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We consider the shallow water equations (SWE) in spherical coordinates solved by Turkel-Zwas (T-Z) explicit large time-step
scheme. To reduce the dimension of the SWE model, we use a well-known model order reduction method, a proper orthogonal
decomposition (POD). As the computational complexity still depends on the number of variables of the full spherical SWEmodel,
we use discrete empirical interpolation method (DEIM) proposed by Sorensen to reduce the computational complexity of the
reduced-ordermodel. DEIM is very helpful in evaluating quadratically nonlinear terms in the reduced-ordermodel.The numerical
results show that POD-DEIM is computationally very efficient for implementing model order reduction for spherical SWE.

1. Introduction

The shallow water equations (SWE) are probably the sim-
plest model that captures the basic features of fluid flow
motion in the geosciences.They describes the evolution of an
incompressible and inviscid fluid in response to gravitational
and rotational accelerations and their solutions represent a
propagating Rossby wave along with East-West propagating
gravity waves.

During the last 30 years the SWE has become an impor-
tant test bed for numerical methods [1–7]. Experts, especially,
have to face greater challenges to the spherical SWE than the
one in rectangular coordinates due to changing grid density
in the spherical geometry in part due to presence of poles.
Neta and Navon applied the Turkel-Zwas (T-Z) explicit large
time-step scheme on a limited-area domain for the shallow
water equations [8]. The most important advantage of the T-
Z explicit large time-step scheme is addressing the issue of fast
and slow time scales in SWE by treating the terms associated
with the fast gravity-inertia waves on a coarser grid but to a
higher accuracy than the terms associated with slow Rossby
waves. Neta et al. also applied T-Z scheme for spherical SWE,

where a staggered T-Z finite difference scheme has been used
to improve the accuracy of numerical solutions [9]. Here,
before performing model order reduction, the numerical
solutions are generated by this staggered T-Z finite difference
scheme.

With the aim of obtaining more efficient description of
the large scale complex system, model reduction is very
helpful in reducing the computational cost and preserv-
ing numerical accuracy. Proper orthogonal decomposition
(POD) is a powerful and graceful model reduction method
of data analysis to obtain low-dimensional approximate
descriptions of high-dimensional systems. The POD is also
referred to principal component analysis (PCA), Karhunen-
Loève (KL) decomposition, empirical orthogonal functions
(EOF) analysis, and so forth, in many different fields [10–12].
In model reduction of SWE on rectangular coordinate, POD
has been applied by Cao et al. [13], Vermeulen and Heemink
[14], Daescu andNavon [15, 16], Altaf [17], and Ştefănescu and
Navon [18].

Discrete empirical interpolation method (DEIM) is a
discrete version of the classic empirical interpolationmethod
raised by Barrault et al. [19]. Generally, DEIM is applied to
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approximate a nonlinear function by combining projection
with interpolation, which is very helpful in reducing the
dimension of the ordinary differential equations (ODEs)
generated by the POD-Galerkin process. The approach and
its application was proposed by Chaturantabut and Sorensen
in [20] and also widely applied in solvingmany problems [21–
25].

In this paper, we introduce the PODmethod to reduce the
dimension of spherical SWE. The POD-Galerkin technique
reduces the dimension in the sense that much fewer variables
are present; however the computational complexity of the
reduced SWE model is still depending on the number of
variables of the full SWE. To make the model reduction
more computationally efficient, we will combine POD and
DEIM together to reduce the computational complexity and
keep the accuracy close to the general POD results. DEIM is
used due to to presence of quadratically nonlinear terms in
spherical SWE model.

The organization of this paper is as follows. In Section 2,
the spherical SWE is presented using matrix operators, and
a T-Z finite difference algorithm is presented. In Section 3,
the details of POD method for spherical SWE with T-Z
FD scheme are introduced. In Section 4, we introduce the
methodology of DEIM and the combination of POD and
DEIM. Section 5 is the application of POD-DEIM approach
on the spherical SWE and some numerical results.

2. T-Z Finite Difference Scheme on
Spherical SWE

Navon and Yu proposed the T-Z explicit large time-step
Fortran program for solving the spherical SWE model [26].

The spherical SWE is described as follows:
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Here, 𝑓 is the Coriolis parameter given by

𝑓 = 2Ω sin 𝜃, (2)

whereΩ is the angular speed of the rotation of the earth, ℎ is
the height of the homogeneous atmosphere, 𝑢 and V are the
zonal and meridional wind components, respectively, 𝜃 and
𝜆 are the latitudinal and longitudinal directions, respectively,
𝑎 is the radius of the earth, and 𝑔 is the gravitation constant.

The initial conditions are the same as those used by the
previous work [9], where the height is defined as
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where
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4m2/sec2,

𝑢

0
= 20m/sec,

𝑎 = 6.370 × 10

6m, Ω = 7.292 × 10

−5 rad/sec.

(5)

The T-Z scheme for (1) is given as follows. Give a constant
𝛼 (0 < 𝛼 ≤ 1), then we have
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Then, the T-Z scheme in operator form is
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, . . . , 1/ cos 𝜃

𝑁𝑦
], 1/tan𝜃 =

[1/ tan 𝜃
1
, 1/ tan 𝜃

2
, . . . , 1/ tan 𝜃

𝑁𝑦
], 𝐴𝑖
𝜆
, 𝐴

𝑖

𝜃
, 𝑖 = 1, 2 are

proper constant matrices for discrete first-order differential
operators which take into account the initial and boundary
conditions, 𝐷

𝑝,𝛼
and 𝐷

𝑞,𝛼
are the corresponding constant

coefficient matrices for the weighted average of u ∗ k and
u ∗ u, 𝐴

𝑝,𝑞,𝛼
is an approximate constant matrix operator

with the description of first-order difference combined with a
four-point difference scheme, and “∗” is the componentwise
multiplication symbol.

3. POD on Spherical SWE

The initial conditions are also obtained by multiplying the
equations of the original initial conditions by the𝑈𝑇,𝑉𝑇, and
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𝐻

𝑇.Though the PODmethod is helpful to reduce the dimen-
sion of the model, the nonlinear terms are still retaining
high computational complexities depending on the spatial
dimension 𝑛

𝑥𝑦
of the originalmodel from both evaluating the

nonlinear functions and performing matrix multiplications
to project on POD bases. However, by applying the DEIM
method, we can remove the dependency and also obtain an
expected computational efficiency. The nonlinear terms can
be approximated by DEIM with the precomputing process,
so the computational cost should be decreased significantly.
Another reasonwhyweuseDEIMhere is also that the process
is very easy to be achieved; namely, only a few interpolation
indices need to be selected in order to evaluate the nonlinear
terms. We will introduce DEIM in the next section.

To make the POD version of the spherical SWE more
intelligible, we should build the POD decomposition of each
variable and make the POD basis separate at first. Let us take
the variable 𝑢 for example. For V and ℎ, we just need to follow
the similar procedure to obtain the POD basis.

Make the number of POD basis 𝑁 much less than the
spatial dimension 𝑛

𝑥𝑦
of 𝑢, that is, 𝑁 ≪ 𝑛

𝑥𝑦
, and choose to

construct the POD basis 𝑈 ∈ R𝑛𝑥𝑦×𝑛𝑘 , 𝑘 ∈ N+ by solving the
eigenvalue problem,

𝑌

𝑇
𝑌�̂�

𝑖
= 𝜆

𝑖
�̂�

𝑖
, 𝑖 = 1, 2, . . . , 𝑁𝑇, (11)

and retaining the set of right singular vectors of 𝑌 cor-
responding to the 𝑘 largest singular values; that is, 𝑈 =

{𝑢

𝑖
}

𝑘

𝑖=1
, 𝑢
𝑖
= (1/√𝜆

𝑖
)𝑌�̂�

𝑖
.

Then, we can obtain the POD basis of V and ℎ as 𝑢, 𝐻 ∈

R𝑛𝑥𝑦×𝑘, and give the approximation of u, k, and h,

u (𝑡
𝑛
) ≈ 𝑈ũ (𝑡

𝑛
) , k (𝑡

𝑛
) ≈ 𝑉k̃ (𝑡

𝑛
) ,

h (𝑡
𝑛
) ≈ 𝐻

̃h (𝑡
𝑛
) ,

ũ (𝑡
𝑛
) , k̃ (𝑡

𝑛
) ,

̃h (𝑡
𝑛
) ∈ R
𝑘
, 𝑈, 𝑉,𝐻 ∈ R

𝑛𝑥𝑦×𝑘
.

(12)

Now, we can use Galerkin projection method to the
discrete T-Z FD model by replacing u, k, and h with their
approximations 𝑈�̃�, 𝑉Ṽ, and 𝐻

̃

ℎ, respectively, and then
premultiplying the corresponding equations by 𝑈𝑇, 𝑉𝑇, and
𝐻

𝑇. By applying this procedure, we transform the discrete
version of original model to the POD reduced model as
follows:

�̃� (𝑙 + 1) = �̃� (𝑙 − 1) − 𝑈

𝑇
̂

𝑁

11
(�̃� (𝑙))

− 𝑈

𝑇
̂

𝑁

12
(�̃� (𝑙) , Ṽ (𝑙)) + 𝑈𝑇̂𝑁

13
(�̃� (𝑙) , Ṽ (𝑙))

+ 𝑈

𝑇
̂

𝐿

11
(Ṽ (𝑙)) − 𝑈𝑇̂𝐿

12
(

̃

ℎ (𝑙)) ,

Ṽ (𝑙 + 1) = Ṽ (𝑙 − 1) − 𝑉𝑇̂𝑁
21
(Ṽ (𝑙)) − 𝑉𝑇̂𝑁

22
(�̃� (𝑙) , Ṽ (𝑙))

− 𝑉

𝑇
̂

𝑁

23
(�̃� (𝑙)) − 𝑉

𝑇
̂

𝐿

21
(�̃� (𝑙)) − 𝑉

𝑇
̂

𝐿

22
(

̃

ℎ (𝑙)) ,

̃

ℎ (𝑙 + 1) =

̃

ℎ (𝑙 − 1) − 𝐻

𝑇
̂

𝑁

31
(�̃� (𝑙) ,

̃

ℎ (𝑙))

− 𝐻

𝑇
̂

𝑁

32
(Ṽ (𝑙) , ̃ℎ (𝑙)) − 𝐻𝑇̂𝑁

33
(�̃� (𝑙) ,

̃

ℎ (𝑙))

− 𝐻

𝑇
̂

𝑁

34
(Ṽ (𝑙) , ̃ℎ (𝑙)) ,

(13)

where ̂

𝑁

11
,

̂

𝑁

12
,

̂

𝑁

13
,

̂

𝑁

21
,

̂

𝑁

22
,

̂

𝑁

23
,

̂

𝑁

31
,

̂

𝑁

32
,

̂

𝑁

33
,

̂

𝑁

34
,

̂

𝐿

11
,

̂

𝐿

12
,

̂

𝐿

21
,

̂

𝐿

22
∈ R𝑘. Their definitions can be easily obtained

by substituting u ≈ 𝑈ũ, k ≈ 𝑉k̃, and h ≈ 𝐻

̃h into the
corresponding equations.

4. POD-DEIM on Spherical SWE

4.1. Discrete Empirical Interpolation Method. In this section,
the application of DEIM to POD reduced spherical SWE
model will be introduced. DEIM is a discrete version of
the empirical interpolation method proposed by Barrault et
al. [19]. The methodology and application were analyzed by
Chaturantabut and Sorensen in [20]. Also, the convergence
theorem and error estimate of POD-DEIM nonlinear model
reduction is presented in [27, 28].

The major function of DEIM is to provide a great
efficient way to approximate nonlinear terms by replacing
the high complex algebraic operation process in solving the
reduced model. Also, it is incorporated into the reduced-
basis techniques to provide a better reduced-basis treatment
of nonaffine and nonlinear parameterized PDEs in terms of
CPU time.

The realization process of DEIM is as follows. Let 𝑓 :

𝐷 → R𝑛, 𝐷 ⊂ R𝑛 be a nonlinear function. If 𝑈 = [𝑢

1
, 𝑢

2
,

. . . , 𝑢

𝑚
], 𝑢
𝑖
∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑚, is a linearly independent

set, for 𝑚 ≤ 𝑛, then, for 𝜏 ∈ 𝐷, the DEIM approximation of
order𝑚 for 𝑓(𝜏) in the space spanned by {𝑢

𝑙
}

𝑚

𝑙=1
is given by

𝑓 (𝜏) ≈ 𝑈𝑐 (𝜏) , 𝑈 ∈ R
𝑛×𝑚

, 𝑐 (𝜏) ∈ R
𝑚
. (14)

Here, the matrix 𝑈 is generated by doing POD on the
nonlinear snapshots 𝑓(𝜏𝑡𝑖), 𝜏𝑡𝑖 ∈ 𝐷 (𝜏 may be a function
defined from [0, 𝑇] → 𝐷, and 𝜏𝑡𝑖 is the value of 𝜏 evaluated
at 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑛

𝑠
, 𝑛

𝑠
> 0. Next, interpolation is used

to determine the coefficient vector 𝑐(𝜏) by selecting 𝑚 rows
𝜌

1
, 𝜌

2
, . . . , 𝜌

𝑚
, 𝜌

𝑖
∈ N+, of the overdetermined linear system

(14) to form a𝑚-by-𝑚 linear system

𝑃

𝑇
𝑈𝑐 (𝜏) = 𝑃

𝑇
𝑓 (𝜏) , (15)

where 𝑃 = [𝑒

𝜌1
, 𝑒

𝜌2
, . . . , 𝑒

𝜌𝑚
] ∈ R𝑛×𝑚, 𝑒

𝜌𝑖
= [0, . . . 0, 1

⏟⏟⏟⏟⏟⏟⏟

𝜌𝑖

,

0, . . . , 0] ∈ R𝑛. The DEIM approximation of 𝑓 ∈ R𝑛 becomes

𝑓 (𝜏) ≈ 𝑈(𝑃

𝑇
𝑈)

−1

𝑃

𝑇
𝑓 (𝜏) .

(16)

Now the only unknowns that need to be determined are
the indices 𝜌

1
, 𝜌

2
, . . . , 𝜌

𝑚
, which can be obtained in terms of

the pseudo-algorithm (see Algorithm 1).
The DEIM is used to select a set of indices from a linearly

independent basis. In the first step of the algorithm, the first
DEIM interpolation index 𝜌

1
is selected by searching the

position of the largest value of the first POD basis |𝑢
1
|. Then,

the remaining interpolation indices 𝜌
𝑙
, 𝑙 = 2, 3, . . . , 𝑚, is



Journal of Applied Mathematics 5

INPUT: {𝑢
𝑙
}

𝑚

𝑙=1
⊂ R𝑛 (linearly independent),

OUTPUT: ⃗𝜌 = [𝜌

1
, 𝜌

2
, . . . , 𝜌

𝑚
] ∈ N𝑚,

Step 1. [|𝜓|𝜌
1
] = max |𝑢

1
|, 𝜓 ∈ R and 𝜌

1
is the component position of the

largest absolute value of 𝑢
1
, with the smallest index taken in case of a tie,

Step 2. 𝑈 = [𝑢
1
] ∈ R𝑛, 𝑃 = [𝑒

𝜌1
] ∈ R𝑛, ⃗𝜌 = [𝜌

1
] ∈ N+,

Step 3. For 𝑙 = 2, . . . , 𝑚 do
(a) Solve (𝑃𝑇𝑈)𝑐 = 𝑃𝑇𝑢

𝑙
for 𝑐 ∈ R𝑙−1, 𝑈, 𝑃 ∈ R𝑛×(𝑙−1),

(b) 𝑟 = 𝑢
𝑙
− 𝑈𝑐, 𝑟 ∈ R𝑛,

(c) [|𝜓|𝜌
𝑙
] = max{|𝑟|},

(d) 𝑈 ← [𝑈 𝑢

𝑙
], 𝑃 ← [𝑃𝑒

𝜌𝑙
], ⃗𝜌 ← [

⃗𝜌

𝜌

𝑙

],

end For.

Algorithm 1: DEIM pseudo-algorithm for interpolation indices [18, 27].

determined by selecting the largest magnitude of the residual
vector |𝑟|. For the linear independence of the input basis
{𝑢

𝑙
}

𝑚

𝑙=1
, 𝑟 is a nonzero vector and the output indices {𝜌

𝑖
}

𝑚

𝑖=1
are

not repeating in each iteration. Indeed, DEIM is an efficient
method tomake decisions on estimating the coordinate value
of the 𝑛 dimensional nonlinear functions in a𝑚 dimensional
subspace. The error bound of the DEIM approximation is
provided by Chaturantabut and Sorensen [28].

4.2. POD-DEIMModel of Spherical SWE. TheDEIM approx-
imation will be applied on POD model of spherical SWE so
the computational complexity will reduce in proportion of
the number of reduced variables in POD-DEIM model.

Let𝑈�̂�11∈R
𝑛𝑥𝑦×𝑚 ,𝑚 ≤ 𝑛

𝑥𝑦
be the POD basis matrix of rank

𝑚 for the snapshots of the nonlinear function ̂𝑁
11
(obtained

from T-Z scheme). With the aid of DEIM, we select a set
of 𝑚 DEIM indices corresponding to 𝑈�̂�11 , and determine
the matrix 𝑃

�̂�11
∈ R𝑛𝑥𝑦×𝑚. The DEIM approximation of ̂𝑁

11

assumes the form

̂

𝑁

11 (
�̂�) ≈ 𝑈

�̂�11
(𝑃

𝑇

�̂�11
𝑈

�̂�11
)

−1

𝑃

𝑇

�̂�11

̂

𝑁

11
,

(17)

so that the nonlinear term 𝑈

𝑇
̂

𝑁

11
in POD model can be

approximated as

𝑈

𝑇
̂

𝑁

11 (
�̂�) ≈ 𝑈

𝑇
𝑈

�̂�11
(𝑃

𝑇

�̂�11
𝑈

�̂�11
)

−1

𝑃

𝑇

�̂�11

̂

𝑁

11
.

(18)

Similarly, we obtain the DEIM approximations of the rest
of the nonlinear functions in POD model,

𝑈

𝑇
̂

𝑁

12
(�̂�, V̂) ≈ 𝑈𝑇𝑈�̂�12(𝑃𝑇

�̂�12
𝑈

�̂�12
)

−1

𝑃

𝑇

�̂�12

̂

𝑁

12
,

𝑈

𝑇
̂

𝑁

13
(�̂�, V̂) ≈ 𝑈𝑇𝑈�̂�13(𝑃𝑇

�̂�13
𝑈

�̂�13
)

−1

𝑃

𝑇

�̂�13

̂

𝑁

13
,

𝑉

𝑇
̂

𝑁

21
(V̂) ≈ 𝑉𝑇𝑉�̂�21(𝑃𝑇

�̂�21
𝑉

�̂�21
)

−1

𝑃

𝑇

�̂�21

̂

𝑁

21
,

𝑉

𝑇
̂

𝑁

22 (
�̂�, V̂) ≈ 𝑉𝑇𝑉�̂�22(𝑃𝑇

�̂�22
𝑉

�̂�22
)

−1

𝑃

𝑇

�̂�22

̂

𝑁

22
,

𝑉

𝑇
̂

𝑁

23
(�̂�) ≈ 𝑉

𝑇
𝑉

�̂�23
(𝑃

𝑇

�̂�23
𝑉

�̂�23
)

−1

𝑃

𝑇

�̂�23

̂

𝑁

23
,

𝐻

𝑇
̂

𝑁

31
(�̂�,

̂

ℎ) ≈ 𝐻

𝑇
𝑉

�̂�31
(𝑃

𝑇

�̂�31
𝐻

�̂�31
)

−1

𝑃

𝑇

�̂�31

̂

𝑁

31
,

𝐻

𝑇
̂

𝑁

32
(V̂, ̂ℎ) ≈ 𝐻𝑇𝑉�̂�32(𝑃𝑇

�̂�32
𝐻

�̂�32
)

−1

𝑃

𝑇

�̂�32

̂

𝑁

32
,

𝐻

𝑇
̂

𝑁

33
(�̂�,

̂

ℎ) ≈ 𝐻

𝑇
𝑉

�̂�33
(𝑃

𝑇

�̂�33
𝐻

�̂�33
)

−1

𝑃

𝑇

�̂�33

̂

𝑁

33
,

𝐻

𝑇
̂

𝑁

34
(V̂, ̂ℎ) ≈ 𝐻𝑇𝑉�̂�34(𝑃𝑇

�̂�34
𝐻

�̂�34
)

−1

𝑃

𝑇

�̂�34

̂

𝑁

34
,

(19)

where 𝑈�̂�12 , 𝑈�̂�13 , 𝑈�̂�21 , 𝑈�̂�22 , 𝑈�̂�23 , 𝑈�̂�31 , 𝑈�̂�32 , 𝑈�̂�33 , and
𝑈

�̂�34 are the corresponding POD basis matrices of rank 𝑚
for the snapshots of the nonlinear functions ̂𝑁

12
, ̂𝑁
13
, ̂𝑁
21
,

̂

𝑁

22
, ̂𝑁
23
, ̂𝑁
31
, ̂𝑁
32
, ̂𝑁
33
, and ̂𝑁

34
. Replace the POD nonlinear

terms by the DEIM estimation nonlinear terms; then we have
the POD-DEIM model of spherical SWE.

The initial conditions are obtained by following the
similar procedure of that on POD model. The numerical
examples will be shown in the next section.

5. Numerical Examples

This section has two parts. The first part consists of the
numerical examples for modeling the POD model, and the
other part is the numerical examples for modeling the POD-
DEIM model.

The initial conditions are the same as those used by Neta
et al. [9] which has been introduced in Section 1.

The space domain has been discretized using a mesh of
72 × 36 points, withΔ𝜆 = Δ𝜃 = 5𝑜.Then the dimension of the
full discretized model is 2592. The integration time window
is 24 h and we use 109 time steps with Δ𝑡 = 800 s.

The T-Z FD spherical SWE scheme proposed by Neta et
al. in [9] is employed in order to obtain the numerical results
of the spherical SWE model. The CFL condition is given in
Navon and de Villiers [29].
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Table 1: Average relative errors for each of the model variables. The
PODbases dimension is 28 capturingmore than 99.9% of the system
energy. 60 DEIM points are chosen.

POD solutions DEIM solutions
Error

𝑢
2.6050𝑒 − 003 4.2692𝑒 − 003

ErrorV 3.3648𝑒 − 003 4.8253𝑒 − 003

Error
ℎ

4.8412𝑒 − 005 8.2988𝑒 − 005

In the first step, we give the initial geopotential isolines
and the geostrophic wind field in Figure 1.

The numerical solutions generated by T-Z FD scheme at
𝑡 = 24 h are illustrated in Figure 2. These two figures are
isolines of geopotential which are continuous closed curve.
For the planes are the expanding spherical coordinate planes,
the left part of the isoline with the value of 58000 is shown at
the upper right of the plane.

The POD basis functions are constructed using 109
snapshots obtained from the numerical solutions of the full
T-Z FD model in the time interval [0, 24 h]. The dimension
of the POD bases for each variable is 28, capturing more than
99.9% of the system energy. Figure 3 describes the singular
values of the snapshots for 𝑢, V, and geopotential. The curves
of singular values for𝑢 and Vhave similar tendency ofmotion.
However the curve for geopotential is above the other two
curves for the values of geopotential are much larger than 𝑢
and V.

In order to improve the efficiency of the POD approxi-
mation, you use the DEIM algorithm by selecting 60 DEIM
points on each nonlinear term. Figure 4 illustrates the
distribution of the first 30 spatial points selected by theDEIM
algorithm using the POD bases of nonlinear functions 𝑁

13

and𝑁
23
as inputs.

Figure 5 describes the scalogram of the local errors
between POD, POD-DEIM, and T-Z FD spherical SWE
solutions, where we used 60 DEIM points to estimate the
nonlinear terms.

Figure 6 illustrates the correlation coefficients for the
SWE variables, where POD bases dimensions and DEIM
points number are chosen as 28 and 60, respectively. Then,
we will test the average relative errors.

We calculated the average relative errors in Euclidian
norm for all three variables of spherical SWE model 𝑤 =

𝑢, V, ℎ with the following norm:

errorPOD =
1

𝑁𝑇

𝑡𝑛

∑

𝑖=1









𝑤

𝑇𝑍
(; , 𝑖) − 𝑤POD(:, 𝑖)







2









𝑤

𝑇𝑍
(:, 𝑖)







2

,

errorDEIM =

1

𝑁𝑇

𝑡𝑛

∑

𝑖=1









𝑤

𝑇𝑍
(; , 𝑖) − 𝑤DEIM(:, 𝑖)







2









𝑤

𝑇𝑍
(:, 𝑖)







2

.

(20)

The comparison of the average relative errors in Euclidian
norm by POD and POD-DEIM using the numerical solution
of the T-Z spherical SWE model is shown in Table 1.

The CPU time on obtaining the TZ FD solution of spher-
ical SWEmodel is 49.283 s. Additionally, we applied Galerkin
projection to TZ FD model, and its computational time is
17.252 s. Also, when we choose 60 DEIM points to update

Table 2: CPU time gains and the root mean square errors for each
of the model variables at 𝑡 = 24 h. The POD bases dimensions were
28 capturingmore than 99.9% of the system energy. 60 DEIM points
were chosen.

TZ FD solutions POD solutions DEIM solutions
CPU time (s) 49.283 17.252 0.127
RMSE

𝑢
— 2.166𝑒 − 004 3.210 − 004

RMSEV — 3.449𝑒 − 004 4.143𝑒 − 004

RMSE
ℎ

— 1.663𝑒 − 003 3.079𝑒 − 003

the POD reduced model, we only need 0.127 s to obtain the
numerical results. Runge-Kutta-Fehlberg method (RKF45)
was used in solving not only the POD reduced model, but
also the POD-DEIM model. From the computational time
and root mean square errors in Table 2, we know that the
DEIM algorithm ismuchmore efficient when combined with
POD in solving the model reduction problems.

We also made some other numerical examples with
different numbers of the spatial discretization points. Figure
7 describes that the CPU time in executing the TZ FD
algorithm on solving spherical SWE model is very sensitive
to the number of spatial discretization points. Also, in case
of executing the POD algorithm, we have similar results.
Compared to the previous two algorithms, POD-DEIM
is affected much more slightly by the numbers of spatial
discretization points. The nonlinear term evaluation with
DEIM is a precomputing process. It is extremely fast in
executing the DEIM process. Then, we can easily evaluate
the nonlinear terms values and solve the ODEs after applying
Garlerkin projection. All the other parts are the same to
PODprogress. Hence, the core of calculating the approximate
solutions with POD-DEIM is just solving ODEs without the
expensive matrix operation for nonlinear terms. This is why
we can get excellent speed-up from DEIM.

It seems that the more the number of DEIM points
we selected, the lower the errors we will get by using the
theoretical results for DEIM. However, it is a little difficult
for us to strike an average between which number of DEIM
points is good enough and what error results are low enough.
Also, for the little impact on speed-up, we can just choose
the number of DEIM points large enough. For example, we
can choose the number of DEIM points more than half of
the number of time differentiations. Here we can choose 60,
which is much larger than a half of 108. There is no doubt
that if we can choose the number much larger, we will get the
error results a little better and nearly make no difference in
consuming the CPU time.

6. Conclusion

In this paper, we have applied the POD and DEIM algorithm
on T-Z FD spherical SWEmodel. The POD is used to reduce
the dimensions of the original model and obtain a reduced
model with lower dimensions from the full model with very
high dimensions in space domain. With the aid of DEIM
algorithm, the nonlinear terms in the reduced model have
been estimated accurately, and also we can omit the vast
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Figure 1: Contour of geopotential and wind field at 𝑡 = 0.
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Figure 2: Contour of geopotential and wind field at 𝑡 = 24 h.
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majority of computational steps which helps to save the
computational cost. The numerical results show that POD-
DEIM combined algorithm is very efficient and accurate
in doing model order reduction on spherical shallow water
equations.
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