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We will determine the nonspectrality of self-affine measure 5, corresponding to B = diag[p,, p,, p;] (p; € (2Z + 1) \ {1},
P, € 2Z\{0}), and D = {0,¢,, e,, €5} in the space R’ is supported on T(B, D), where e,, e,, and e, are the standard basis of unit
column vectors in R?, and there exist at most 4 mutually orthogonal exponential functions in L* (g ,), where the number 4 is the
best. This generalizes the known results on the spectrality of self-affine measures.

1. Introduction

Let B € M,(Z) be an expanding integer matrix; that is, all
the eigenvalues of the integer matrix B have modulus greater
than 1. Associated with a finite subset D c Z", there exists
a unique nonempty compact set T := T(B,D) ¢ R”" such
that T = Uyepy(T). More precisely, T(B, D) is an attractor
(or invariant set) of the affine iterated function system (IFS)
{¢4(x)} sep- Denote by | D| the cardinality of D. Relating to the
IFS {¢;(x)} 4ep» there also exists a unique probability measure

= ppp satisfying

For a given pair (B, D), the spectrality or nonspectrality of
pp p is directly connected with the Fourier transform fig ,(£).
From (1), we get

ﬁB,D &) = J eZm‘(x,E) dHB,D (x)

. | 2)
=[]mp (B7¢), (Eer™),
=1
where
mp (x) = ﬁdg]) 2midyx) (x e R"). (3)

The self-affine measure yp , has received much attention
in recent years. The previous research on such measure and its
Fourier transform revealed some surprising connections with
a number of areas in mathematics, such as harmonic analysis,
number theory, dynamical systems, and others; see [1, 2] and
references cited therein.

The pgp and T(B,D) are all determined by the pair
(B, D). So, for n = 1, in the way of examples, there are Cantor
set and Cantor measure on the line. And for n = 2 there is
a rich variety of geometries, see Li [3-6], of which the best
known example is the Sierpinski gasket. But for n = 3, it is
more complex.

The problem considered below started with a discovery
in an earlier paper of Jorgensen and Pedersen [7] where it
was proved that certain IFS fractals have Fourier bases, and
furthermore that the question of counting orthogonal Fourier
frequencies (or orthogonal exponentials in L*(up ) for a
fixed fractal involves an intrinsic arithmetic of the finite set of
functions making up the IFS {¢,(x)} ;o p under consideration.
For example, if (B,D) = (3,{0,2}) is the middle-third
Cantor example on the line, there cannot be more than two
orthogonal Fourier frequencies [7, Theorem 6.1], while a
similar Cantor example, using instead a subdivision scale
4 (ie, (B,D) = (4,{0,2})), turns out to have an ONB in
L*(up ) consisting of Fourier frequencies [7, Theorem 3.4].

With the effort of Jorgensen and Pedersen [7, Example
7.1], Strichartz [8], Li [3], and Yuan [9], the related conclusions
discussed that the diagonal elements of B are all even or odd,
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If one of the diagonal elements is even, what about the result?
The general case on the spectrality or nonspectrality of the
self-affine measure g, is not known.

The present paper is motivated by these earlier results; we
will determine the nonspectrality of self-affine measure p s
the main result of the present paper is the following.

Theorem 1. Let yy , correspond to B = diag[p,, p;, p,1(p; €
(2Z + 1)\ {1}, p, € 2Z \ {0}) and D = {0,¢,,e,,e5}; then
the self-affine measure yg , is a nonspectral measure, and there
exist at most 4 mutually orthogonal exponential functions in
L*(pp ), where the number 4 is the best.

By the proof of Theorem 1, we get a more general case.

Theorem 2. Let pup , correspond to

p1 0 py
B=|0 p ps| (preQzZ+1)\{x1};p,psps€Z),
0 0 p,

B!

then the self-affine measure py , is a nonspectral measure, and
there exist at most 4 mutually orthogonal exponential functions
in LZ(yB,D), where the number 4 is the best.

(4)

2. Proof of Theorem 1

Firstly, we know from (2) that the zero set Z(fig () of the
Fourier transform fip (&) is

Z (gp (§) = UB*jZ (mp (&) =B UB,UB;. (5)
=1

For the given digit set D in (4), we have

Z (mp (x)) = {x eR’:mp(x) = 0} =A,UA,UA,, (6)

where
1 ; . .
mp (.X) i {1 + emel + emez + emes} ,
! (7)
x = (%], %), %) € R?,
and A, A,, and A, are given by
1
E + kl
A, = a+k, caeR,ky,kyk; € Zt c R,

1
—+a+ks
2
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—+a+k
Ay =1 L ca€R,k,kyk; € Zt CR,
2 2
a+ks
a+k
A= 519k | aeRk kykseZ} c R
1
§+k3
(8)
So
B, =|JBA
j=1
1
o [ (Gria)sl
=U (a+ky)p] caeRk,k,eZ}t c R,
= <—+a+k3 pg
B,=|JBA
j=1
1 j
- (5+a+k1>p1
=U <1+k2>p{ caeRk,k,eZ} R,
j=1 2 .
(a+ks)p)
B, = JBA,
j=1
(a+k)p]
= S+atk, ) p| caeR,k,k,eZ} c R’
j=1
<§+k3>Pé
€)

Since p; € (2Z + 1) \ {1}, we can verify directly that the
following two lemmas hold.

Lemma 3. The sets B; (j = 1,2,3) given by (9) satisfy the
following properties:

(@) §eB; & —EeB;(j=123);
(b) Z(fsp(§) (NZ x Z x R) = 6;
(0) if€ = (§,,&,,&)" € B + By, then, € Z;
(d) ifE = (§,,&,,8,)" € B, + By, then &, € Z;

(e) if & = (51’52’53)t € By £ By and & € Z(fip p({)), then
EeB UB,and&,&, € (1/2) + Z.

By proving (e), the others can be checked directly.
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In (e), if € = (fl’£2>f3)t € B, £ B,, then
E=(,6.8)

(a, + ku)P{1
5 +a + k12)P{1

1 .
<5 +k13>Pé
1(‘12 + kzl)P{Z '
+ (5 +a, +k22>P{2
1 .
<§ + kzs)Pﬁ

(ay +kyy) P{l + (‘112 +ky) P{Z '
(‘ +a "’k12>P{1 * (‘ +a, +k22>P{2

(% "’k13>1’£i (% +k23>P£

I
(@

-.
Il
—

-4

=1

.

(10)
where a; € R and k;,k;, € Z,i = 1,2. From (10) one has

§ =& = (1/2)(p" £ pr) £ (kyy = kyy)p' + (kyy —ky))py’ €
Z (since k;,k;, € Z,i = 1,2 and p; € 2Z + 1) \ {x1});
then & € By U B,. In fact, if § € Z(figp(&)) and & € B, then
& - & € (1/2 + Z) is a contradiction. Since & € B; U B, and
& —-& eZ then&,E, € (1/2) + Z

Lemma 4. Let & = (EI,EZ,EJ € Z(fgp(&)) = B, U B, U B;.
Then the following statements hold:
(i) ifE € B;, then 51- €(1/2) + Z, where j = 1,2;
(ii) if&, € Z, then& € B, UB; and &, € (1/2) + Z;
(iil) ifé, € Z, then & € By U By and & € (1/2) + Z.

Suppose that A; (j = 1,2,3,4,5) € R? are such that the
five exponential functions

i)
(11)

are mutually orthogonal in L*(up ), so the differences A j—
A (1 £ j#k < 5) are in the zero set Z(fiz p(&)). Then we get

A=A €Z(bgp(§) =B, UB,UB;s

e2ni(A1,x)) e2m‘<)u2,x)) e2m‘</\3,x)’ e2m‘</\4,x)’

(1<j#k<5).
(12)

Denote A; - A by
A=A = (% yiozi) €R for1<j#k<s  (13)

We will apply the above two lemmas to get the contradiction
below.
The following ten differences

A=A, As=An A=A Ag-A,
A=Ay A=Ay Ag— A,
A=Ay As— A,

As— A,

(14)

belong to B, U B, U B;. Then
Ay =ApA3—AL A, —ALAs—A, € BiUB,UB;.  (15)

Claim 1. The set B, or B, or B, cannot contain any three
differences of the form: )tjl - /\j, /\jz - )Lj, )Lj3 - )Lj, where
1<ji#j,#j3#j<5.

Claim 1 can be checked easily. For example, if A; - 45,
Aj, =Aj A —A; € By, so, by applying Lemma 3(c) and (125,
we get

A=Ay = (A, =25) = (4, -4))
€ (B, - B)) N Z (finyp (§)) s
A=A, = (A, =4) = (A, -4))
€ (B, -By)NZ(iigp (%)), (16)
Aj = Ay, = (Ajl - Aj) - (Ajz - Aj)
€ (B, - B))NZ(izp (§)),
Xivis Xjosjs> Xy € Lo
and by Lemma 4(ii),
Aj, = AjpA; AL A=A €B,UB;s, (17)

which shows that at least one of the two sets B, and B,
contains two differences. If B, contains two differences, say

/\]-2 - /\j3 and /\]-1 - /\jz,then

A=Ay = (A

i - Ajz) + ("jz - /\13) €B,+B,. (18)

This shows (by Lemma 3(d)) that Vinis € £>2 contradiction
with Lemma 3(b). If B; contains two differences, say A; —A ;.
and/\j - Aj , then
1 2
A=Ay =(A;=A;)+ (A, =A;,) € By + By (19)
by Lemma 3(e), X, € (1/2) + Z, a contradiction with (16).

From (15) and Claim 1, we only need to deal with the
following four typical cases.

Casel. A,—A, € Bj,A;—A, € B, A,—A, € Bj,andA; -1\, €
B,.

Case 2. A, — A, € Bj,A; — A, € B,, A, — A, € By, and
As— A, €B;.

Case3. Ay — A, A;— Ay eBrand A, —A,A; - A, € B,.
Case4. Ay — A, A3 —A, € Bjand A, — A}, A5 — A, € Bs.

Note that Case 1 denotes the 2—1—1 or 1-2—1 distribution
in (15), Case 2 denotes the 1 — 1 — 2 distribution in (15), and
Case 3 denotes the 2 — 2 — 0 distribution in (15), while Case 4
denotes the 2 — 0 — 2 (or 0 — 2 — 2) distribution in (15). If the
four cases can be proved, then the other cases can be proved
similarly.



2.1. Case 1. In this case, we have
As—=A,=(As—2A,) - (A, - A,) € B, - B,. (20)
Applying Lemma 3(c), (12), and Lemma 4(ii), we get
As—A, = (xs,z’)’s,pzs,z)t € B, UB;,

(1)
X5, €Z,y5, € 2 +7Z.

From A; — A, € B, U B;, Case 1 can be divided into two
subcases.

Casel1. Ay —A;, As — A, € B, A; = A, A; — A, € By, and
Ay — Ay € B;.

Case12.A, — A, As — Ay € Bj, A3 — Ay € B,, A, — Ay, and
As— A, € B,.

Step 1. We will prove Case 1.1; since A; — A, € B, UB, U B;,
Case 1.1 can be divided into three cases.

Case LLLAy—A{,As—A, A5 =LA, € Bj,A;—A,As—A, € By,
and A, — A, € B;.

Casel12.A,—A,As—A, € Bj,A;—A;,A5—A,,A5—A, € B,
and A, — A, € B;.

Casel13.A,—A,As—A; € Bj,A;—A;,A5—A, € B, A, —Ay,
and A, — A, € B;.

We will give a method to deal with each case by con-
sidering the remainder differences in (14), and each case is
concluded with a contradiction.

Case 1.1.1. In this case, we have
A=A =(A;-24,)+ (A, - A,) € B, + By; (22)
by applying Lemma 3(c), (12), and Lemma 4(ii), we get
Ay == (x3,1,y3,1,z3’1)t € B,

(23)
X371 €2, )5, € 2 +7Z.

By Lemma 3(a) and Claim 1 we know that A, — A, ¢ B.
SoAdy,—A, € ByorA, — A, € B;, s0 Case L.1.1 can be divided
into two subcases.

Case LILL Ay — A, As — A, A3 — A, € B As— AL A — Ay,
Ay—A,€B,,and A, — A, € Bs.

Case1.11.2.1,— A}, As—A;,A3—A, € Bj,A;=A;,A—A, € B,,
Ay—Ap,and A, — A, € B;.

By considering the remainder differences in (14), we apply
Lemmas 3 and 4 to deal with each case.

(I) In Case 1.1.1.1, we have
As—=Ag=(As=21,) = (A= A;) € B, = By; (24)
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by applying Lemma 3(d), (12) and Lemma 4(iii), we have

t
As—Ay = (X545 ¥54-254) € B UB;,
1 (25)
Xs4 € 3 +2Z, ys4 € Z.

(D) IfAs—A,eB,s0d,—A  =(A5-A) - (A5 —Ay) €
B, — By; by applying Lemma 3(c), (12), and Lemma
4(ii), we get
1
Ay=Ay = (x4,1’)’4,1>z4,1)t €Bs, x4y €2, yy € 5t Z.
(26)

It follows from (23), (26),and A, — A5 = (A, —A;) — (A5 —Ay)
that

t
Ay=Ay = (X435 Va3 Za3) > Xas €2, Y45 €Z, (27)
which shows a contradiction with Lemma 3(b).

(i) fAs — A, € B3, 50 A5 — A, = (A5 —A) + (A, —A)) €
B; + Bj; by applying Lemma 3(e) and (12), we get

t
As—Ay = (XS,I’yS,l’ZS,l) € By,
1 1 28)
X:1 € -+ 2, €E—-+/7Z.
515 Ys.1 >

Now, consider the remainder difference A, — A5 in (14): by
Lemma 3(a) and Claim 1, we have A, — A5 ¢ B;,50 1, — A5 €
By UB,.If A, — A; € B}, then

A=Ay =(As=A35)+(A3-A,) € Bi+B;;  (29)
by applying Lemma 3(c), (12), and Lemma 4(ii) we get

t 1
Ag=Ay = (X4 Y120242) €By Xyp €Z,y,, € 5F Z.
(30)

It follows from (21), (30),and A5 — A, = (A5 — A,) — (A, —A,)
that x5, € Z, y5, € Z, a contradiction with Lemma 3(b). If
Ay, —A; € B,, then

A=A =y =A3)+(A3-A)) €By+ By (3D)
by applying Lemma 3(d), (12), and Lemma 4(iii), we get

t 1
Ay=Ay = (x4,1>)’4,1)z4,1) €B;, xy, € 5 +2Z, Y4, € Z.
(32)

It follows from (25), (32),and As — A, = (As — A ) + (A, — ;)
that x5, € Zand ys, € Z, a contradiction with Lemma 3(b).
From parts (i), (ii), and (25), Case 1.1.1.1 is proved.

(IT) In Case 1.1.1.2, we have
A=A =(A,=4) - (A= A;) € By =By (33)

by applying Lemma 3(e) and (12), we get

t

Ay=Ay = (xz,p)’z,pzz,l) € By,

1 1 (34)

X, € —+ 2, € -+ /7.
21 €5 Y21 5
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We consider the remainder three differences A, — A5, A5 —
As,and A5 — A, in (14). By Claim 1, we have A, — A5 ¢ Bs, so
A, —A; € B, UB,.

(i) If A, — A5 € By, we have
Ay=2Ay = (A= 2A3) + (A3 = A;) € By + By (35)

by applying Lemma 3(c), (12), and Lemma 4(ii), we get

t 1
Ay=Ay = (%42 ¥42:242) € B3y X33 € Z,yy; € 57 Z.
(36)

It follows from (21), (36),and A5 — A, = (A5 — A,) — (A, — A,)
that

As—Ay = (x5,4’)’5,4>zs,4)t’ Xs4 €L, ysy €2, (37)
a contradiction with Lemma 3(b).
(ii) If A, — A5 € B,, we have
Ay=Ar=(Ay=23) + (A3 -A,) € B+ By; (38)

by applying Lemma 3(d), (12), and Lemma 4(iii) we have

t 1
Ay=Ay = (x4,1>)’4,1>z4,1) €B;, xy, € 5 +2Z, Y4, € Z.
(39)

We consider the remainder difference A5 — A, in (14). By
Claim1, we have A; — A, ¢ B;,s0A; — A, € B, UB,. If
As — A, € B;, we have

Ay=Ay=(As-1;)-(As - Ay) € B, - By, (40)

by applying Lemma 3(c), (12), and Lemma 4(ii), we get x, ; €
Z, a contradiction with (39). If A; — A, € B,, we have

A=Ay =(As=A;) = (As - A,) € B, - By; (41)
by applying Lemma 3(d), (12), and Lemma 4(iii), we get

1
A=Ay = (x4,2’,V4,2’Z4,2)t €B;, x4, € 5 +2,y,, € L.
(42)
It follows from (39), (42),and A, —A; = (A, - 1,) - (A, - A,)
that x, , € Z, a contradiction with (34).

The above (i) and (ii) in (II) illustrate that Case 1.1.1.2 is
proved. Hence Case 1.1.1 is proved.

Case 1.1.2. In this case, we have

Ay=A =(A3-24;) - (A3 - A;) € B, - By,
(43)
As—=A; =(As=A,) = (A3 = A;) € B, - By;

by applying Lemma 3(d), (12), and Lemma 4(iii), we get

¢ 1
Ay=Ay = (x2,1>)’2,1>22,1) €B, x,,¢€ 5 +2, 9, € Z,
(44)
t
As— Ay = (’%,3))’5,3)25,3) € B; UB;,

1 (45)
X535 € 2 +2Z,y55 € 2.

By applying Lemma 3(a) and Claim 1, we get

Ai—A, ¢B,,  A,—A, ¢B, (46)

IfA,—A, € Bj,thenA, — A, = (A, - A) - (A, - A,) €
B; — By; by Lemma 3(e), and (12), we get x,, € (1/2) + Z,
Y21 € (1/2) + Z, a contradiction with (44); hence

Ai—A, ¢Bs,  A,—), €B,. (47)

We consider A, — A5;if A, — A5 € B, wegetA; — A, = (A, -
A,) — (A4 — A;) € By — By; by Lemma 3(c), (12), and Lemma
4(ii), we have

t 1
A3 =Ly = (%3 ¥32:232) €Bp X3, €Z,p3, € 5t Z,
(48)

which, combined with (21) and A; - A; = (A;—1,)—(A;—1,),
shows that x5 5 € Z, y53 € Z, a contradiction with Lemma
3(b); hence

Ai—As¢B,,  A,—A,€B,. (49)

SinceA;—A; = (A4, —A,)—(A,—A;) € B;—B;, by Lemma
3(e) and (12), we get

t
Ay =Ay = (x3,1’J’3,1’Z3,1) € B,,
1 1 (50)
X3, € -+ 72, €E-—+Z.
31 €5 Y31 >

Combined with (21), (44),and A5 —A; = (A5 —A,) + (A, -
Ap), we get

t 1 1
As— Ay = (’%,1))’5,1’25,1) > X5 € 3 +42,ys, € 5 + 42,
(51)

which, combined with (50), (51), and A; — A; = (A; — ) —
(A3 = A)), shows that x5 3 € Z, y53 € Z, a contradiction of
(45). This proves Case 1.1.2.

Case 1.1.3. From A, — A, € B; U B, U Bs, this Case can be
divided into the three cases.

Casel1.3.1.Ay—A, As—A, A=A, € Bj,A;—A,A5—A, € B,
Ay—Apand Ay — A, € B,

Casel1.3.2.1,—A,As—A, € Bj,A3—A,As—A,,A,—A, € B,
Ay—Ap,and A5 — A, € Bs.

Case 1.133. 1, — A, As — A, € B, A; — A, As — A, € By,
Ay—ALAs—Ayand Ay — A, € B,

The above three cases denotethe3—2—-2o0r2-3-2or
2-2-3 distribution. In each case, we have (21). The discussion
of the first two cases is similar. In the following, we use the

above method to deal with Cases 1.1.3.1 and 1.1.3.3.
In Case 1.1.3.1, since

A=A =(Ay—Ay)+ (A, - A,) € B, + By, (52)



by applying Lemma 3(c), (12), and Lemma 4(ii), we have

t 1
Ay= A= (X4 Va1 2a1) €Bs Xy €2,y € 57 Z.
(53)

We consider the remainder three differences A, — A5, A5 —
A5, and As — A,. From (21) and (53) we have

Ay—A3¢B, or A,—A;€B UB;, (54)

As—A;¢ By or A;—A; €B UB,. (55)

IfA,—A; € B;,byLemma3,s01,—A; = (A, —A5)+(A;—
A1) € B, + By; we get y,, € Z, a contradiction with (53). If
As—A; € B3, 5045 — A, = (A5 —A3) + (A; — A,) € B; + B,
by Lemma 3(e); we get x5, € (1/2) + Z, a contradiction with
(21). Hence (54) and (55) hold.

According to (54), we deal with the following two cases.

(i) If A, — A; € By, then, from A; — A, = (A, - A,) -

(A, — A3) € B, — By, by applying Lemma 3(c), (12),
and Lemma 4(ii), we get

t 1
A3 =My = (X3 ¥32:235) € By, X3, €Z,y3, € 5t Z.
(56)

From (21), (56), and A5 — A; = (A5 — A,) — (A5 — A,), we
get

As— Ay = (x5,3>)’5,3’zs,3)t’ Xs53 €2, Y55 €2, (57)
a contradiction with Lemma 3(b).
(if) If A, — A5 € By, since A, — A, = (A, —A5)+(A;—A,) €

By+BjandA;—A, = (A, -A)—(A,—A;) € B;—B;,
by applying Lemma 3(e) and (12), we get

A=Ay = (x3,1’y3,1’23,1)t € B,,
1 1 (58)
X3 € 5+Z,y3’1 € 5+Z.
We consider (55); if A; — A; € B}, by Lemma 3 and A, —
A= (As = A)) = (A5 = A3) € By — B, we get x5, € Z,
a contradiction with (58). If A; — A; € B,, since A; — A, =
(As—A,)—(A5—-A3) € B, —B,, by applying Lemma 3(d), (12),
and Lemma 4(iii), we get

t 1
Ay =4, = (x3,2>y3,2>z3,2) €B;, x3,¢€ 5 +2Z,y3, € L.
(59)

From (58), (59) and A, — A, = (A; — A;) — (A5 — A;), we have
Xy, € Z, a contradiction with Lemma 4(i) (for A, — A, € B,
gives x,, € (1/2) + Z).

The above (i), (ii), and (54) indicae that Case 1.1.3.1 is
proved.

In Case 1.1.3.3, we get

Ag=Ay=(A,=1;) = (A3 -A4;) € By - Bs,
AZ_AI =(/\4_/\1)_

(60)
(Ay=A,) € B; = B3;

Abstract and Applied Analysis

by applying Lemma 3(e) and (12), we have

t
Ay —=As = (%43 ¥43-243) € By UB,,
L +7Z € L +7 e
2 > Va3 > >

t
Ay=Ay = (x2,1>)’2,1>zz,1) € By,
(62)
X, € L +7Z € L +7
21 ¢ 5 > Y21 2 .

By Lemma 3(a) and A, — A4, A, — A, € Bs;, we know from
Claim1that A; — A, ¢ B;.SoA; — A, € B or A; — A, € B,.
From (61), we consider the following two cases.

(i) If A, — A; € By, we consider A; — A,,if As — A, € By.
From A; —A; = (A; - A,) + (A, — A;) € B, + B}, by
applying Lemma 3(c), (12), and Lemma 4(ii), we get

t
As—As = (X535, ¥53.253) € B, UBs,
(63)
X553 €2, )55 € 3 +Z.

From (21), (63), and A; — A, = (A5 — A;) — (A5 — A3), we
get x,, € Z,y,, € Z, a contradiction with Lemma 3(b). If
As—Ay € By, sincedy—A, = (A;—-A,) - (A;—A,) € B,—B,,
by applying Lemma 3(c), (12), and Lemma 4(ii), we get

t
Ay = Ay = (%45 ¥42-24,) € By UB;,
1 (64)
Xy, € 3 +2,y,, € ”Z.

From (21), (64), and A5 — A, = (A5 — A,) — (A, — A,), we get
that x5, € (1/2) + Z, y5, € (1/2) + Z, combined with (61)
and A5 — A3 = (A5 — A ) + (A, = A3), yields x5, € Z, y5 4 € Z,
a contradiction with Lemma 3(b).

(i) IfA, —A; €By50 ,— A, =(A,—A) + (A3 - 1)) €
B, + B,; by applying Lemma 3(d), (12), and Lemma
4(iii), we get

t 1
Ay—Ay = (x4,1’)’4,1’z4,1) €B;, x4 € 5 + 2,y € Z.
(65)

IfA;—A, € B;,byLemma3(c)and A, —A; = (A;-A,)—(A5—
A,) € B; — B, we get x4, € Z, a contradiction with (65). If
As—Ay€Bys0d, -4, =(As—A)—(As —Ay) € B, — B,,
by applying Lemma 3(d), (12), and Lemma 4(iii), we get

t 1
A=Ay = (x4,2’)’4,2)z4,2) €B;, xy, € 5 +2Z, Yy, € L.
(66)

From (65), (66),and A, — A, = (A, - A;) — (A, — A,), we
get x,, € Z, a contradiction with (62).

The above (i), (ii), and (61) illustrate that Case 1.1.3.3 is
proved and Case 1.1 is proved.
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Step 2. In Case 1.2, from A; — A, € B; U B, U B, this case can
be divided into three cases.

Case1.21. Ay—A, As—A, A3—A, € Bj,A;—Ay € By, A=Ay,
and A; - A, € B;.

Casel2.2.Ay=A, As—A; € B, A=A, A5—A, € By, A=Ay,
and A; - A, € B;.

Casel.2.3.1,—=A,As—=Ay € Bj,A;—A; € B, A=A, A — Ay,
andA; — A, € B;.
Case 1.2.2 is similar to Case 1.1.3; we will deal with the

other two cases by considering the remainder differences in
(14), and each case is concluded with a contradiction.

Case 1.2.1. In this case, we get
A=A =(A5-4)+(A,—A) € B +B;;  (67)
by applying Lemma 3(c), (12), and Lemma 4(ii), we get

t 1
Az —A = (x3,1>)’3,1)z3,1) €B,, x3;€Z,y;, € 5 +Z.
(68)
By Lemma 3(a) and A, — A,, A5 — A, € B;, we know from
Claim1that A, — A, ¢ B,.SoA, - A, € BjorA, — A, € B,
so Case 1.2.1 can be divided into two cases.

Case1.211 Ay ~A Ag—ApAs—A, € B As—A,, A,—A, € By,
Ay—A,Ag— A, € B,

Case 1.2.1.2. A, — A, As — A, A3 — A, € Bj, A3 — A € By,
Ai—ALAs—A A, — A, € Bs.

The above two cases denote the 3 — 2 — 2 distribution and
3 — 1 — 3 distribution. Case 1.2.1.1 is similar to Case 1.1.3.1.
So we only need to deal with Case 1.2.1.2. By considering the
remainder differences in (14), we apply Lemmas 3 and 4 to
deal with the case.

In Case 1.2.1.2, we get

As=Ay=(As=2A;) = (Ag=A;) € By = By;  (69)
by applying Lemma 3(e) and (12), we get
As— Ay = (x5,4,y5,4’zs,4)t € B, UB,,

X54 € £+Z,y5,4 € §+Z.

ByClaim 1,A,—A; ¢ B;;thenA,—A; € BjorA,—A; € B,.
From (70), we consider the following two cases.

(i) IfAs—A, € By,since A, —A; = (As—Ay)—(A5—Ay) €
B, — By, by applying Lemma 3(c), (12), and Lemma
4(ii) we get
1
Ay=Ay = (x4,1>)’4,1)z4,1)t €B;s, x4, €2,y € 57 Z.
(71)

It follows from (68), (71),and A ,—A; = (A,—A,)—(A;—-1,)
that

t
Ay=As= (x4,3>)’4,3)z4,3) s Xy3 €24, Y45 € 2, (72)

which shows a contradiction with Lemma 3(b).

(ii) If A5 — A, € B,, we consider A, — A5,if A, — A5 € B.
Since A, = A, = (A, = A3) + (A; — A,) € B, + B}, by
applying Lemma 3(c), (12), and Lemma 4(ii), we get

A=Ay = (x4,2>y4,2’z4,2)t € B, UB;,

(73)
X4p €2, Yy, € 2 +7Z.

From (21), (73), and A5 — A, = (A5 — A,) — (A, — A,), we
get x5, € Z, y54 € Z, a contradiction with Lemma 3(b). If
Ay—As;€B,,thend,— A, =(A,—A5) +(A;— L)) € B, + B,;
by applying Lemma 3(d), (12), and Lemma 4(iii), we get

t 1
Ay—Ay = (x4,1>y4,1’z4,1) €B;, x4 € 5 +2Z,y,, € Z.
(74)

It follows from (68), (74),and A,—A5 = (A,—A,)—(A;—-1)
that we get

t

Ay=Ay= (x4,3’)’4,3’z4,3) € B,,

1 75)

X453 € -+ 72, €—-+/7Z.
43 ¢ 5 Va3 >

From (70), (75), and A5 — A5 = (A5 — A,) + (A, — A3), we
get x5 4 € Z, ys 4 € Z,a contradiction with Lemma 3(b).

Parts (i), (ii), and (70) indicate that Case 1.2.1.2 is proved
and Case 1.2.1 is proved.

Case 1.2.3. In this case, since
As=A;=(As=2,) = (A3 -A,) € By~ Bs,  (76)
by applying Lemma 3(e) and (12), we get
As— Ay = (x5,3>)’5,3’zs,3)t € B, UB,,
1 1 (77)
X5,3 S E + Z,y5)3 € E +Z.

From (77) Case 1.2.3 can be divided into two cases.

Case 1.2.31. Ay — A, As = A, A5 — Ay € B, A; — A, € By,
Ay—ApAs—Ayand Ay — A, € B,

Case 1.2.3.2. A, = A, A5 = A, € B, A; = A, 5 — A5 € By,
Ai—ALAs—A,and Ay — A, € B,

The above two cases denote the 3 — 1 — 3 distribution and
2 — 2 — 3 distribution. Case 1.2.3.1 is similar to Case 1.2.1.2.
Case 1.2.3.2 is similar to Case 1.1.3.3. So Case 1.2.3 is proved,
and so Case 1.2 is proved.

Thus, the proof of Case 1 is completed.

2.2. Case 2. In this case, since
As—Ay=(As=21;) = (Ay—Ay) € B - By; (78)
by applying Lemma 3(e) and (12), we get
As—Ay= (x5,4’)’5,4’25,4)t € B, UB,,

: 79)
Xcy4 € =+ 2, € -+ 7.
54 € 5 Y54 2



From A5 — A, € B, U B,, the discussion here can be divided
into two cases: A; —A, € B, and A;— A, € B,. That s, we have
the following two subcases.

Case2.1. Ay — A, As — Ay € Bj,A; — Ay € B, A, — Ay, and
As — A, € B,.

Case2.2. A, — Ay € Bj,A; = A, A5 —A, € Bj, A, — Ay, and
As — Ay € B,.

The discussion of Case 2.1 is analogous to Case 2.2; it
denotes the 2 — 1 — 2 or 1 — 2 — 2 distribution. So we only
need to deal with Case 2.1.

From A; — A, € B, UB, U B;, Case 2.1 can be divided into
three cases.

Case2.11. Ay —A, As—A As—A, € B,A;—A, € By A=Ay,
and A; — A, € B;.

Case2.1.2. A=A, As—Ay € Bj, A=A, A3—A, € By, A=A,
and A — A, € B;.

Case2.13. A=A, As—Ay € Bj,A3—A, € Bj,A,—A, As—Ay,
and A; — A, € B,.

The above three cases denote the 3 — 1 — 2 distribution,
2 — 2 — 2 distribution, and 2 — 1 — 3 distribution. Case 2.1.1
is similar to Case 1.2.1, Case 2.1.2 is similar to Case 1.1.3, and
Case 2.1.3 is similar to Case 1.2.3.

So the proof of Case 2 is completed.

2.3. Case 3. Inthis case, sinceA;—A, = (A;-1,)—(A,—A,) €
B, —Bj,andA; — A, = (As —A,) - (A4, - 1)) € B, - B,, by
Lemmas 3 and 4, we get

t
As = Ay = (%3, ¥32,23,) € ByUB;,
(80)
X3, € Z,y3’2 € E + Z,

t
As—Ay = (X545 ¥54-254) € B UB;,
1 (81
X54 € 3 +Z,ys4€7Z.

From A; — A, € B, U B;, Case 3 can be divided into the
following two cases.

Case3.1.A,—A,A3—A; € BjandA,—A,A5—A,A;—A, € B,.

Case 3.2. A, — A, A5 — A, € B, Ay
Ay —A, €B;.

- A As — A, € By and

Case 3.2 is similar to Case 1.1, so we only need to deal with
Case 3.1.

From A; — A, € B, U B;, the Case 3.1 can be divided into
the following two cases.

Case3.1.1. A, — A, A;—A,As— A, € Bjand A, — A, A5 — Ay,
and A; — A, € B,.
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Case3.12.1,—A,A5—A, € B, A=A, As—A,A5—A4, € By,
and A; — A, € B;.

Case 3.1.2 is similar to Case 1.1.2, so we only need to deal
with Case 3.1.1.

Consider the remainder difference A, — A, in (14). From

Ay — A, € B; UB, U B;, Case 3.1.1 can be divided into three
cases.

Case3.111L Ay — A, A3 = A, As — A Ay — A, € B, Ay — Ay,
As—Ap,and Ay — A, € B,.

Case3.1.12.A, = A, A3 — A, A5 — A, € B, A, — AL A — Ay,
Ay —Ayand Ay — A, € B,

Case 3.1.1.3. A, — A, A=A, As — A, € B, A, — A As — Ay,
Ay —A, € By,and A, — A, € B;.

Case 3.1.1.2 is similar to Case 3.1.1.1, and Case 3.1.1.3 is
similar to Case 1.1.1.1. So we only need to deal with Case 3.1.1.1.
In this case, since As — A, = (A; —A,) + (A, — A,) € B, + By,
by applying Lemma 3(c), (12), and Lemma 4(ii), we get

t
As =My = (X5, ¥52:25,) € B, UBs,

(82)
X5y €Z,ys5, € 3 +7Z.
Combined with (80), (82) yields
As =25 =(As=Ay) = (A3 = Ay) = (x5,3>y5,3’zs,3)t’ (83)

X553 €2, Y55 € Z,

a contradiction with Lemma 3(b). Case 3.1.1.1 is proved.
So the proof of Case 3 is completed.

2.4. Case4. Inthiscase, sinceA;—A, = (A;—1,)—-(A,—-A,) €
B, —Bj,and A — A, = (As —A,) — (A4, — ;) € B; - B3, by
Lemmas 3 and 4, we get

t
A=Ay = (%35, ¥32,23,) € ByUB;,
(84)
X3, €2, )3, € 3 + 7,

t
As— Ay = (X545 ¥54-254) € B UB,,
1 (85)
X54 € E+Z’y5’4 € E+Z'

From A; — A, € B, U B;, Case 4 can be divided into the
following two cases.

Case4.1.A,—A,A5—A, € Bjand A, —A,A5—A;, A5—-A, € B;.

Case4.2. A, — A, A3 — Ay € Bj,A;— A, € By,and A, — Ay,
As — Ay € B;.

Case 4.2 is similar to Case 1.2, so we only need to deal with
Case 4.1.
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From A5 — A, € B, U B,, Case 4.1 can be divided into the
following two cases.

Case4.11. A=A, A3 —A, As—A, € Bjand A, — A, As— Ay,
and A; - A, € B;.

Case4.1.2.A, = A, A3—=A € B,As=A, € By, A —A, A5—=A,
and A; - A, € B;.

Case 4.1.2 is similar to Case 1.2.3, so we only need to deal
with Case 4.1.1.

Consider the remainder difference A, — A, in (14).
Accordingto A, — A, € B, UB, UB,, Case 4.1.1 can be divided
into three cases.

Case 4111 A, = A, Ay — A, Ag —
As—A,andA; — A, € B,

Apdy—A, € BLd, — Ay,

Case 411.2. 1, — A, A3 — A, As — Ay € B, A, — A, € By,
Ay—AppAs—A,and Ay — A, € B,

Case4.11.3. 1, = A, A3 = A, As— A, € BLA,— AL A5 — Ay,
Ay —Ayand A, — A, € B,

Case 4.1.1.2 is similar to Case 1.2.1.2. We will deal with the
other two cases by considering the remainder differences in
(14), and each case is concluded with a contradiction.

Case 4.1.1.1. In this case, since As — A, = (As—A,)+(A,—A,) €
B, + B,, by Lemma 3(c), (12), and Lemma 4(ii), we get

t
As =My = (X5, ¥52,25,) € B, UBs,

(86)
X5, € Z>J’5,z € 5 + 7,

combined with (84), (86),and A5 —A; = (A;—A,) —(A;-1,)
yields x5 3 € Z, y53 € Z, a contradiction with Lemma 3(b).

Case 4.1.1.3. In this case, since A, —A; = (A, —A,)—(A5-1,) €
B; — B;, by Lemma 3(e) and (12), we get

t
Ay =As = (X43, Ya3.243) € B, UB,,

1 (57)
x4’3 € E +Z,y4’3 € 5 + Z,

combined with (85), (87),and A5 — A5 = (A5 —A,) + (A, —A3),
yields x5 5 € Z, y553 € Z, a contradiction with Lemma 3(b).
So Case 4.1.1.3 is proved, and Case 4.1.1 is proved.

So the proof of Case 4 is completed.

Summing up the above discussion, we know that there
exist at most 4 mutually orthogonal exponential functions in
L*(p ). We can find many such orthogonal systems which
contain 4 elements, for example, the exponential function
system E(S) with S given by

)2 0 )21

s=1(o],| £ |, 1 0 (88)
o/ \ 2 )\ &)\ n
0 2 2

This shows that the number 4 is the best. The proof of
Theorem 1 is complete.
The proof of Theorem 2 is similar, it is so omitted.

Corollary 5. For the self-affine measure g 1, corresponding to
p 0m

B=|0p 0
00 p

6]

if p € 2Z + 1)\ {£1}, then yg 1, is a nonspectral measure, and
there exist at most 4 mutually orthogonal exponential functions
in LZ(MB,D), where the number 4 is the best.

(pez\{0,£1}), meZ,

The corollary improved Yuan [9, Theorem 1].
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