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Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric
vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles
depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal
operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the
assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability
and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed
operating strategy enhances the availability and reliability at a low cost.

1. Introduction

The growth of electric vehicle technologies such as pure elec-
tric and hybrid electric vehicles has presented new oppor-
tunities, including reduced dependency on nonrenewable
energy resources, lowering of CO

2
emissions from transport,

and greater public awareness of leading a lower carbon
lifestyle. Environmental problems promote the adoption of
new-generation electric vehicles for urban transportation.

As it is well known, one of the weakest points of electric
vehicles is the battery system. The battery served as energy
storage units must be sized so that they store sufficient energy
and provide adequate peak power for the vehicle to have a
specified acceleration performance and the capability tomeet
appropriate driving cycles. The battery may be a replacement
product for the primary-use vehicle, especially in Europe
and Asia, due to its drive performance and safety [1–3].
However, the electric vehicle battery has a cycle cost life,
defined as the number of complete charge-discharge cycles
the battery can perform before its nominal capacity falls
below 80% of its initial rated capacity.The accurate operating
model and strategy are not only essential for providing
precise battery state information, protecting the battery from

harmful charging and discharging, and improving the cost-
efficacy, but also for economic viability [4].

Due tomanufacturing asymmetries, charge anddischarge
cycles lead to cell unbalancing, reducing battery capacity,
and causing safety troubles or strongly limiting the storage
capacity of the full pack. The operating strategy for the
battery is useful. So the various literatures have been focusing
on the problems of battery management, operation, and
maintenance. A battery monitoring and maintenance system
based on capacity estimation is proposed in [5]. In [6], a
nonchemical based partially linearized input-output battery
model is developed to have battery lifetime. Traditional
battery maintenance method based on testing charge and
discharge is proposed in [7]. This method involved applying
a resistive charge to a set of batteries and adjusting a
discharge current established by the manufacturer in battery
rating tables. Cell-to-cell internal-impedance measurement
is analyzed in [8]. These procedures all give exact measures
of the condition of the battery. However, the capacity test is
not the most viable option for vehicles because, when the
fleet of equipment to be maintained is large, the costs arising
from vehicle nonavailability are high. Among the published
work, the optimal operating strategy for battery cycle costs
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by frequent charging and discharging has not been studied in
detail. This paper has the following objectives.

(1) To study the cost associated with the life cycle of bat-
teries used in electric vehicles.

(2) To establish a correlation between battery life cycle
cost and the operating strategy (including repairment
and maintenance).

2. Mathematical Models

The battery in the electric vehicle may be described in the
followingway: it is subject to random failure; upon failure, the
battery is either repaired or replaced by a new and identical
one. Many factors contributed to the cycle life of an electric
vehicle battery in a given application [9].These include depth
of discharge, discharge rate, ambient temperature, charging
regime, and battery maintenance procedures. In this paper,
the impact of battery maintenance on battery cycle life will
be studied in detail. In practice, because of the above factors,
the battery is deteriorating. Consequently, the successive
charging or discharging times after repair will be decreasing,
because of the deterioration. Let𝑋

𝑛
be the survival operating

time after (𝑛 − 1)th repair. The 𝑋
𝑛
will be stochastically

decreasing and finally dying out. Intuitively, the total life of
the battery ∑∞

𝑛=1
𝑋
𝑛
should be finite.

On the other hand, it would bemore reasonable to assume
that repair time is not negligible. And the consecutive repair
times may be increasing and tending to infinity. Let𝑍

𝑛
be the

repair time after 𝑛th failure. Then 𝑍
𝑛
will be stochastically

increasing and tending to infinity. Therefore, a monotone
process model should be a natural model for the battery.

Assume that a newbattery is installed at the beginning. As
commonly, a failure repair is adopted when the battery fails.
However, the cost of replacing is high for the user. With the
anticipating high penetration of electric vehicles in the near
future, the appropriate operation is realizing applications in
many of today’s state-of-the-art technologies to help mitigate
failure. This is achieved by an operating model and policy.

Batteries for high-performances electric vehicles should
depend on high reliability. The reliability includes a long
lifetime, high degree of safety, and energy regeneration
capabilities. During the lifetime of a battery, its performance
or “health” tends to deteriorate gradually due to irreversible
physical and chemical changes which take place with usage
and age until eventually the battery is no longer usable or
dead. The state of health (SOH) is an indication of the point
which has been reached in the life cycle of the battery and a
measure of its condition relative to a fresh battery.Here, SOH,
depth of discharge, and discharge rate are weighted and used
to measuring the reliability, which is given by

𝑅 = 𝜔
1
× SOH + 𝜔

2
× 𝐷
𝐷
+ 𝜔
3
× 𝐷
𝑅
, (1)

where 𝜔
1
, 𝜔
2
, and 𝜔

3
are weighted values, and 𝐷

𝐷
, 𝐷
𝑅
are

depth of discharge rate and discharge rate, respectively.
First of all, the battery has a new class of lifetime distri-

bution. Let 𝐹 be the distribution of the operating time𝑋 of a
battery. The preventive repair will be adopted as soon as the
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Figure 1: A possible course of the battery in a cycle.

reliability fails to 𝑅. The battery will be replaced by a new and
identical one at the time following𝑁th failure.

The time interval between the installation of a battery
and the first replacement or two successive replacements of
the battery is called a cycle. The time interval between the
completion of the (𝑛 − 1)th failure repair and the 𝑛th failure
repair in a cycle is called the 𝑛th period of the cycle, and
𝑛 = 1, 2, . . . , 𝑁 − 1. The battery will be replaced by a new
and identical one following the 𝑁th failure. Let 𝑋(𝑖)

𝑛
, 𝑛 =

1, 2, . . . , 𝑁 − 1, 𝑖 = 1, 2, . . . ,𝑀
𝑛
be the operating time of

the battery after the (𝑖 − 1)th preventive repair in the 𝑛th
period, and 𝑋

(𝑖)

𝑛
, 𝑛 = 1, 2, . . . , 𝑁 − 1, 𝑖 = 1, 2, . . . ,𝑀

𝑛

are independent and identically distributed (i.i.d.) random
variables. And let 𝑌(𝑖)

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . . ,𝑀

𝑛
− 1 be

the 𝑖th preventive repair time of the battery in the 𝑛th period.
𝑌
(𝑖)

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . . ,𝑀

𝑛
− 1 are also i.i.d. random

variables. Denote the failure repair time of the battery in the
𝑛th period by 𝑍

𝑛
. Figure 1 shows a possible course of the

battery process in cycle 𝑛.

Assumption 1. The preventive repair is adopted as soon as the
reliability falls to𝑅 and the battery is still working; the battery
is repaired as soon as it fails, before the working time of the
battery reaches 𝑇

𝑖
; the failure repair is not as good as new.

The successive operating times {𝑋(1)
𝑛
, 𝑛 = 1, 2, . . .} after

preventive repair form a geometric process with radio 𝑎 and
𝐸(𝑋
(1)

1
) = 𝜆. On the other hand, the preventive repair times

{𝑌
(1)

𝑛
, 𝑛 = 1, 2, . . .} in successive periods form also a geometric

process with radio 𝑏 and 𝐸(𝑌(1)
1
) = 𝜇. The consecutive failure

repair times in the 𝑛th period {𝑍
𝑛
, 𝑛 = 1, 2, . . .} constitute a

geometric process with radio 𝑏
1
and 𝐸(𝑍

1
) = 𝜇
1
.

Assumption 2. The processes {𝑋(𝑖)
𝑛
, 𝑖 = 1, 2, . . .}, {𝑌(𝑖)

𝑛
, 𝑛 =

1, 2, . . .}, and {𝑍
𝑛
, 𝑛 = 1, 2, . . .} are independent.

3. The Long-Run Average Cost per Unit Time

Now, we give the following results as lemmas and theorems.

Lemma 3. One has

1 − 𝐹 (𝑇
1
) = 1 − 𝐹 (𝑇

𝑛
) = 𝑅, (2)
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where 𝑇
𝑖
is preventive repair period. 𝐹(𝑇

𝑖
) is the distribution

function. The proof could be obtained by the definitions of
probability and distribution function.

Lemma 4. One has

𝐸 [𝑋
𝑛
] =

𝜆

𝑎𝑛−1
, 𝐸 [𝑍

𝑛
] =

𝜇
1

𝑏
𝑛−1

1

. (3)

Lemma 5. One has

𝑅
1
(𝑇
1
) = 𝑅
2
(𝑇
2
) = ⋅ ⋅ ⋅ = 𝑅

𝑁−1
(𝑇
𝑁−1

) = 𝑅. (4)

Theorem6. Thenumber of preventive repairs in the period can
be expressed as

𝑛
𝑖
=

∞

∑

𝑖=1

𝑖𝑝
𝑖
(𝑡) = ∫

𝑇𝑖

0

𝜆 (𝜇) 𝑑𝜇 = − ln𝑅 (𝑇
𝑖
) = − ln𝑅. (5)

Theorem 7. One has

𝐸[

[

𝑛
𝑛

∑

𝑗=1

𝑌
(𝑗)

𝑛
]

]

=
𝜇

𝑏𝑛−1
(− ln𝑅) . (6)

Proof.

𝐸[

[

𝑛
𝑛

∑

𝑗=1

𝑌
(𝑗)

𝑛
]

]

= 𝐸[

[

𝐸[

[

𝑛𝑛

∑

𝑗=1

𝑌
(𝑗)

𝑛
| 𝑛
𝑛
]

]

]

]

=

∞

∑

𝑚=0

𝑚

∑

𝑗=1

𝐸 [𝑌
(𝑗)

𝑛
] ⋅ 𝑃 {𝑛

𝑛
= 𝑚}

=
𝜇

𝑏𝑛−1
⋅

∞

∑

𝑚=0

𝑚 ⋅ 𝑃 {𝑛
𝑛
= 𝑚}

=
𝜇

𝑏𝑛−1
(− ln𝑅) .

(7)

To determine the long-run average cost per unit time
𝐶(𝑅,𝑁), we first note that as the successive cycles will form
a renewal process, the successive cycles together with the
costs incurred in each cycle will constitute a renewal process.
Suppose a maintenance policy (𝑅,𝑁) is adopted, by applying
the standard result in renewal reward process, the average
cost 𝐶(𝑅,𝑁) is given by

𝐶 (𝑅,𝑁) =
Expected cost incurred in a cycle

Expected length of a cycle (8)

𝐿 ≡ length of a renewal cycle under policy 𝐶(𝑅,𝑁) with pre-
ventive repair for the battery,

𝐿 =

𝑁

∑

𝑛=1

𝑋
𝑛
+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑌
(𝑖)

𝑛
+

𝑁−1

∑

𝑖=1

𝑍
𝑛
. (9)

Thus, according to (8) and (9) and the assumption, we
have

𝐶 (𝑅,𝑁)

= (𝐸(𝑐
𝑝

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑌
𝑖𝑗
+ 𝑐
𝑚

𝑁−1

∑

𝑖=1

𝑍
𝑖

+𝑟(

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑌
𝑖𝑗
+

𝑁−1

∑

𝑖=1

𝑍
𝑖
) + 𝛾))

× (𝐸(

𝑁

∑

𝑛=1

𝑋
𝑛
+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑌
𝑖𝑗
+

𝑁−1

∑

𝑖=1

𝑍
𝑖
))

−1

= (((𝑐
𝑝
+ 𝑟) (− ln (𝑅))

𝑁

∑

𝑖=1

𝐸 (𝑌
𝑖
))

+ (𝑐
𝑚
+ 𝑟)

𝑁−1

∑

𝑖=1

𝐸 (𝑍
𝑖
))

× (

𝑁

∑

𝑛=1

𝐸 (𝑋
𝑛
) +

𝑁

∑

𝑖=1

𝑛
𝑖
𝐸 (𝑌
𝑖
) +

𝑁−1

∑

𝑖=1

𝐸 (𝑍
𝑖
))

−1

,

(10)

𝐶 (𝑅,𝑁) =
𝜓
1
+ 𝜓
2
− 𝜓
3
+ 𝛾

𝜓
4
+ 𝜓
5
+ 𝜓
6

𝜓
1
= 𝑐
𝑚

𝑁−1

∑

𝑛=1

𝜇
1

𝑏
1

𝑛−1
;

𝜓
2
= 𝑐
𝑝

𝑁−1

∑

𝑛=1

(−
ln (𝑅) 𝜇
𝑏𝑛−1

) ;

𝜓
3
= 𝑟

𝑁

∑

𝑛=1

𝜆

𝑎𝑛−1
;

𝜓
4
=

𝑁−1

∑

𝑛=1

𝜇
1

𝑏
1

𝑛−1
;

𝜓
5
=

𝑁−1

∑

𝑛=1

(−
ln (𝑅) 𝜇
𝑏𝑛−1

) ;

𝜓
6
=

𝑁

∑

𝑛=1

𝜆

𝑎𝑛−1
,

(11)

where the preventive repair cost rate is 𝑐
𝑝
, the reward rate

when the battery is operating is 𝑟, and the failure repair cost
rate is 𝑐

𝑚
. The replacement cost is 𝛾. Thus, consider the

following.

(a) For a given 𝑅, the optimal operating policy 𝑁∗ is
determined by analytically, or numerically, minimiz-
ing 𝐶(𝑅,𝑁).

(b) If𝑅 is unknown, then (11) is a bivariate function about
𝑅 and𝑁. When𝑁 is fixed, then (11) is a function of 𝑅.
Thus, 𝑅∗ is found by analytic or numerical methods.



4 Journal of Applied Mathematics

Because the total lifetime of the system is limited; the
minimum of average cost rate exists. Obviously, the
given 𝑅

0
might not be 𝑅∗.

Consequently, an optimal operating policy (𝑅∗, 𝑁∗) cou-
ld be obtained numerically or analytically by minimizing
𝐶(𝑅,𝑁).

The average cost is a function of 𝑎, 𝜆, 𝑏, 𝜇, 𝑏
1
, 𝜇
1
. However,

it is difficult to obtain the above parameters. Here, the param-
eters can be estimated by minimizing the least-squared error
on𝑋
𝑖
, 𝑌
𝑖
, and𝑍

𝑖
. For example, assume that a data set {𝑋

𝑖
, 𝑖 =

1, . . . , 𝑛} is consistent with a renew process. Lam derived the
following nonparametric estimators [10]. By taking logarithm
of𝑊
𝑖
= 𝑎
𝑖−1
𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 at both sides, it results

ln𝑋
𝑖
= ln𝑊

𝑖
− (𝑖 − 1) ln 𝑎, 𝑖 = 1, 2, . . . , 𝑛. (12)

Since the renewal process of the battery contains i.i.d vari-
ables, using the Simple Linear Regression method,𝑊

𝑖
can be

written in the form

ln𝑊
𝑖
= 𝜆̃ + 𝜀

𝑖
, (13)

where 𝐸[(ln𝑊
𝑖
)] = 𝜆̃ and var(ln𝑊

𝑖
) = var(𝜀

𝑖
) = 𝜏

2. Com-
bining (12) and (13), we have

ln𝑋
𝑖
= 𝜆̃ − (𝑖 − 1) ln 𝑎 + 𝜀

𝑖
. (14)

The linear regression could be applied to have the estimates
of squared errors of 𝜆̃, 𝛽 = ln 𝑎 and 𝜏2,

𝛽 = −
6

𝑛 (𝑛2 − 1)
{2

𝑛

∑

𝑖=1

𝑖 ln𝑋
𝑖
− (𝑛 + 1)

𝑛

∑

𝑖=1

ln𝑋
𝑖
}

̂̃
𝜆 =

2

𝑛 (𝑛 + 1)
{(2𝑛 + 2)

𝑛

∑

𝑖=1

ln𝑋
𝑖
− 3

𝑛

∑

𝑖=1

𝑖 ln𝑋
𝑖
}

𝜏
2
=

1

𝑛 − 2

{

{

{

(

𝑛

∑

𝑖=1

ln𝑋
𝑖
)

2

−
1

𝑛
(

𝑛

∑

𝑖=1

ln𝑋
𝑖
)

2

−
𝛽

2

𝑛

∑

𝑖=1

(𝑛 − 2𝑖 + 1) ln𝑋
𝑖

}

}

}

.

(15)

The estimates of square error are as follows:

𝑎 = exp (𝛽)

𝜆̂ = exp(̂̃𝜆 + 𝜏
2

2
) .

(16)

4. Simulation Results

In this section, we provide a numerical example to illustrate
an optimal operating policy for battery using for electric
vehicles.
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,
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Figure 2: The average cost against𝑁 when 𝑅 = 0.9.

Table 1: 𝑃 values of testing.

𝐻
0
: it is a geometric process

𝑃
𝑈

𝑇
𝑃
𝑈

𝐷
𝑃
𝑉

𝑇
𝑃
𝑉

𝐷

0.9082 0.9207 0.9961 0.9207

First of all, we will test if the operating time of the battery
in electric vehicle will agree with a geometric process accord-
ing to the theorems in [11].The data set was originally studied
by 220Ah Lithium-ion cell.

The 𝑃 values 𝑃𝑈
𝑇
, 𝑃𝑈
𝐷
, 𝑃𝑉
𝑇
, and 𝑃𝑉

𝐷
are all insignificant in

Table 1. And hence we conclude that the operating time of the
battery could be modeled by a geometric process.

Assume that the distribution of the operating time of the
battery is Weibull; that is, the distribution function of𝑋

𝑛
is

𝐹
𝑛
(𝑡) = 1 − 𝑒

−(𝜆𝑎
𝑛−1
𝑡)
𝛼

, 𝑡 > 0, (17)

where 𝛼 and 𝜆 are the parameters of theWeibull distribution.
For the deteriorating characters of the battery, let 𝑎 =

1.1, 𝑏 = 0.95, 𝑏
1
= 0.9, 𝜆 = 200, 𝜇 = 6, 𝜇

1
= 5, 𝑐
𝑝
= 30, 𝑐

𝑚
=

10, 𝑟 = 90, and 𝛼 = 10.
When 𝑅 = 0.9, substituting the above values into (11), we

can obtain the results presented in Table 2 and Figure 2. It is
easy to find that 𝐶(0.9, 420) is the minimum of the average
cost rate of the battery. In other words, an optimal operating
policy is𝑁∗ = 420.

In the otherwords,𝑅 is a continuous variable. For plotting
the average cost rate, we select 0.1 units as a step of 𝑅 from
0.55 to 0.95. After numerical calculation, it is easy to find
that 𝐶(𝑅∗, 𝑁∗) = (0.70, 4), such that 𝐶(𝑅,𝑁) is minimized
at (𝑅∗, 𝑁∗); that is, 𝐶(𝑅,𝑁) = 7.5944 is the minimum of
the average of rate of the battery. It is seen from Table 3 and
Figure 3 that the optimal operating policy (𝑅∗, 𝑁∗) is also
unique.
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Table 2: Some results obtained from proposed policy when 𝑅 = 0.9.

𝑁 105 210 315 420 540 630 735 840 945 1050
𝐶 (𝑅,𝑁) 13.4584 9.2533 8.1978 7.9419 8.0319 8.3212 8.7498 9.2901 9.9293 10.6614

Table 3: Some results obtained from proposed policy.

𝑁/𝑅 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
105 10.5279 10.6948 10.8786 11.0859 11.3268 11.6183 11.9925 12.5237 13.4584
210 8.1228 8.1392 8.1735 8.2292 8.3123 8.4335 8.6141 8.9038 9.4691
315 7.6764 7.6383 7.6194 7.6201 7.6513 7.7163 7.8352 8.0517 8.5122
420 7.7374 7.6684 7.6201 7.5944 7.5957 7.6327 7.7228 7.9080 8.3294
540 8.0274 7.9372 7.8690 7.8247 7.8086 7.8292 7.9041 8.0754 8.4851
630 8.4574 8.3507 8.2676 8.2099 8.1818 8.1922 8.2591 8.4258 8.8389
735 8.9919 8.8715 8.7764 8.7083 8.6717 8.6757 8.7392 8.9074 9.3888
840 9.6151 9.4830 9.3779 9.3016 9.2588 9.2591 9.3225 9.4967 9.9439
945 10.3204 10.1781 10.0645 9.9816 9.9345 9.9333 9.9992 10.1831 10.6573
1050 11.1055 10.9542 10.8334 10.7454 10.6956 10.6948 10.7656 10.9624 11.4690

0.55 0.6 0.650.7 0.750.8 0.85 0.9 0.95
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Figure 3: The average cost against (𝑅,𝑁).

5. Conclusions

In this paper, a model expressed battery life cycle depending
on reliability is proposed for the ageing effect and the
accumulated wearing as well as the environment influence.
An operating policy is obtained by which the battery will be
repaired when it fails or its reliability reaches a threshold, and
the battery will be replaced by a new and identical one follow-
ing some failures.The proposed operatingmethod for battery
could not only extend battery lifetime but also improve the
electric vehicle reliability and economical efficiency.
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