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This paper considers an airline overbooking problem of a new single-leg flight with discount fare. Due to the absence of historical
data of no-shows for a new flight, and various uncertain human behaviors or unexpected events which causes that a few passengers
cannot board their aircraft on time, we fail to obtain the probability distribution of no-shows. In this case, the airlines have to invite
some domain experts to provide belief degree of no-shows to estimate its distribution. However, human beings often overestimate
unlikely events, whichmakes the variance of belief degreemuch greater than that of the frequency. If we still regard the belief degree
as a subjective probability, the derived results will exceed our expectations. In order to deal with this uncertainty, the number of
no-shows of new flight is assumed to be an uncertain variable in this paper. Given the chance constraint of social reputation, an
overbooking model with discount fares is developed to maximize the profit rate based on uncertain programming theory. Finally,
the analytic expression of the optimal booking limit is obtained through a numerical example, and the results of sensitivity analysis
indicate that the optimal booking limit is affected by flight capacity, discount, confidence level, and parameters of the uncertainty
distribution significantly.

1. Introduction

Overbooking is a strategy that airlines accept the booking
reservations of customers more than flight capacity in order
to make up for the vacancy loss caused by no-shows who do
not show up for check-in without canceling their booking
requests before the flight takes off or are late for their sched-
uled flights. A lot of examples can reflect that overbooking
strategy contributes to huge profits for airlines. Smith et al. [1]
estimated that 15 percent of seats on sold-out flights would be
lost if overbooking were not practiced and that the benefit
of overbooking at America in 1990 exceeded $225 million.
Overbooking can reduce the waste of seats and maximize
airlines’ profits, but it also brings potential risk. When
the number of arrival passengers exceeds flight capacity, it
might cause that some arrival passengers cannot board flight
(denied boarding); thus, airlines need to compensate this part
of passengers (denied-boarding compensation), which lead
to losses on both social reputation and profits of airlines.

Overbooking is one of the oldest problems and most
effective revenue management practices and was officially
sanctioned and published by the American Civil Aeronautics
Board in 1965 [2]. In 1958, Beckmann [3] established a single
period static model on overbooking, and a booking-limit
policy, which instructed the manager to set a certain limit to
accept reservations up to the limit, was proved to be optimal.
Rothstein [4] formulated the problem as a nonhomogenous
Markovian decision process and solved it by a dynamic
programmingmethod in 1971. Alstrup et al. [5] in 1986 as well
proposed a dynamic programming formulation of a problem
with two cabins, in which the terminal conditions allowed for
upgrading and downgrading. Chatwin [6] in 1993 considered
a multiperiod overbooking problem relating to a single-leg
flight and a single fare class, gave conditions that ensure
a booking-limit policy to be optimal, and described the
continuousmodel with stationary fares and refunds as a birth
and death process. Robert [7] in 2005, on the assumption
that passengers’ arriving obeyed the binomial distribution,
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established a single-fare-class overbooking model and then
extended to the conditions of multiple-fare classes and
dynamic.

In the previous researches on overbooking problem, the
arrival rate of customers is an important element and is
usually assumed to be a random variable, and probability
theory plays a great important character in the optimization
of the overbooking strategy. We will consider an airline
overbooking problem of a new single-leg flight with discount
fare in this paper. Due to the absence of demand data for
a new flight and various uncertain human behaviors or
unexpected events which causes that a few passengers cannot
board their aircraft on time, we have to invite some domain
experts to provide belief degree to estimate the distribution
of no-shows. However, human beings often overestimate
unlikely events, which makes the variance of belief degree
much greater than that of the frequency (Kahneman and
Tversky [8]). In this case, if we regard the belief degree
as a subjective probability, the derived results will exceed
our expectations. In order to deal with the involved human
uncertainty, uncertainty theory was founded by Liu [9] in
2007 and was refined by Liu [10] in 2010 based on normality,
duality, subadditivity, and product axioms.

Nowadays, uncertainty theory has become a branch of
axiomatic mathematics for modelling human uncertainty,
and a lot of applications can be found in various fields
such as uncertain programming [11], uncertain statistics [10],
uncertain risk analysis [12], uncertain reliability analysis
[12], uncertain logic [13], uncertain inference [14], uncertain
process [15], uncertain calculus [15], and uncertain finance
[16]. Based on the theory of uncertain renewal process, Yao
and Ralescu [17] investigated the uncertain age replacement
policy and obtained the long-run average replacement cost.
Zhang and Guo [18] applied the uncertain renewal pro-
cess to the ordering problem of spare parts for aircrafts
assuming the interarrival times to be uncertainty variables.
With uncertainty theory, Liu and Yao [19] presented an
uncertain expected value model for multilevel programming
with equivalent crisp form.

In this paper, we consider the airline overbooking prob-
lem of new flight in uncertain environment and assume the
number of no-shows as an uncertain variable. The rest of
this paper is organized as follows. Section 2 recalls some
basic concepts andproperties about uncertainty theorywhich
will be used throughout the paper. In Section 3, we build
the model of airline overbooking in uncertain environment
and get some theorems. We apply our model to practical
overbooking system, and sensitivity analysis is given in
Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Let Γ be a nonempty set. A collection L of Γ is called a 𝜎-
algebra if (𝑎) Γ ∈ L; (𝑏) if Λ ∈ L, then Λ

𝑐
∈ L; and

(𝑐) if Λ
1
, Λ
2
, . . . , ∈ L, then Λ

1
∪ Λ
2

∪ ⋅ ⋅ ⋅ ∈ L. Each
element Λ in the 𝜎-algebra L is called an event. Uncertain
measure is a function fromL to [0, 1]. In order to present an
axiomatic definition of uncertain measure, it is necessary to

assign to each event Λ a number M{Λ} which indicates the
belief degree that the event Λ will occur. In order to ensure
that the number M{Λ} has certain mathematical properties,
Liu [9] proposed the following axioms.

Axiom 1 (normality axiom). M{Γ} = 1 for the universal set
Γ.

Axiom 2 (duality axiom). M{Λ} + M{Λ
𝑐

} = 1 for any event
Λ.

Axiom 3 (subadditivity axiom). For every countable se-
quence of events Λ

1
, Λ
2
, . . ., we have

M{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

Definition 1 (Liu [9]). The set function M is called an
uncertain measure if it satisfies the normality, duality, and
subadditivity axioms.

The triplet (Γ,L,M) is called 𝑎𝑛 uncertainty space.
Besides, in order to provide the operational law, Liu [20]
defined the product uncertain measure on the product 𝜎-
algebreL as follows.

Axiom 4 (product axiom). Let (Γ
𝑘
,L
𝑘
,M
𝑘
) be uncertainty

spaces for 𝑘 = 1, 2, . . .. Then the product uncertain measure
M is an uncertain measure satisfying

M{

∞

∏

𝑖=1

Λ
𝑘
} =

∞

⋀

𝑘=1

M
𝑘
{Λ
𝑘
} , (2)

where Λ
𝑘
are arbitrarily chosen events from L

𝑘
for 𝑘 =

1, 2, . . ., respectively.

Definition 2 (Liu [9]). An uncertain variable is a measurable
function 𝜉 from an uncertainty space (Γ,L,M) to the set of
real numbers; that is, for any Borel set 𝐵 of real numbers, the
set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ𝜉 (𝛾) ∈ 𝐵} (3)

is an event.

Definition 3 (Liu [9]). The uncertainty distribution Φ of an
uncertain variable 𝜉 is defined by

Φ (𝑥) = M {𝜉 ≤ 𝑥} , (4)

for any real number 𝑥.

Definition 4 (Liu [10]). Let 𝜉 be an uncertain variable with
regular uncertainty distributionΦ(𝑥). Then the inverse func-
tion Φ

−1

(𝛼) is called the inverse uncertainty distribution of
𝜉.

Theorem 5 (Liu [9]). Let 𝜉 be an uncertain variable with
uncertainty distribution Φ. If the expected value exists, then

𝐸 [𝜉] = ∫

+∞

0

(1 − Φ (𝑥)) d𝑥 − ∫

0

−∞

Φ (𝑥) d𝑥. (5)
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Uncertain programming is a type of mathematical pro-
gramming involving uncertain variables [9]. Assume that 𝑥

is a decision vector, 𝜉 is an uncertain vector, and 𝑓(𝑥, 𝜉) is an
uncertain objective function. Liu [11] proposed the following
uncertain programming model:

min
𝑥

𝐸 [𝑓 (𝑥, 𝜉)]

subject to : M {𝑔
𝑗
(𝑥, 𝜉) ≤ 0} ≥ 𝛼

𝑗
, 𝑗 = 1, 2, . . . , 𝑝,

(6)

where M{𝑔
𝑗
(𝑥, 𝜉) ≤ 0} ≥ 𝛼

𝑗
(𝑗 = 1, 2, . . . , 𝑝) are a set of

chance constraints. It is naturally desired that the uncertain
constraints 𝑔

𝑖
(𝑥, 𝜉) ≤ 0 (𝑗 = 1, 2, . . . , 𝑝) hold with confidence

levels 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑝
.

Theorem 6 (Liu [11]). Assume that the constraint function
𝑔(𝑥, 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
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to 𝜉
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, 𝜉
2
, . . . , 𝜉

𝑘
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𝜉
𝑘+1

, 𝜉
𝑘+2

, . . . , 𝜉
𝑛
. If 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are independent uncertain

variables with uncertainty distributions Φ
1
, Φ
2
, . . . , Φ

𝑛
,

respectively, then the chance constraint

M {𝑔 (𝑥, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) ≤ 0} ≥ 𝛼 (7)

holds if and only if

𝑔 (𝑥,Φ
−1

1
(𝛼) , . . . , Φ

−1

𝑘
(𝛼) , Φ

−1

𝑘+1
(1 − 𝛼) , . . . , Φ

−1

𝑛
(1 − 𝛼))

≤ 0.

(8)

3. Mathematical Formulation

First of all, some notations are made as follows for the
mathematical formulation:

𝑚: Booking limit of a new flight
𝑛: Capacity of an aircraft
𝜉:The number of no-showswith uncertainty distribu-
tion Φ

𝑔: Price of a new flight ticket
𝑟: Total cost of a flight
𝑝: Penalty cost which is paid to each crowed-out
customerwho is denied boarding because the number
of arrival passengers exceeds flight capacity
𝛽: A discount of fare, 0 ≤ 𝛽 ≤ 1

𝑠(𝑚, 𝜉): Profit rate function of the new flight when
booking limit is 𝑚 and the number of no-shows is 𝜉

𝑗: The maximum permissible number of crowed-out
customers.

We suppose that an airline is planning to open up a
new single-leg flight with discount fares and a booking limit
should be decided tomatch the new flight. Due to the absence
of historical data, the airline cannot obtain the probability
distribution of no-shows. In this case, the number 𝜉 of
no-shows is assumed to be a positive uncertain variable,

and its uncertainty distribution Φ can be obtained by the
belief degree of the invited experts. We suppose that the air-
line provides no refunds for the no-shows, and compensates
those crowed-out customers. Our objective function is the
profit rate that is the profit divided by the total cost of a new
flight; then it is expressed as

𝑠 (𝑚, 𝜉) =

{{

{{

{

𝑚𝑔𝛽

𝑟
− 1, if 𝑚 − 𝜉 ≤ 𝑛

𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝜉 − 𝑛) 𝑝

𝑟
− 1, if 𝑚 − 𝜉 ≥ 𝑛.

(9)

Since the number 𝜉 of no-shows is an uncertain variable,
the profit rate function 𝑠(𝑚, 𝜉) is an uncertain variable as well.
As 𝑠(𝑚, 𝜉) cannot be directly maximized, we may maximize
its expected value; that is,

max
𝑚

𝐸 [𝑠 (𝑚, 𝜉)] . (10)

The purpose of decision-maker of airline is to find the
optimal booking limit that maximizes the profit. However, if
the number of arrival passengers exceeds flight capacity when
the flight takes off, it will cause that some arrival passengers
could not board flight, which lead to not only profit losses
but also bad social reputation. For reducing the negative
impact on the airline, a chance constraint is given that the
uncertain measure of the event that the number of crowded-
out customers is less than 𝑗 is greater than a given confidence
level of 𝛼; that is,

M {𝑚 − 𝑛 − 𝜉 ≤ 𝑗} ≥ 𝛼. (11)

In order to find the optimal booking limit𝑚∗, we present
the following theorems.

Theorem 7. Let 𝜉 be a positive uncertain variable with an
uncertainty distribution Φ. Given that

𝑠 (𝑚, 𝜉) =

{{

{{

{

𝑚𝑔𝛽

𝑟
− 1, 𝑖𝑓 𝑚 − 𝜉 ≤ 𝑛

𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝜉 − 𝑛) 𝑝

𝑟
− 1, 𝑖𝑓 𝑚 − 𝜉 ≥ 𝑛,

(12)

the uncertain variable 𝑠(𝑚, 𝜉) has an uncertainty distribution

Ψ (𝑥)

=

{{{{{{{{{{

{{{{{{{{{{

{

0, if 𝑥 <
𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝑛) 𝑝

𝑟
− 1

Φ(
𝑟𝑥 + 𝑟 − 𝑚𝑔𝛽

𝑝
+ 𝑚 − 𝑛) ,

if
𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝑛) 𝑝

𝑟
− 1 ≤ 𝑥 <

𝑚𝑔𝛽

𝑟
− 1

1, if 𝑥 ≥
𝑚𝑔𝛽

𝑟
− 1.

(13)

Proof. It is easy to know that 𝑠(𝑚, 𝜉) ≥ 𝑚𝑔𝛽/𝑟−(𝑚−𝑛)𝑝/𝑟−1;
therefore,

Ψ (𝑥) = M {𝑠 (𝑚, 𝜉) ≤ 𝑥} = 0, (14)
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for any 𝑥 ∈ (−∞,𝑚𝑔𝛽/𝑟 − (𝑚 − 𝑛)𝑝)/𝑟 − 1. If 𝑥 ∈ [𝑚𝑔𝛽/𝑟 −

(𝑚 − 𝑛)𝑝/𝑟 − 1,𝑚𝑔𝛽/𝑟 − 1), then

Ψ (𝑥) = M {𝑠 (𝑚, 𝜉) ≤ 𝑥}

= M{
𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝜉 − 𝑛) 𝑝

𝑟
− 1 ≤ 𝑥}

= M{𝜉 ≤
𝑟𝑥 + 𝑟 − 𝑚𝑔𝛽

𝑝
+ 𝑚 − 𝑛}

= Φ(
𝑟𝑥 + 𝑟 − 𝑚𝑔𝛽

𝑝
+ 𝑚 − 𝑛) .

(15)

Since 𝑠(𝑚, 𝜉) ≤ 𝑚𝑔𝛽/𝑟 − 1, we have

Ψ (𝑥) = M {𝑠 (𝑚, 𝜉) ≤ 𝑥} = 1, (16)

for any 𝑥 ∈ [𝑚𝑔𝛽/𝑟 − 1, +∞). The theorem is verified.

Theorem 8. Let 𝜉 be a positive uncertain variable with an
uncertainty distribution Φ. Given that

𝑠 (𝑚, 𝜉) =

{{

{{

{

𝑚𝑔𝛽

𝑟
− 1, 𝑖𝑓 𝑚 − 𝜉 ≤ 𝑛

𝑚𝑔𝛽

𝑟
−

(𝑚 − 𝜉 − 𝑛) 𝑝

𝑟
− 1, 𝑖𝑓 𝑚 − 𝜉 ≥ 𝑛,

(17)

then

𝐸 [𝑠 (𝑚, 𝜉)] =
𝑚𝑔𝛽

𝑟
−

𝑝

𝑟
∫

𝑚−𝑛

0

Φ (𝑥) d𝑥 − 1. (18)

Proof. The expected value of the uncertain variable 𝑠(𝑚, 𝜉) is

𝐸 [𝑠 (𝑚, 𝜉)]

= ∫

+∞

0

[1 − Ψ (𝑥)] 𝑑𝑥 − ∫

0

−∞

Ψ (𝑥) 𝑑𝑥

= ∫

𝑚𝑔𝛽/𝑟−(𝑚−𝑛)𝑝/𝑟−1

0

1 𝑑𝑥

+ ∫

𝑚𝑔𝛽/𝑟−1

𝑚𝑔𝛽/𝑟−(𝑚−𝑛)𝑝/𝑟−1

[1 − Φ

× (
𝑟𝑥 + 𝑟 − 𝑚𝑔𝛽

𝑝
+ 𝑚 − 𝑛)]𝑑𝑥

+ ∫

+∞

𝑚𝑔𝛽/𝑟−1

0 𝑑𝑥 − ∫

0

−∞

0 𝑑𝑥 = ∫

𝑚𝑔𝛽/𝑟−1

0

1 𝑑𝑥

− ∫

𝑚𝑔𝛽/𝑟−1

𝑚𝑔𝛽/𝑟−(𝑚−𝑛)𝑝/𝑟−1

Φ(
𝑟𝑥 + 𝑟 − 𝑚𝑔𝛽

𝑝
+ 𝑚 − 𝑛)𝑑𝑥

=
𝑚𝑔𝛽

𝑟
−

𝑝

𝑟
∫

𝑚−𝑛

0

Φ (𝑥) 𝑑𝑥 − 1.

(19)

The theorem is verified.

Since the constraint function (𝑚 − 𝑛 − 𝜉 ≤ 𝑗) is strictly
decreasingwith respect to the uncertain variable 𝜉, the chance
constraint (11) can be converted to crisp formula according to
Theorem 6; then

𝑚 ≤ 𝑛 + 𝑗 + Φ
−1

(1 − 𝛼) . (20)

Therefore, the uncertain programming model is devel-
oped as follows:

max
𝑚

[
𝑚𝑔𝛽

𝑟
−

𝑝

𝑟
∫

𝑚−𝑛

0

Φ (𝑥) 𝑑𝑥 − 1]

subject to : 𝑚 ≤ 𝑛 + 𝑗 + Φ
−1

(1 − 𝛼) .

(21)

4. Application

In this section, we will present a numerical case to illustrate
the aforementioned model. Suppose that the overbooking
problem is considered for a new single-leg flight of an airline.
Assume that the number 𝜉 of no-shows is a positive uncertain
variable with linear uncertainty distributionL(𝑎, 𝑏) (𝑎 ≥ 0)

(Liu [21]); that is,

Φ (𝑥) =

{{{

{{{

{

0, if 𝑥 ≤ 𝑎

(𝑥 − 𝑎)

(𝑏 − 𝑎)
, if 𝑎 ≤ 𝑥 ≤ 𝑏

1, if 𝑥 ≥ 𝑏.

(22)

Then, the inverse uncertainty distribution of linear uncertain
variableL(𝑎, 𝑏) (Liu [21]) is

Φ
−1

(𝛼) = (1 − 𝛼) 𝑎 − 𝛼𝑏. (23)

From the uncertain programming model (21), we can obtain
that the optimal booking limit with discount fare is

𝑚
∗

=

{{{{

{{{{

{

(
𝑔𝛽 (𝑏 − 𝑎)

𝑝
+ 𝑎 + 𝑛) ∧ (𝑛 + 𝑗 + 𝛼𝑎 + (1 − 𝛼) 𝑏) ,

if 𝑔𝛽 ≤ 𝑝

𝑛 + 𝑗 + 𝛼𝑎 + (1 − 𝛼) 𝑏, if 𝑔𝛽 > 𝑝.

(24)

We consider two familiar types of aircraft A320-200 and
B747-300 with capacity of 150 and 416, respectively. We give
that 𝑎 = 0 and the price of the flight ticket 𝑔 = RMB 960
yuan. According to the general provision set by the airline,
we suppose that the penalty cost 𝑝 is 30% of the face value of
the ticket and 𝑝 will be counted by RMB 200 yuan if it is less
than RMB 200 yuan; that is,

𝑝 = max {1.3𝑔𝛽, 𝑔𝛽 + 200} . (25)

For instance, if the upper limit of no-shows 𝑏 = 8, the
permissible maximum of crowed-out passages 𝑗 = 5, aircraft
capacity 𝑛 = 150, the chance constraint𝛼 = 0.95, the discount
𝛽 = 0.4, then the optimal booking limit 𝑚∗ is 155.

Figure 1 shows the optimal booking limit 𝑚
∗ changing

with discount 𝛽 for 𝑏 = 8, 𝑗 = 5. On the whole,
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Figure 1: Optimal booking limit 𝑚∗ under the changes of 𝛼 and 𝛽 when 𝑏 = 8, 𝑗 = 5.
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Figure 2: Optimal booking limit 𝑚∗ under the changes of 𝛼 and 𝛽 when 𝑏 = 8, 𝑗 = 8.

with a gradually reduced slope, the optimal booking limit
𝑚
∗ increases in discount 𝛽 till 𝛽 reaches a certain value. The

optimal booking limit𝑚∗ does not increase in the confidence
level 𝛼, and, when 𝛽 ≤ 0.4, 𝛼 has no effect on 𝑚

∗. By the
comparison of Figures 1(a) and 1(b), we can see that the
increase of 𝑚

∗ caused by the increase of flight capacity 𝑛 is
distinct.

Figure 2 shows the optimal booking limit 𝑚
∗ changing

with discount 𝛽 for 𝑏 = 8, 𝑗 = 8. Compared with Figure 1,
due to a little increase of 𝑗,𝑚∗ increases still in 𝛽 and 𝑛, while
the variation trend of𝑚∗ with𝛽 has nearly nothing to dowith
𝛼. As can be seen from the comparison between Figures 1 and
2, the turning point of the slope of the optimal booking limit
curve increases in 𝑗.
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Figure 3: Optimal booking limit 𝑚∗ under the changes of 𝛼 and 𝑏 when 𝛽 = 0.8, 𝑗 = 5.
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Figure 4: Optimal booking limit 𝑚∗ under the changes of 𝛼 and 𝑏 when 𝛽 = 0.8, 𝑗 = 8.

Figures 3 and 4 show the optimal booking limit 𝑚
∗

changing with the parameter 𝑏 for 𝑗 = 5 and 𝑗 = 8,
respectively. The optimal booking limit 𝑚

∗ increases in 𝑏,
and, when 𝑏 reaches a certain value, the slope becomes
smaller. In the case of 𝛼 = 1.0, when 𝑏 is bigger than a certain
value,𝑚∗ remains the same.We also observe that𝑚∗ still does

not increase in the confidence level 𝛼, and the closer 𝛼 gets to
1, the less sensitive 𝑚

∗ is to 𝑏. The flight capacity 𝑛 still has a
great influence on 𝑚

∗.
As can be seen from the comparison between Figures 3

and 4, the turning point of the slope of the optimal booking
limit curve increases in 𝑗.
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5. Conclusions

Overbooking problem is an important strategy for airline
revenue management. For a new flight, there is no historical
date to obtain the probability distribution of the number
of no-shows; therefore, stochastic method is not suitable.
This paper introduced an uncertain variable to describe
the number of no-shows. An airline overbooking model
with discount fare was developed with chance constraint,
and it was converted to a crisp programming based on
uncertain programming theory. Through a numerical case,
we obtained the analytic expression of the optimal booking
limit to maximize the profit rate function of the new flight.
The results of sensitivity analysis indicated that flight capacity,
discount, confidence level, and parameters of the uncertainty
distribution significantly affected the optimal booking limit.

However, there is still a lot of work to be done in
the future research. The dynamic nature of the booking
process can be taken into account. Furthermore, randomness
and uncertainty may coexist in practical situation; thus an
uncertain random overbooking model might be our future
research.
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