑎𝑘
1
+ 𝑏𝑘
2

𝑘
1

𝐷
4
(𝑡) − 𝑘

2
. (57)

Further, after easy integration, we obtain

𝐷
3
(𝑡)

=
𝑘
2

𝑘
1

𝐷
4
(𝑡) + 𝑘

2
(𝑇 − 𝑡) +

𝑎𝑘
1
+ 𝑏𝑘
2

𝑘
1

× (𝑚
4
(𝑇 − 𝑡) +

2

𝑘
1

× ln
𝑚
3
− 𝑚
4

𝑚
3
− 𝑚
4
⋅ exp {− (1/2) 𝑘

1
(𝑚
3
− 𝑚
4
) (𝑇 − 𝑡)}

) .

(58)

Therefore, the proof is completed.

Lemma 9. Suppose that ℎ(𝑡, 𝑟) = 𝑒
𝐷
5
(𝑡)+𝐷

6
(𝑡)𝑟 is a solution of

(34), with boundary conditions 𝐷
5
(𝑇) = 0 and 𝐷

6
(𝑇) = 0;

then one has𝐷
5
(𝑡) = 𝐷

3
(𝑡) and 𝐷

6
(𝑡) = 𝐷

4
(𝑡).

Proof. Investigating (34), we find that (34) and (45) have the
same solutions. Hence, the conclusion holds.

Applying (24), (29), (30), and Lemmas 6–9, we have

𝐻
𝑥

𝐻
𝑥𝑥

= −𝑧𝐻̂
𝑧𝑧
= 𝑧𝑔
𝑧
= −

1

𝑞
𝑧
1/(𝑝−1)

𝑓

= −
1

1 − 𝑝
(𝑔 +

1 − 𝑝

𝑞
𝜂ℎ − 𝐽) ,



Abstract and Applied Analysis 7

𝐻
𝑟𝑥

𝐻
𝑥𝑥

= 𝐻̂
𝑟𝑧
= −𝑔
𝑟
= −(

1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝑓
𝑟
−
1 − 𝑝

𝑞
𝜂ℎ
𝑟
+ 𝐽
𝑟
)

= −
1 − 𝑝

𝑞
𝑧
1/(𝑝−1)

𝐷
2
(𝑡) 𝑓 +

1 − 𝑝

𝑞
𝜂𝐷
6
(𝑡) ℎ − 𝐽

𝑟

= −𝐷
2
(𝑡) (𝑔 +

1 − 𝑝

𝑞
𝜂ℎ − 𝐽) +

1 − 𝑝

𝑞
𝜂𝐷
6
(𝑡) ℎ − 𝐽

𝑟
.

(59)

Namely, we obtain
𝐻
𝑥

𝐻
𝑥𝑥

= −
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) −

1

𝑞
𝜂ℎ (𝑡, 𝑟) ,

𝐻
𝑟𝑥

𝐻
𝑥𝑥

= −𝐷
2
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟))

−
1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟) (𝐷

2
(𝑡) − 𝐷

6
(𝑡)) −

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
.

(60)

Meantime, considering (29) and letting 𝑔(𝑡, 𝑟, 𝑧) = 𝑥, we
derive

𝑧 = (
𝑞

1 − 𝑝
(𝑥 − 𝐽 (𝑡, 𝑟)) + 𝜂ℎ (𝑡, 𝑟))

𝑝−1

𝑓
1−𝑝

(𝑡, 𝑟) . (61)

By using 𝐻
𝑥

= 𝑧, we obtain the following optimal value
function:

𝐻
∗

(𝑡, 𝑟, 𝑥)

=
1 − 𝑝

𝑞𝑝
(

𝑞

1 − 𝑝
(𝑥 − 𝐽 (𝑡, 𝑟)) + 𝜂ℎ (𝑡, 𝑟))

𝑝

𝑓
1−𝑝

(𝑡, 𝑟) .

(62)

In conclusion, we can summarize the above results in the
following theorem.

Theorem 10. For HARA utility (9), if a solution to the HJB
equation (16) is given by 𝐻(𝑡, 𝑟, 𝑥), then, under the condition
of 𝑝 < min{1, 𝑏2/(2𝑘

1
+ (𝑏 − 𝜆

2
𝑘
1
)
2

)} and 𝑝 ̸= 0, the optimal
investment strategies for the problem (8) are given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ (
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

1

𝑞
𝜂ℎ (𝑡, 𝑟)) +

V
𝜎
1

,

(63)

𝜋
∗

2
(𝑡)

=
𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅ (
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

1

𝑞
𝜂ℎ (𝑡, 𝑟))

−
𝜎
𝑟

𝜎
𝐵

⋅ (𝐷
2
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟)

× (𝐷
2
(𝑡) − 𝐷

6
(𝑡)) +

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
) −

𝜎
2

𝜎
1

⋅
𝜎
𝑟

𝜎
𝐵

V,

(64)

where 𝐽(𝑡, 𝑟) = (𝑢 − 𝜆
1
V) ∫
𝑇

𝑡

𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠, ℎ(𝑡, 𝑟) =

𝑒
𝐷
5
(𝑡)+𝐷

6
(𝑡)𝑟, and 𝐷

2
(𝑡) are given by Lemmas 8, 9, and 6,

respectively. Moreover, 𝜕𝐽(𝑡, 𝑟)/𝜕𝑟 in (64) is given by

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
= (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝐷
4
(𝑠) 𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠. (65)

The following theorem verifies that the optimal strategy
given byTheorem 10 is optimal for the problem (8).

Theorem 11 (verification theorem). If 𝐻(𝑡, 𝑟, 𝑥) is a solution
to (13), that is,𝐻(𝑡, 𝑟, 𝑥) satisfies

sup
𝜋(𝑡)∈Π

A𝐻(𝑡, 𝑟, 𝑥) = 0, (66)

then for all admissible strategies 𝜋(𝑡) = (𝜋
1
(𝑡), 𝜋
2
(𝑡)) ∈ Π, one

has 𝑉(𝑡, 𝑟, 𝑥) ⩽ 𝐻(𝑡, 𝑟, 𝑥); if 𝜋∗(𝑡) = (𝜋
∗

1
(𝑡), 𝜋
∗

2
(𝑡)) satisfies

𝜋
∗

(𝑡) ∈ arg sup
𝜋(𝑡)∈Π

A𝐻(𝑡, 𝑟, 𝑥) , (67)

then one has 𝑉(𝑡, 𝑟, 𝑥) = 𝐻(𝑡, 𝑟, 𝑥), and it implies that 𝜋∗(𝑡) =
(𝜋
∗

1
(𝑡), 𝜋
∗

2
(𝑡)) ∈ Π is the optimal investment strategy of the

problem (8).

Proof. Considering 𝐻(𝑡, 𝑟, 𝑥) ∈ 𝐶
1,2,2

([0, 𝑇] × R × R) and
using Itô formula from 𝑡 to 𝑇 for𝐻(𝑡, 𝑟, 𝑥), we obtain

𝐻(𝑇, 𝑟 (𝑇) , 𝑋 (𝑇))

= 𝐻 (𝑡, 𝑟, 𝑥) + ∫
𝑇

𝑡

A
𝜋(𝑡)

𝐻(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠)) 𝑑𝑠

+ ∫
𝑇

𝑡

(𝜋
1
(𝑠) 𝜎
1
− V)𝐻

𝑥
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠)) 𝑑𝑊

𝑆
(𝑠)

+ ∫
𝑇

𝑡

(𝜋
1
(𝑠) 𝜎
2
√𝑘
1
𝑟 (𝑠) + 𝑘

2
+ 𝜋
2
(𝑠) 𝜎
𝐵
)

× 𝐻
𝑥
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠)) 𝑑𝑊

𝑟
(𝑠)

− ∫
𝑇

𝑡

𝐻
𝑟
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠))√𝑘

1
𝑟 (𝑠) + 𝑘

2
𝑑𝑊
𝑟
(𝑠) .

(68)

For 𝐻(𝑡, 𝑟, 𝑥) is a solution to (13); that is, we have
sup
𝜋(𝑡)∈Π

A𝜋(𝑡)𝐻(𝑠, 𝑟(𝑠), 𝑋(𝑠)) = 0. So we obtain

𝐻(𝑇, 𝑟 (𝑇) , 𝑋 (𝑇))

⩽ 𝐻 (𝑡, 𝑟, 𝑥)

+ ∫
𝑇

𝑡

(𝜋
1
(𝑠) 𝜎
1
− V)𝐻

𝑥
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠)) 𝑑𝑊

𝑆
(𝑠)

+ ∫
𝑇

𝑡

(𝜋
1
(𝑠) 𝜎
2
√𝑘
1
𝑟 (𝑠) + 𝑘

2
+ 𝜋
2
(𝑠) 𝜎
𝐵
)

× 𝐻
𝑥
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠)) 𝑑𝑊

𝑟
(𝑠)

− ∫
𝑇

𝑡

𝐻
𝑟
(𝑠, 𝑟 (𝑠) , 𝑋 (𝑠))√𝑘

1
𝑟 (𝑠) + 𝑘

2
𝑑𝑊
𝑟
(𝑠) .

(69)
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The last three terms in (69) are local martingales and their
expected values are equal to zero. Thus, we get

E (𝐻 (𝑇, 𝑟 (𝑇) , 𝑋 (𝑇)) | 𝑟 (𝑡) = 𝑟, 𝑋 (𝑡) = 𝑥) ⩽ 𝐻 (𝑡, 𝑟, 𝑥) .

(70)

Maximizing (70) for all admissible strategies 𝜋(𝑡) = (𝜋
1
(𝑡),

𝜋
2
(𝑡)) ∈ Π, we derive

𝑉 (𝑡, 𝑟, 𝑥) ⩽ 𝐻 (𝑡, 𝑟, 𝑥) . (71)

When 𝜋(𝑡) = 𝜋
∗

(𝑡), all inequalities become equalities; that
is, 𝐻(𝑡, 𝑟, 𝑥) = 𝑉(𝑡, 𝑟, 𝑥), and 𝜋

∗

(𝑡) = (𝜋
∗

1
(𝑡), 𝜋
∗

2
(𝑡)) is the

optimal investment strategy of the problem (8).
The proof is completed.

Remark 12. Some interesting conclusions can be seen from
(63) and (64). (i) The optimal amount 𝜋∗

1
(𝑡) invested in the

stock is affected by the parameters 𝑎, 𝑏, 𝑘
1
, 𝑘
2
, 𝜆
1
, 𝜎
1
, 𝜆
2
, 𝑢,

and V but does not depend on the parameter 𝜎
2
. In fact, 𝜎

2

has an influence on the dynamics of stock price, which can be
observed from (3). (ii) The optimal amount 𝜋∗

2
(𝑡) invested in

the zero-coupon bond depends on all the model parameters
𝑎, 𝑏, 𝑘
1
, 𝑘
2
,𝜆
1
,𝜎
1
,𝜆
2
,𝑢, V, and𝜎

2
; however, the price dynamics

of zero-coupon bond is only impacted by 𝑏, 𝑘
1
, 𝑘
2
, and 𝜆

2
.

According to Theorem 10, we derive the following three
corollaries.

Corollary 13. If 𝜂 = 0 and 𝑞 = 1 − 𝑝, HARA utility (9)
is degenerated into power utility (10). Therefore, under the
condition of 𝑝 < min{1, 𝑏2/(2𝑘

1
+ (𝑏 − 𝜆

2
𝑘
1
)
2

)} and 𝑝 ̸= 0,
the optimal investment strategies for power utility are given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

V
𝜎
1

, (72)

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟))

−
𝜎
𝑟

𝜎
𝐵

⋅ (𝐷
2
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
)

−
𝜎
2

𝜎
1

⋅
𝜎
𝑟

𝜎
𝐵

V,

(73)

where 𝐽(𝑡, 𝑟) = (𝑢 − 𝜆
1
V) ∫
𝑇

𝑡

𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠 and𝐷
2
(𝑡) are given

by Lemmas 8 and 6, respectively. Moreover, 𝜕𝐽(𝑡, 𝑟)/𝜕𝑟 in (73)
is still given by

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
= (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝐷
4
(𝑠) 𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠. (74)

Proof. It is very easy to derive that

𝐻
𝑥

𝐻
𝑥𝑥

= −
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) ,

𝐻
𝑟𝑥

𝐻
𝑥𝑥

= −𝐷
2
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) −

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
.

(75)

Therefore, (72) and (73) hold.

Corollary 14. If 𝜂 = 1 and 𝑝 → −∞, HARA utility (9) is
reduced to exponential utility (11); then the optimal policies for
exponential utility are determined by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

𝑞
ℎ (𝑡, 𝑟) +

V
𝜎
1

, (76)

𝜋
∗

2
(𝑡)

=
𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅
1

𝑞
ℎ (𝑡, 𝑟) −

𝜎
2

𝜎
1

⋅
𝜎
𝑟

𝜎
𝐵

V

−
𝜎
𝑟

𝜎
𝐵

⋅ (𝐷
4
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟

+
1

𝑞
ℎ (𝑡, 𝑟) ∫

𝑇

𝑡

(−
1

2
𝜆
2

2
𝑘
1
+ 1 − 𝜆

2
𝑘
1
𝐷
4
(𝑠))

⋅ exp{∫
𝑠

𝑡

(𝑘
1
𝐷
4
(𝑧) − 𝑏 + 𝜆

2
𝑘
1
) 𝑑𝑧} 𝑑𝑠) ,

(77)

where 𝐽(𝑡, 𝑟) = (𝑢 − 𝜆
1
V) ∫
𝑇

𝑡

𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠 and ℎ(𝑡, 𝑟) =

𝑒
𝐷
5
(𝑡)+𝐷

6
(𝑡)𝑟 are given by Lemmas 8 and 9, respectively. More-

over, 𝜕𝐽(𝑡, 𝑟)/𝜕𝑟 in (77) is still given by

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
= (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝐷
4
(𝑠) 𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠. (78)

Proof. When 𝑝 → −∞, then we have 𝐷
2
(𝑡) → 𝐷

4
(𝑡) and

𝐷
6
(𝑡) = 𝐷

4
(𝑡). Moreover, we derive that

lim
𝑝→−∞

𝐻
𝑥

𝐻
𝑥𝑥

= lim
𝑝→−∞

(−
1

1 − 𝑝
(𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) −

1

𝑞
𝜂ℎ (𝑡, 𝑟))

= −
1

𝑞
𝜂ℎ (𝑡, 𝑟) ,

lim
𝑝→−∞

𝐻
𝑟𝑥

𝐻
𝑥𝑥

= lim
𝑝→−∞

(−𝐷
2
(𝑡) (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) −

1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟)

× (𝐷
2
(𝑡) − 𝐷

6
(𝑡)) −

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
) .

(79)

On the other hand, we have

lim
𝑝→−∞

1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟) (𝐷

2
(𝑡) − 𝐷

6
(𝑡))

=
1

𝑞
𝜂ℎ (𝑡, 𝑟) lim

𝑝→−∞

𝐷
2
(𝑡) − 𝐷

6
(𝑡)

1/ (1 − 𝑝)
. (

0

0
)

(80)
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Further, we obtain 𝜕𝐷
6
(𝑡)/𝜕𝑝 = 𝜕𝐷

4
(𝑡)/𝜕𝑝 = 0 and

𝜕𝐷
2
(𝑡)

𝜕𝑝

= ∫
𝑇

𝑡

(
1 + 𝑝

2(1 − 𝑝)
3
𝜆
2

2
𝑘
1
+

1

(1 − 𝑝)
2
(1 − 𝜆

2
𝑘
1
𝐷
2
(𝑠)))

× exp{∫
𝑠

𝑡

(𝑘
1
𝐷
2
(𝑧) − 𝑏 −

𝑝

1 − 𝑝
𝜆
2
𝑘
1
)𝑑𝑧}𝑑𝑠.

(81)

Using L’Hopital’s rule, (80) is equal to

1

𝑞
𝜂ℎ (𝑡, 𝑟) ∫

𝑇

𝑡

(−
1

2
𝜆
2

2
𝑘
1
+ 1 − 𝜆

2
𝑘
1
𝐷
4
(𝑠))

× exp{∫
𝑠

𝑡

(𝑘
1
𝐷
4
(𝑧) − 𝑏 + 𝜆

2
𝑘
1
) 𝑑𝑧} 𝑑𝑠.

(82)

Let 𝜂 = 1; we obtain that (76) and (77) hold.

Corollary 15. If 𝜂 = 0, 𝑝 → 0, and 𝑞 → 1, HARA utility
is reduced to logarithm utility 𝑈log(𝑥) = ln𝑥; then the optimal
policies for logarithm utility are given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) +
V
𝜎
1

, (83)

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅ (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟))

−
𝜎
𝑟

𝜎
𝐵

⋅
𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
−
𝜎
2

𝜎
1

⋅
𝜎
𝑟

𝜎
𝐵

V,
(84)

where 𝐽(𝑡, 𝑟) = (𝑢−𝜆
1
V) ∫
𝑇

𝑡

𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠 is given by Lemma 8.
Moreover, 𝜕𝐽(𝑡, 𝑟)/𝜕𝑟 in (83) is still given by

𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
= (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝐷
4
(𝑠) 𝑒
𝐷
3
(𝑠)+𝐷

4
(𝑠)𝑟

𝑑𝑠. (85)

Proof. If 𝑝 → 0, then we have 𝐷
2
(𝑡) → 0. Therefore, we

derive
𝐻
𝑥

𝐻
𝑥𝑥

= − (𝑋 (𝑡) − 𝐽 (𝑡, 𝑟)) ,
𝐻
𝑟𝑥

𝐻
𝑥𝑥

= −
𝜕𝐽 (𝑡, 𝑟)

𝜕𝑟
. (86)

Therefore, (83) and (84) hold.

5. Special Cases

In this section, we give several special cases for HARA
utility, power utility, exponential utility, and logarithm utility,
respectively.

In our model, if we do not consider liability factor, that is,
𝑢 = V = 0, then we have 𝐽(𝑡, 𝑟) = 0. Therefore, we obtain the
following special cases.

Special Case 1. Under HARA utility (9), if there is no liability
and 𝑝 satisfies the conditions 𝑝 < min{1, 𝑏2/(2𝑘

1
+ (𝑏 −

𝜆
2
𝑘
1
)
2

)} and 𝑝 ̸= 0, then the optimal policies for the problem
(8) are given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ (
1

1 − 𝑝
𝑋 (𝑡) +

1

𝑞
𝜂ℎ (𝑡, 𝑟)) ,

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅ (
1

1 − 𝑝
𝑋 (𝑡) +

1

𝑞
𝜂ℎ (𝑡, 𝑟)) −

𝜎
𝑟

𝜎
𝐵

⋅ (𝐷
2
(𝑡) 𝑋 (𝑡) +

1 − 𝑝

𝑞
𝜂ℎ (𝑡, 𝑟) (𝐷

2
(𝑡) − 𝐷

6
(𝑡))) ,

(87)

where ℎ(𝑡, 𝑟) = 𝑒
𝐷
5
(𝑡)+𝐷

6
(𝑡)𝑟 and 𝐷

2
(𝑡) are given by Lemmas 9

and 6, respectively.

Special Case 2. If utility function is given by 𝑈power(𝑥) =

𝑥
𝑝

/𝑝, 𝑝 < 1 and 𝑝 ̸= 0, and 𝑝 satisfies the conditions 𝑝 <

min{1, 𝑏2/(2𝑘
1
+ (𝑏 − 𝜆

2
𝑘
1
)
2

)} and 𝑝 ̸= 0, then the optimal
policies for the problem (8) under the condition of no liability
are given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

1 − 𝑝
𝑋 (𝑡) ,

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅
1

1 − 𝑝
𝑋 (𝑡) −

𝜎
𝑟

𝜎
𝐵

⋅ 𝐷
2
(𝑡) 𝑋 (𝑡) ,

(88)

where𝐷
2
(𝑡) is given by Lemma 6.

Special Case 3. If utility function is given by 𝑈exp(𝑥) =

−𝑒
−𝑞𝑥

/𝑞, 𝑞 > 0, then the optimal policies for the problem (8)
under the condition of no liability are

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

𝑞
ℎ (𝑡, 𝑟) ,

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅
1

𝑞
ℎ (𝑡, 𝑟) −

𝜎
𝑟

𝜎
𝐵

⋅ 𝐷
4
(𝑡) 𝑋 (𝑡) ,

𝜋
∗

2
(𝑡)

=
𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅
1

𝑞
ℎ (𝑡, 𝑟) −

𝜎
𝑟

𝜎
𝐵

⋅ (𝐷
4
(𝑡) 𝑋 (𝑡) +

1

𝑞
ℎ (𝑡, 𝑟) ∫

𝑇

𝑡

(−
1

2
𝜆
2

2
𝑘
1
+ 1 − 𝜆

2
𝑘
1
𝐷
4
(𝑠))

⋅ exp{∫
𝑠

𝑡

(𝑘
1
𝐷
4
(𝑧) − 𝑏 + 𝜆

2
𝑘
1
) 𝑑𝑧} 𝑑𝑠) ,

(89)

where 𝐷
4
(𝑡) and ℎ(𝑡, 𝑟) = 𝑒

𝐷
5
(𝑡)+𝐷

6
(𝑡)𝑟 are given by Lemmas 8

and 9, respectively.

Special Case 4. If utility function is given by 𝑈log(𝑥) = ln𝑥,
then the optimal policies for the problem (8) with no liability
are

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ 𝑋 (𝑡) ,

𝜋
∗

2
(𝑡) =

𝜎
𝑟

𝜎
𝐵

⋅
𝜎
1
𝜆
2
− 𝜎
2
𝜆
1

𝜎
1

⋅ 𝑋 (𝑡) −
𝜎
𝑟

𝜎
𝐵

⋅ 𝐷
2
(𝑡) 𝑋 (𝑡) ,

(90)

where𝐷
2
(𝑡) are given by Lemma 6.
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On the other hand, if we consider the problem (8) in
the constant interest rate environments, that is, 𝑎 = 𝑏 =

𝑘
1
= 𝑘
2
= 0, then the price dynamics of zero-coupon bond

is degenerated into that of risk-free asset. As a result, the
optimal amount invested in the zero-coupon bond is zero;
that is, 𝜋∗

2
(𝑡) = 0. And it leads to some new expressions:

𝐷
1
(𝑡) =

𝑝

2(1 − 𝑝)
2
𝜆
2

1
(𝑇 − 𝑡) ,

𝐷
2
(𝑡) =

𝑝

1 − 𝑝
(𝑇 − 𝑡) ,

𝐷
3
(𝑡) = 0, 𝐷

4
(𝑡) = − (𝑇 − 𝑡) .

(91)

Therefore, we can derive the optimal policy of the problem
(8) with liability in the following special cases.

Special Case 5. Under constant interest rate model, if utility
function is given by HARA function (9), then the optimal
policy of the problem (8) with liability is given by

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ (
1

1 − 𝑝
(𝑋 (𝑡) − (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝑒
−(𝑇−𝑠)𝑟

𝑑𝑠)

+
1

𝑞
𝜂𝑒
−(𝑇−𝑡)𝑟

) +
V
𝜎
1

.

(92)

Special Case 6. If utility function is given by 𝑈power(𝑥) =

𝑥
𝑝

/𝑝, 𝑝 < 1 and 𝑝 ̸= 0, then the optimal policy of the problem
(8) with liability and constant interest rate is

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

1 − 𝑝
(𝑋 (𝑡) − (𝑢 − 𝜆

1
V) ∫
𝑇

𝑡

𝑒
−(𝑇−𝑠)𝑟

𝑑𝑠) +
V
𝜎
1

.

(93)

Special Case 7. If utility function is given by 𝑈exp(𝑥) =

−𝑒
−𝑞𝑥

/𝑞, 𝑞 > 0, then the optimal policy of the problem (8)
with liability and constant interest rate is

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅
1

𝑞
𝑒
−(𝑇−𝑡)𝑟

+
V
𝜎
1

. (94)

Special Case 8. If utility function is given by 𝑈log(𝑥) = ln𝑥,
then the optimal policy of the problem (8) with liability and
constant interest rate is

𝜋
∗

1
(𝑡) =

𝜆
1

𝜎
1

⋅ (𝑋 (𝑡) − (𝑢 − 𝜆
1
V) ∫
𝑇

𝑡

𝑒
−(𝑇−𝑠)𝑟

𝑑𝑠) +
V
𝜎
1

. (95)

6. Numerical Analysis

In this section, we provide a numerical example to illustrate
the effect of market parameters on the optimal investment
strategy and compare our results with those in the existing
literature. Throughout this section, unless otherwise stated,
the basic parameters are given by 𝑎 = 0.18, 𝑏 = 0.23, 𝑘

1
= 0.7,

𝑘
2
= 0.9, 𝑟(0) = 0.05, 𝜆

1
= 0.6, 𝜆

2
= 0.8, 𝜎

1
= 1.9, 𝜎

2
= 1.7,

Table 1: The optimal policy with liability and affine interest rate.

HARA
utility

Power
utility

Exponential
utility

Logarithm
utility

Stock 26.6064 26.6049 0.390775 31.8627
Bond 37.8308 37.8343 99.4978 24.7162
Cash 35.5629 35.5608 0.111445 43.4211

Table 2: The optimal policy only with affine interest rate.

HARA
utility

Power
utility

Exponential
utility

Logarithm
utility

Stock 26.3173 26.3158 0.0749854 31.5789
Bond 38.3303 38.3338 100.06 25.2023
Cash 35.3525 35.3504 −0.134829 43.2187

Table 3:The optimal policy with liability and constant interest rate.

HARA
utility

Power
utility

Exponential
utility

Logarithm
utility

Stock 26.573 26.57 0.465984 31.8208
Cash 73.427 73.43 99.534 68.1792

𝑢 = 0.6, V = 0.6, 𝑝 = −0.2, 𝑞 = 2, 𝜂 = 0.02, 𝑡 = 0, 𝑇 = 1, and
𝑥
0
= 100.
By applying the above conclusions obtained, some opti-

mal investment policies are calculated in Tables 1, 2, and 3.
From Tables 1–3, we draw some conclusions as follows.

(a1) The optimal policy under HARA utility is roughly
equivalent to that under power utility but is markedly
different from that under exponential utility or loga-
rithm utility.

(a2) In the stochastic interest rate environments, the opti-
mal amount invested in the stock and zero-coupon
bond under HARA utility is less than that under
exponential utility but is more than that under log-
arithm utility. This situation in the constant interest
rate environments is contrary to that in the stochastic
interest rate environments.

(a3) The optimal amount with liability and affine interest
rate invested in the risky assets (including a stock and
a zero-coupon bond) is less than that only with affine
interest rate but is more than that with liability and
constant interest rate.

In order to illustrate the impact of model parameters
on the optimal investment strategy with liability and affine
interest rate, we depict the following graphs. In Figures 1 and
2, the optimal amount invested in the stock is depicted by
the dashed line and is denoted by 𝜋∗

1
(𝑡); the optimal amount

invested in the zero-coupon bond is depicted by the orange
line and is denoted by 𝜋∗

2
(𝑡); the optimal amount invested in

the cash is depicted by the thick line and is denoted by 𝜋∗
0
(𝑡).

Form Figures 1 and 2, we can draw some conclusions as
follows.
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Figure 1: The effect of 𝜎
1
and 𝜎

2
on the optimal strategy.
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Figure 2: The effect of V and 𝑝 on the optimal strategy.

(b1) 𝜋∗
0
(𝑡) and 𝜋∗

1
(𝑡) decrease with respect to the parame-

ter 𝜎
1
, while 𝜋∗

2
(𝑡) increases with respect to 𝜎

1
. In fact,

as the value of 𝜎
1
is increasing, the volatility risk of the

stock is also increasing. It leads to that the investors
would invest less money in the stock. In order to
hedge interest rate risk, the investors need to invest
much more money in the zero-coupon bond and less
money in the cash.

(b2) 𝜋∗
1
(𝑡) does not depend on the parameter 𝜎

2
, while

𝜋
∗

2
(𝑡) decreases and𝜋∗

0
(𝑡) increases with respect to 𝜎

2
.

It shows that the investors need to invest less money
in the zero-coupon bond andmoremoney in the cash
when the value of 𝜎

2
increases.

(b3) 𝜋∗
0
(𝑡) and𝜋∗

1
(𝑡) increase with respect to the parameter

V, while 𝜋∗
2
(𝑡) decreases with respect to V. As a matter

of fact, as the value of V becomes larger, the volatility
of liability is increasing.This means that the investors

need to invest more money in the stock and cash in
order to hedge the risk that resulted from liability.

(b4) 𝜋∗
0
(𝑡) and𝜋∗

1
(𝑡) increase with respect to the parameter

𝑝, while 𝜋∗
2
(𝑡) decreases with respect to 𝑝. This shows

that the larger the value of 𝑝, the more the amount
invested in the stock and cash. It leads to the fact that
less money is invested in the zero-coupon bond.

7. Conclusions

This paper investigates the optimal investment strategy for an
ALMproblem in theHARAutility framework, where interest
rate is supposed to be driven by an affine interest rate model,
while liability process follows Brownian motion with drift.
By applying dynamic programming principle and Legendre
transform, we obtain the explicit expressions of the opti-
mal investment strategies. Some special cases are discussed.
Finally, we illustrate the impact of model parameters on
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the optimal policy by providing a numerical example. Some
interesting conclusions are found as follows: (i) although the
parameter 𝜎

2
has an influence on the dynamics of stock price,

the optimal amount invested in the stock does not depend on
the value of 𝜎

2
; (ii) the optimal amount underHARAutility is

roughly equivalent to that under power utility but ismarkedly
different from that under exponential utility and logarithm
utility.

As far as we know, there is little work on the ALM prob-
lems with stochastic interest rate in the existing literature.
However, our work has also some limits: (i) we only consider
the liability process driven by the drifted Brownian motion,
which is the simplest stochastic process; (ii) we study anALM
problem in the utility framework and do not consider it in a
continuous-time mean-variance framework. We would leave
those problems for future research.
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