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The substantiation of a possibility of application of partial averaging method on finite interval for differential inclusions with the
fuzzy right-hand side with a small parameter is considered.

1. Introduction

In 1990, Aubin [1] and Baidosov [2, 3] introduced differential
inclusions with the fuzzy right-hand side. Their approach is
based on usual differential inclusions. In 1995, Hüllermeier
[4–6] introduced the concept of 𝑅-solution similar to how it
has been done in [7]. Further in [8–20], various properties
of solutions of fuzzy differential inclusions and their applica-
tions at modeling of various natural-science processes were
considered.

The averaging methods combined with the asymptotic
representations (in Poincare sense) began to be applied as the
basic constructive tool for solving the complicated problems
of analytical dynamics described by the differential equations.
After the systematic researches done by N. M. Krylov, N.
N. Bogoliubov, Yu. A. Mitropolsky, and so forth, in 1930s,
the averaging method gradually became one of the classical
methods in analyzing nonlinear oscillations.

In works [21, 22], the possibility of application of schemes
of full and partial averaging for differential inclusions with
the fuzzy right-hand side, containing a small parameter, was
proved. By proving these theorems, the scheme offered by
Plotnikov et al. for a substantiation of schemes of an average
of usual differential inclusions [23–28] was used. In this work,
the possibility of application of partial averaging method for

fuzzy differential inclusions without passage to reviewing of
separate solutions is proved; that is, all estimations are spent
for 𝑅-solution corresponding fuzzy systems.

2. Preliminaries

Let comp(𝑅𝑛)(conv(𝑅𝑛)) be a family of all nonempty (convex)
compact subsets from the space𝑅𝑛 with theHausdorffmetric:

ℎ (𝐴, 𝐵) = min
𝑟≥0

{𝑆
𝑟
(𝐴) ⊃ 𝐵, 𝑆

𝑟
(𝐵) ⊃ 𝐴} , (1)

where 𝐴, 𝐵 ∈ comp(𝑅𝑛) and 𝑆
𝑟
(𝐴) is 𝑟-neighborhood of set

𝐴.
Let 𝐸𝑛 be a family of all 𝑢 : 𝑅𝑛 → [0, 1] such that 𝑢

satisfies the following conditions:

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ 𝑅
𝑛 such that

𝑢(𝑥
0
) = 1;

(2) 𝑢 is fuzzy convex; that is,

𝑢 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≥ min {𝑢 (𝑥) , 𝑢 (𝑦)} , (2)

for any 𝑥, 𝑦 ∈ 𝑅𝑛 and 0 ≤ 𝜆 ≤ 1;
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(3) 𝑢 is upper semicontinuous; that is, for any𝑥
0
∈ 𝑅
𝑛 and

𝜀 > 0 exists 𝛿(𝑥
0
, 𝜀) > 0 such that 𝑢(𝑥) < 𝑢(𝑥

0
) + 𝜀

whenever ‖𝑥 − 𝑥
0
‖ < 𝛿(𝑥

0
, 𝜀), 𝑥 ∈ 𝑅𝑛;

(4) the closure of the set {𝑥 ∈ 𝑅𝑛 : 𝑢(𝑥) > 0} is compact.

If 𝑢 ∈ 𝐸𝑛, then 𝑢 is called a fuzzy number and 𝐸𝑛 is said
to be a fuzzy number space.

Definition 1. The set {𝑥 ∈ 𝑅𝑛 : 𝑢(𝑥) ≥ 𝛼} is called the 𝛼-level
[𝑢]
𝛼 of a fuzzy number 𝑢 ∈ 𝐸𝑛, for 0 < 𝛼 ≤ 1. The closure of

the set {𝑥 ∈ 𝑅𝑛 : 𝑢(𝑥) > 0} is called the 0-level [𝑢]0 of a fuzzy
number 𝑢 ∈ 𝐸𝑛.

It is clear that the set [𝑢]𝛼 ∈ conv(𝑅𝑛), for all 0 ≤ 𝛼 ≤ 1.

Theorem 2 (see [29] (stacking theorem)). If 𝑢 ∈ 𝐸𝑛, then

(1) [𝑢]𝛼 ∈ conv(𝑅𝑛), for all 𝛼 ∈ [0, 1];
(2) [𝑢]𝛼2 ⊂ [𝑢]𝛼1 , for all 0 ≤ 𝛼

1
≤ 𝛼
2
≤ 1;

(3) if {𝛼
𝑘
} is a nondecreasing sequence converging to 𝛼 > 0,

then [𝑢]𝛼 = ⋂
𝑘≥1
[𝑢]
𝛼
𝑘 .

Conversely, if {𝐴
𝛼
: 𝛼 ∈ [0, 1]} is the family of subsets of 𝑅𝑛

satisfying conditions (1)–(3), then there exists 𝑢 ∈ 𝐸𝑛 such that
[𝑢]
𝛼

= 𝐴
𝛼
for 0 < 𝛼 ≤ 1 and [𝑢]0 = ⋃

0<𝛼≤1
𝐴
𝛼
⊂ 𝐴
0
.

Let 𝜃 be the fuzzy number defined by 𝜃(𝑥) = 0, if 𝑥 ̸= 0
and 𝜃(0) = 1.

Define𝐷 : 𝐸𝑛 × 𝐸𝑛 → [0,∞) by the relation

𝐷(𝑢, V) = sup
0≤𝛼≤1

ℎ ([𝑢]
𝛼

, [V]𝛼) . (3)

Then,𝐷 is a metric in 𝐸𝑛. Further, we know that [30]

(i) (𝐸𝑛, 𝐷) is a complete metric space;
(ii) 𝐷(𝑢 + 𝑤, V + 𝑤) = 𝐷(𝑢, V), for all 𝑢, V, 𝑤 ∈ 𝐸𝑛;
(iii) 𝐷(𝜆𝑢, 𝜆V) = |𝜆|𝐷(𝑢, V), for all 𝑢, V ∈ 𝐸𝑛 and 𝜆 ∈ 𝑅.

3. Fuzzy Differential Inclusion: 𝑅-Solution

Consider the fuzzy differential inclusion

�̇� ∈ 𝐹 (𝑡, 𝑥) , 𝑥 (0) ∈ 𝑋
0
, (4)

where 𝑥 ∈ 𝑅𝑛, 𝑡 ∈ [0, 𝑇] ⊂ 𝑅
+
,𝐹 : [0, 𝑇]×𝑅𝑛 → 𝐸𝑛,𝑋

0
∈ 𝐸
𝑛.

We interpret (4) as a family of differential inclusions (see
[7, 9, 10]):

�̇�
𝛼
∈ [𝐹 (𝑡, 𝑥

𝛼
)]
𝛼

, 𝑥
𝛼
(0) ∈ [𝑋

0
]
𝛼

, 𝛼 ∈ [0, 1] . (5)

An 𝛼-solution 𝑥
𝛼
(⋅) of (4) is understood to be an

absolutely continuous function 𝑥
𝛼
: [0, 𝑇] → 𝑅

𝑛 which
satisfies (5) almost everywhere. Let𝑋

𝛼
denote the 𝛼-solution

set of (5) and let 𝑋
𝛼
(𝑡) = {𝑥

𝛼
(𝑡) : 𝑥

𝛼
(⋅) ∈ 𝑋

𝛼
}. Clearly, a

family of subsets 𝑋
𝑡
= {𝑋
𝛼
(𝑡) : 𝛼 ∈ [0, 1]} cannot satisfy the

conditions of Theorem 2 (see [5, 6, 9]).
Therefore, we will consider an 𝑅-solution of fuzzy differ-

ential inclusion (4).

Definition 3. The upper semicontinuous fuzzy mapping 𝑋 :
[0, 𝑇] → 𝐸

𝑛 which satisfies the system

sup
𝛼∈[0,1]

ℎ([𝑋 (𝑡 + 𝜎)]
𝛼

, ⋃

𝑥∈[𝑋(𝑡)]
𝛼

{𝑥 + ∫

𝑡+𝜎

𝑡

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠})

= 𝑜 (𝜎) , 𝑋 (0) = 𝑋
0

(6)

is called the 𝑅-solution𝑋(⋅) of differential inclusion (4), where
lim
𝜎→0

+

(𝑜(𝜎)/𝜎) = 0.

Theorem 4. Suppose that the following conditions hold:

(1) fuzzy mapping 𝐹(⋅, 𝑥) is measurable, for all 𝑥 ∈ 𝑅𝑛;
(2) there exists 𝜆 > 0 such that, for all 𝑥, 𝑥 ∈ 𝑅𝑛,

𝐷(𝐹 (𝑡, 𝑥


) , 𝐹 (𝑡, 𝑥


)) ≤ 𝜆

𝑥


− 𝑥


, (7)

for almost every 𝑡 ∈ [0, 𝑇];

(3) there exists 𝛾 > 0 such that𝐷(𝐹(𝑡, 𝑥), 0̂) ≤ 𝛾, for almost
every 𝑡 ∈ [0, 𝑇] and every 𝑥 ∈ 𝑅𝑛;

(4) for all 𝛽 ∈ [0, 1], 𝑥, 𝑥 ∈ 𝑅𝑛 and almost every 𝑡 ∈
[0, 𝑇],

𝛽𝐹 (𝑡, 𝑥


) + (1 − 𝛽) 𝐹 (𝑡, 𝑥


) ⊂ F (t, 𝛽𝑥 + (1 − 𝛽) 𝑥) .
(8)

Then, there exists a unique 𝑅-solution 𝑋(⋅) of fuzzy system (4)
defined on the interval [0, 𝜏] ⊆ [0, 𝑇].

Proof. Let 𝑆
𝑟
(𝑋
0
) = {𝑋 ∈ 𝐸

𝑛

: 𝐷(𝑋,𝑋
0
) ≤ 𝑟} and 𝜏 =

min{𝑇, 𝑟/𝛾}.
By [5, 6], it follows that a family of subsets 𝑋

𝑡
= {𝑋
𝛼
(𝑡) :

𝛼 ∈ [0, 1]} satisfy the conditions of Theorem 2; that is, 𝑋
𝑡
∈

𝐸
𝑛, for every 𝑡 ∈ [0, 𝜏].
Divide the interval [0, 𝜏] into partial intervals by the

points 𝑡𝑃
𝑘
= 𝑘𝜏2

−𝑝, 𝑘 = 0, . . . , 𝑃, 𝑃 = 2𝑝, 𝑝 ∈ 𝑁. We use
Euler algorithm; let the mapping𝑋𝑃(⋅) be given by

[𝑋
𝑃

(𝑡)]
𝛼

= ⋃

𝑥∈[𝑋(𝑡
𝑃

𝑘
)]
𝛼

{𝑥 + ∫

𝑡

𝑡
𝑃

𝑘

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠} , (9)

where 𝑡 ∈ [𝑡𝑃
𝑘
, 𝑡
𝑃

𝑘+1
], 𝑘 ∈ {0, . . . , 𝑃},𝑋(0) = 𝑋

0
, 𝛼 ∈ [0, 1].

By [7, 28], it follows that the sequence {[𝑋𝑃(⋅)]𝛼}∞
𝑝=1

is
equicontinuous and fundamental and its limit is a unique 𝑅-
solution [𝑋(⋅)]𝛼 of differential inclusion (5) and [𝑋(𝑡)]𝛼 =
𝑋
𝛼
(𝑡), for every 𝑡 ∈ [0, 𝜏] and 𝛼 ∈ [0, 1]. This concludes the

proof.

Also, we consider the differential inclusion

̇𝑦 ∈ 𝐺 (𝑡, 𝑦) , 𝑦 (0) ∈ 𝑌
0
, (10)

where 𝑦 ∈ 𝑅𝑛, 𝑡 ∈ [0, 𝑇] ⊂ 𝑅
+
, 𝐹 : [0, 𝑇]×𝑅𝑛 → 𝐸𝑛, 𝑌

0
∈ 𝐸
𝑛.
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Lemma 5. Let 𝐹(𝑡, 𝑥) and 𝐺(𝑡, 𝑦) satisfy conditions (1)–(4) of
Theorem 4 and there exist 𝜂 > 0 and 𝜇 > 0 such that

𝐷(∫

𝑡
2

𝑡
1

𝐹 (𝑠, 𝑥) 𝑑𝑠, ∫

𝑡
2

𝑡
1

𝐺 (𝑠, 𝑥) 𝑑𝑠) < 𝜂 (𝑡
2
− 𝑡
1
) ,

𝐷 (𝑋
0
, 𝑌
0
) < 𝜇,

(11)

for every 𝑥 ∈ 𝑅𝑛 and 𝑡
2
> 𝑡
1
, 𝑡
1
, 𝑡
2
∈ [0, 𝑇].

Then 𝐷(𝑋(𝑡), 𝑌(𝑡)) ≤ 𝜇𝑒𝜆𝑡 + (𝜂/𝜆)(𝑒𝜆𝑡 − 1), for every 𝑡 ∈
[0, 𝑇].

Proof. Divide the interval [0, 𝑇] into partial intervals by the
points 𝑡𝑚

𝑘
= 𝑘Δ, Δ = (𝑇/𝑚), 𝑘 = 0, . . . , 𝑚, 𝑚 ∈ 𝑁. By

Definition 3, we have

𝐷 (𝑋 (𝑡) , 𝑌 (𝑡))

≤ sup
𝛼∈[0,1]

ℎ( ⋃

𝑥∈[𝑋(𝑡
𝑘
)]
𝛼

{𝑥 + ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠} ,

⋃

𝑦∈[𝑌(𝑡
𝑘
)]
𝛼

{𝑦 + ∫

𝑡

𝑡
𝑘

[𝐺 (𝑠, 𝑦)]
𝛼d𝑠})

+ 𝑜 (Δ)

≤ sup
𝛼∈[0,1]

ℎ([𝑋 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑋 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

[𝑌 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐺 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠)

+ 𝑜 (Δ)

≤ sup
𝛼∈[0,1]

ℎ([𝑋 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑋 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

[𝑋 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠)

+ sup
𝛼∈[0,1]

ℎ([𝑋 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

[𝑌 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠)

+ sup
𝛼∈[0,1]

ℎ([𝑌 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

[𝑌 (𝑡
𝑘
)]
𝛼

+ ∫

𝑡

𝑡
𝑘

[𝐺 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠)

+ 𝑜 (Δ)

≤ sup
𝛼∈[0,1]

ℎ(∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑋 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠)

+ sup
𝛼∈[0,1]

ℎ ([𝑋 (𝑡
𝑘
)]
𝛼

, [𝑌 (𝑡
𝑘
)]
𝛼

)

≤ sup
𝛼∈[0,1]

ℎ(∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, [𝑋 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠,

∫

𝑡

𝑡
𝑘

[𝐺 (𝑠, [𝑌 (𝑡
𝑘
)]
𝛼

)]
𝛼

d𝑠) + 𝑜 (Δ)

≤ ∫

𝑡

𝑡
𝑘

𝜆𝐷 (𝑋 (𝑡
𝑘
) , 𝑌 (𝑡

𝑘
)) d𝑠

+ 𝐷 (𝑋 (𝑡
𝑘
) , 𝑌 (𝑡

𝑘
)) + 𝜂 (𝑡 − 𝑡

𝑘
) + 𝑜 (Δ)

≤ ((𝑡 − 𝑡
𝑘
) 𝜆 + 1)𝐷 (𝑋 (𝑡

𝑘
) , 𝑌 (𝑡

𝑘
))

+ 𝜂 (𝑡 − 𝑡
𝑘
) + 𝑜 (Δ) ≤ 𝜇𝑒

𝜆𝑡

+
𝜂

𝜆
(𝑒
𝜆𝑡

− 1)

(12)

for every 𝑡 ∈ [0, 𝑇]. This concludes the proof.

Remark 6. If 𝑋
0
= 𝑌
0
, then 𝐷(𝑋(𝑡), 𝑌(𝑡)) ≤ (𝜂/𝜆)(𝑒𝜆𝑡 − 1),

for every 𝑡 ∈ [0, 𝑇].

4. The Method of Partial Averaging

Now, consider the fuzzy differential inclusion with a small
parameter

�̇� ∈ 𝜀𝐹 (𝑡, 𝑥) , 𝑥 (0) ∈ 𝑋
0
, (13)

where𝑋 ∈ 𝑅𝑛, 𝑡 ∈ 𝑅
+
, 𝐹 : 𝑅

+
×𝑅
𝑛

→ 𝐸
𝑛,𝑋
0
∈ 𝐸
𝑛, and 𝜀 > 0

is a small parameter.
In this work, we associate the following partial averaged

fuzzy differential inclusion with the inclusion (10):

̇𝑦 ∈ 𝜀𝐺 (𝑡, 𝑦) , 𝑦 (0) ∈ 𝑋
0
, (14)

where 𝐺 : 𝑅
+
× 𝑅
𝑛

→ 𝐸
𝑛 such that

lim
𝑇→∞

𝐷(
1

𝑇
∫

𝑇

0

𝐹 (𝑡, 𝑥) d𝑡, 1
𝑇
∫

𝑇

0

𝐺 (𝑡, 𝑥) d𝑡) = 0. (15)

Theorem 7. Let in domain 𝑄 = {(𝑡, 𝑥) : 𝑡 ≥ 0, 𝑥 ∈ 𝐷 ∈
𝑐𝑜𝑛V(𝑅𝑛)} the following conditions hold:

(1) mappings 𝐹(⋅, 𝑥), 𝐺(⋅, 𝑥) are measurable on 𝑅
+
;

(2) mappings 𝐹(𝑡, ⋅), 𝐺(𝑡, ⋅) satisfy a Lipschitz condition

𝐷(𝐹 (𝑡, 𝑥


) , 𝐹 (𝑡, 𝑥


)) ≤ 𝜆

𝑥


− 𝑥


,

𝐷 (𝐺 (𝑡, 𝑥


) , 𝐺 (𝑡, 𝑥


)) ≤ 𝜆

𝑥


− 𝑥


,

(16)

with a Lipschitz constant 𝜆 > 0;
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(3) there exists 𝛾 > 0 such that

𝐷(𝐹 (𝑡, 𝑥) , 0̂) ≤ 𝛾, 𝐷 (𝐺 (𝑡, 𝑥) , 0̂) ≤ 𝛾; (17)

for almost every 𝑡 ∈ [0, 𝑇] and every 𝑥 ∈ 𝑅𝑛;

(4) for all 𝛽 ∈ [0, 1], 𝑥, 𝑥 ∈ 𝑅𝑛 and almost every 𝑡 ∈
[0, 𝑇],

𝛽𝐹 (𝑡, 𝑥


) + (1 − 𝛽) 𝐹 (𝑡, 𝑥


)

⊂ 𝐹 (𝑡, 𝛽𝑥


+ (1 − 𝛽) 𝑥


) ,

𝛽 𝐺 (𝑡, 𝑥


) + (1 − 𝛽)𝐺 (𝑡, 𝑥


)

⊂ 𝐺 (𝑡, 𝛽𝑥


+ (1 − 𝛽) 𝑥


) .

(18)

(5) limit (15) exists uniformly with respect to x in the
domain G;

(6) for any 𝑋
0
([𝑋
0
]
0

⊂ 𝐷


⊂ 𝐷), 𝜀 ∈ (0, ]], and
𝑡 > 0, the 𝑅-solution of the inclusion (10) together
with a 𝜌-neighborhood belongs to the domain G; that
is, [𝑋(𝑡)]0 + 𝑆

𝜌
(0) ⊂ 𝐷, for every 𝑡 > 0.

Then, for any 𝜂 ∈ (0, 𝜌] and L > 0, there exists 𝜀
0
(𝜂, 𝐿) > 0

such that, for all 𝜀 ∈ (0, 𝜀
0
] and 𝑡 ∈ [0, 𝐿𝜀−1], the following

inequality holds:

𝐷(𝑋 (𝑡) , 𝑌 (𝑡)) < 𝜂, (19)

where 𝑋(⋅), 𝑌(⋅) are the 𝑅-solutions of initial and partial
averaged inclusions.

Proof. Divide the interval [0, 𝐿𝜀−1] on the partial intervals by
the points 𝑡

𝑘
= (𝑘𝐿/𝜀𝑚), 𝑘 ∈ {0, 1, . . . , 𝑚 − 1}. We denote

fuzzy mappings𝑋𝑚(⋅) and 𝑌𝑚(⋅) such that

[𝑋
𝑚

(𝑡)]
𝛼

= ⋃

𝑥∈[𝑋(𝑡
𝑘
)]
𝛼

{𝑥 + 𝜀∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠} ,

[𝑋
𝑚

(0)]
𝛼

= [𝑋
0
]
𝛼

,

(20)

[𝑌
𝑚

(𝑡)]
𝛼

= ⋃

𝑦∈[𝑌(𝑡
𝑘
)]
𝛼

{𝑦 + 𝜀∫

𝑡

𝑡
𝑘

[𝐺 (𝑠, 𝑦)]
𝛼d𝑠} ,

[𝑌
𝑚

(0)]
𝛼

= [𝑋
0
]
𝛼

,

(21)

for every 𝛼 ∈ [0, 1], 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
], 𝑘 ∈ {0, 1, . . . , 𝑚 − 1}.

Then

𝐷(𝑋
𝑚

(𝑡
𝑘
) , 𝑋 (𝑡

𝑘
))

≤ sup
𝛼∈[0,1]

ℎ( ⋃

𝑥∈[𝑋
𝑚
(𝑡
𝑘−1
)]
𝛼

{𝑥 + 𝜀∫

𝑡
𝑘

𝑡
𝑘−1

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠} ,

⋃

𝑥∈[𝑋(𝑡
𝑘−1
)]
𝛼

{𝑥 + 𝜀∫

𝑡
𝑘

𝑡
𝑘−1

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠})

+ 𝑜 (𝑡
𝑘
− 𝑡
𝑘−1
)

≤ (1 + 𝜀 (𝑡
𝑘
− 𝑡
𝑘−1
) 𝜆)𝐷 (𝑋

𝑚

(𝑡
𝑘−1
) , 𝑋 (𝑡

𝑘−1
))

+ 𝑜 (𝑡
𝑘
− 𝑡
𝑘−1
) ≤
𝑜 (𝑡
𝑘
− 𝑡
𝑘−1
)

𝑡
𝑘
− 𝑡
𝑘−1

(𝑒
𝜆𝐿

− 1) .

(22)

Also, we take

𝐷(𝑌
𝑚

(𝑡
𝑘
) , 𝑌 (𝑡

𝑘
)) ≤
𝑜 (𝑡
𝑘
− 𝑡
𝑘−1
)

𝑡
𝑘
− 𝑡
𝑘−1

(𝑒
𝜆𝐿

− 1) . (23)

As for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
],

𝐷(𝑋
𝑚

(𝑡) , 𝑋
𝑚

(𝑡
𝑘
))

≤ sup
𝛼∈[0,1]

ℎ

× ( ⋃

𝑥∈[𝑋
𝑚
(𝑡
𝑘
)]
𝛼

{𝑥 + 𝜀∫

𝑡

𝑡
𝑘

[𝐹 (𝑠, 𝑥)]
𝛼d𝑠} , [𝑋𝑚 (𝑡

𝑘
)]
𝛼

)

≤ 𝜀𝛾 (𝑡 − 𝑡
𝑘
) ≤
𝛾𝐿

𝑚
,

(24)

𝐷(𝑌
𝑚

(𝑡) , 𝑌
𝑚

(𝑡
𝑘
)) ≤ 𝜀𝛾 (𝑡 − 𝑡

𝑘
) ≤
𝛾𝐿

𝑚
. (25)

Using estimates (22)–(25), for any 𝜂 > 0, there exists 𝑚
0

such that, for𝑚 > 𝑚
0
, we have

𝐷(𝑋
𝑚

(𝑡) , 𝑋 (𝑡)) ≤
𝜂

4
,

𝐷 (𝑌
𝑚

(𝑡) , 𝑌 (𝑡)) ≤
𝜂

4
.

(26)

Taking into account Lemma 5, for any ] > 0, there exists
𝜀
0
> 0 such that, for all 𝜀 ∈ (0, 𝜀

0
], the following inequality

holds:

𝐷(𝑋
𝑚

(𝑡
𝑘+1
) , 𝑌 (𝑡

𝑘+1
)) ≤

]
𝜆
(𝑒
𝜆𝐿

− 1) . (27)

By combining (26) and (27) and choosing 𝑚 ≥

max{𝑚
0
, 8𝛾𝐿/𝜂} and ] < (𝜂𝜆/4(𝑒𝜆 𝐿 − 1)), we obtain (19). The

theorem is proved.
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5. Conclusion

If 𝐹(⋅, 𝑥) is continuous on [0, 𝑇], then, instead of (5), it is
possible to consider the following more simple equation:

sup
𝛼∈[0,1]

ℎ([𝑋 (𝑡 + 𝜎)]
𝛼

, ⋃

𝑥∈[𝑋(𝑡)]
𝛼

{𝑥 + 𝜎[𝐹 (𝑡, 𝑥)]
𝛼

})

= 𝑜 (𝜎) , 𝑋 (0) = 𝑋
0
,

(28)

and, similarly, we can prove all the results received earlier.
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