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We consider one-sided weight classes of Muckenhoupt type, but larger than the classical Muckenhoupt classes, and study the
boundedness of one-sided oscillatory integral operators on weighted Lebesgue spaces using interpolation of operators with change
of measures.

1. Introduction and Main Results

Oscillatory integrals in one form or another have been an
essential part of harmonic analysis from the very beginnings
of that subject; three chapters are devoted to them in the
celebrated Stein’s book [1]. Many operators in harmonic
analysis or partial differential equations are related to some
versions of oscillatory integrals, such as the Fourier trans-
form, the Bochner-Riesz means, and the Radon transform
which has important applications in the CT technology.
Among numerous papers dealing with oscillatory singular
integral operators in some function spaces, we refer to [2–
7] and the references therein. More generally, let us now
consider a class of oscillatory integrals defined by Ricci and
Stein [8]:

𝑇𝑓 (𝑥) = p.v. ∫
R

𝑒
𝑖𝑃(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦, (1)

where 𝑃 (𝑥, 𝑦) is a real-valued polynomial defined on R × R

and the function 𝐾 ∈ 𝐶
1
(R \ {0}) is a Calderón-Zygmund

kernel. That means 𝐾 satisfies

|𝐾 (𝑥)| ≤
𝐶

|𝑥|
, |∇𝐾 (𝑥)| ≤

𝐶

|𝑥|
2
, 𝑥 ̸= 0, (2)

∫
𝑎<|𝑥|<𝑏

𝐾 (𝑥) 𝑑𝑥 = 0 ∀𝑎, 𝑏 (0 < 𝑎 < 𝑏) . (3)

Throughout this paper, the letter 𝐶 will denote a positive
constant which may vary from line to line but will remain
independent of the relevant quantities.

We state a celebrated result of Ricci and Stein on oscilla-
tory integrals as follows.

Theorem 1 (see [8]). Let 1 < 𝑝 < ∞, 𝐾 satisfy (2) and (3).
Then for any real-valued polynomial 𝑃 (𝑥, 𝑦), the oscillatory
integral operator 𝑇 is of type (𝐿

𝑝
, 𝐿
𝑝
) and its norm depends

on the total degree of 𝑃, but not on the coefficients of 𝑃 in other
respects.

Weighted inequalities arise naturally in harmonic analy-
sis, but their use is best justified by the variety of applications
in which they appear. It is worth pointing out that many
authors are interested in the inequalities when the weight
functions belong to the Muckenhoupt classes ([9]), which
are denoted by 𝐴

𝑝
(1 < 𝑝 < ∞) classes for simplicity. This

class consists of positive locally integrable functions (weight
functions) 𝑤 for which

sup
𝐼

(
1

|𝐼|
∫
𝐼

𝑤 (𝑥) 𝑑𝑥)(
1

|𝐼|
∫
𝐼

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

< ∞, (4)

where the supremum is taken over all intervals 𝐼 ⊂ R and
1/𝑝 + 1/𝑝

󸀠
= 1.
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In 1992, Lu and Zhang [10] established the weighted
version of Theorem 1.

Theorem 2. Let 𝑝, 𝑃 (𝑥, 𝑦) and 𝐾 be as in Theorem 1. Then
the oscillatory singular integral operator 𝑇 is of type (𝐿

𝑝
(𝑤),

𝐿
𝑝
(𝑤)) with 𝑤 ∈ 𝐴

𝑝
. Here its operator norm is bounded by

a constant depending on the total degree of 𝑃, but not on the
coefficients of 𝑃 in other respects.

We point out that Theorems 1 and 2 also hold for
dimension 𝑛 ≥ 2. We choose the results for 𝑛 = 1 here
in order to introduce the one-sided operators which were
defined on R. Theorems 1 and 2 are also true for more
general kernels, that is, nonconvolution kernels, under the𝐿2-
boundedness assumption on the corresponding Calderón-
Zygmund singular integral operators:

𝑇̃ (𝑥) = p.v. ∫
R𝑛

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (5)

However, this topic exceeds the scope of this paper. For more
information about this work, see [8, 10], for example.

The study of weights for one-sided operators was moti-
vated not only by the generalization of the theory of both-
sided ones, but also by their natural appearance in harmonic
analysis; for example, they are required when we treat the
one-sided Hardy-Littlewood maximal operator [11]:

𝑀
+
𝑓 (𝑥) = sup

ℎ>0

1

ℎ
∫

𝑥+ℎ

𝑥

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦,

𝑀
−
𝑓 (𝑥) = sup

ℎ>0

1

ℎ
∫

𝑥

𝑥−ℎ

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦,

(6)

arising in the ergodic maximal function. Sawyer first intro-
duced the classical one-sided weight 𝐴+

𝑝
classes in [11]. The

general definitions of 𝐴+
𝑝
and 𝐴

−

𝑝
were introduced in [12] as

𝐴
+

𝑝
: sup
𝑎<𝑏<𝑐

1

(𝑐 − 𝑎)
𝑝
∫

𝑏

𝑎

𝑤 (𝑥) 𝑑𝑥(∫

𝑐

𝑏

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶,

𝐴
−

𝑝
: sup
𝑎<𝑏<𝑐

1

(𝑐 − 𝑎)
𝑝
∫

𝑐

𝑏

𝑤 (𝑥) 𝑑𝑥(∫

𝑏

𝑎

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶,

(7)

where 1 < 𝑝 < ∞, 1/𝑝 + 1/𝑝
󸀠
= 1; also, for 𝑝 = 1,

𝐴
+

1
:𝑀−

𝑤 ≤ 𝐶𝑤, 𝐴
−

1
:𝑀+

𝑤 ≤ 𝐶𝑤. (8)

The smallest constant 𝐶 for which the above inequalities
are satisfied will be denoted by 𝐴

+

𝑝
(𝑤) and 𝐴

−

𝑝
(𝑤), 𝑝 ≥ 1.

𝐴
+

𝑝
(𝑤) (𝐴−

𝑝
(𝑤)) will be called the 𝐴

+

𝑝
(resp., 𝐴−

𝑝
) constant

of 𝑤. By Lebesgue’s differentiation theorem, we can easily
prove 𝐴

+

1
(𝑤) (resp., 𝐴−

1
(𝑤)) ≥ 1. In [13], the class 𝐴+

∞
was

introduced as 𝐴+
∞

= ⋃
𝑝<∞

𝐴
+

𝑝
(see also [14]). It is easy to see

that for 1 ≤ 𝑝 ≤ ∞,𝐴
𝑝
⊂ 𝐴

+

𝑝
,𝐴

𝑝
⊂ 𝐴

−

𝑝
, and𝐴

𝑝
= 𝐴

+

𝑝
⋂𝐴

−

𝑝
.

Theorem 3 (see [11]). Let 1 < 𝑝 < ∞. Then
(1) 𝑀+ is bounded in 𝐿

𝑝
(𝑤) if and only if 𝑤 ∈ 𝐴

+

𝑝
;

(2) 𝑀− is bounded in 𝐿
𝑝
(𝑤) if and only if 𝑤 ∈ 𝐴

−

𝑝
.

The one-sided weight classes are of interest, not only
because they control the boundedness of the one-sided
Hardy-Littlewood maximal operator, but also because they
are the right classes for the weighted estimates of one-sided
Calderón-Zygmund singular integral operators [15], which
are defined by

𝑇̃
+
𝑓 (𝑥) = lim

𝜀→0
+

∫

∞

𝑥+𝜀

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

𝑇̃
−
𝑓 (𝑥) = lim

𝜀→0
+

∫

𝑥−𝜀

−∞

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

(9)

where 𝐾 is the one-sided Calderón-Zygmund kernel with
support inR− = (−∞, 0) andR+ = (0, +∞), respectively. We
say a function 𝐾 is a one-sided Calderón-Zygmund kernel if
𝐾 satisfies (2) and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑎<|𝑥|<𝑏

𝐾 (𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶, 0 < 𝑎 < 𝑏 (10)

with support in R− = (−∞, 0) or R+ = (0, +∞). An example
of such a kernel is

𝐾 (𝑥) =
sin (log |𝑥|)
(𝑥 log |𝑥|)

𝜒
(−∞,0) (𝑥) , (11)

where 𝜒
𝐸
denotes the characteristic function of a set 𝐸.

Theorem 4 (see [15]). Let 1 < 𝑝 < ∞ and 𝐾 be a one-sided
Calderón-Zygmund kernel. Then

(1) 𝑇̃+ is bounded in 𝐿
𝑝
(𝑤) if and only if 𝑤 ∈ 𝐴

+

𝑝
;

(2) 𝑇̃− is bounded in 𝐿
𝑝
(𝑤) if and only if 𝑤 ∈ 𝐴

−

𝑝
.

Theorem 4 is the one-sided version of weighted norm
inequality of singular integral due to Coifman and Fefferman
[9].

Highly inspired by the above statements for oscillatory
singular integral operators and one-sided operator theory,
in [16], the authors had introduced the one-sided oscillatory
singular integral operators and studied the weighted weak
type (1, 1)norm inequalities for these operators. In this paper,
we will further study the one-sided Muckenhoupt weight
classes and give the one-sided version of Theorem 2. It is
well known that the property of the one-sided Muckenhoupt
weight classes is worse than the Muckenhoupt weight classes
(see also [17]). For example, both the reverse Hölder inequal-
ity and the doubling condition are not true for the one-sided
case. Therefore, some new methods are needed to deal with
some new difficulties.

We first recall the definition of one-sided oscillatory
integral operator as

𝑇
+
𝑓 (𝑥) = lim

𝜀→0
+

∫

∞

𝑥+𝜀

𝑒
𝑖𝑃(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

𝑇
−
𝑓 (𝑥) = lim

𝜀→0
+

∫

𝑥−𝜀

−∞

𝑒
𝑖𝑃(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

(12)

where 𝑃 (𝑥, 𝑦) is a real-valued polynomial defined on R ×R

and the kernel 𝐾 is a one-sided Calderón-Zygmund kernel
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with support in R− and R+, respectively. Now, we formulate
our results as follows.

Theorem 5. Let 1 < 𝑝 < ∞ and 𝐾 be a one-sided Calderón-
Zygmund kernel.Then for any real-valued polynomial𝑃 (𝑥, 𝑦),

(1) there exists constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑇
+
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (13)

where 𝑤 ∈ 𝐴
+

𝑝
and the operator norm depend on the

total degree of 𝑃 and𝐴
+

𝑝
(𝑤), but not on the coefficients

of 𝑃 in other respects;

(2) there exists constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑇
−
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (14)

where 𝑤 ∈ 𝐴
−

𝑝
and the operator norm depend on the

total degree of 𝑃 and𝐴
−

𝑝
(𝑤), but not on the coefficients

of 𝑃 in other respects.

The rest of this paper is devoted to the argument for
Theorem 5. Section 2 contains some preliminaries which are
essential to our proof. In Section 3, we will give the proof of
Theorem 5.

2. Preliminaries

Lemma 6 (see [11, 18]). Let 1 < 𝑝 < ∞ and 𝑤 ≥ 0 be locally
integrable. Then the following statements are equivalent:

(1) 𝑤 ∈ 𝐴
+

𝑝
;

(2) 𝑤1−𝑝
󸀠

∈ 𝐴
−

𝑝
󸀠 ;

(3) there exist 𝑤
1

∈ 𝐴
+

1
and 𝑤

2
∈ 𝐴

−

1
such that 𝑤 =

𝑤
1
(𝑤
2
)
1−𝑝.

According to the definition of 𝐴+
𝑝
, we can easily obtain

the following lemma.

Lemma 7. Let 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴
+

𝑝
. Then 𝐴

+

𝑝
(𝛿
𝜆
(𝑤)) =

𝐴
+

𝑝
(𝑤), where 𝛿𝜆(𝑤)(𝑥) = 𝑤(𝜆𝑥) for all 𝜆 > 0.

Proof. For 1 < 𝑝 < ∞, if 𝑤 ∈ 𝐴
+

𝑝
, then

sup
𝑎<𝑏<𝑐

1

(𝑐 − 𝑎)
𝑝
∫

𝑏

𝑎

𝑤 (𝑥) 𝑑𝑥(∫

𝑐

𝑏

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶. (15)

For 𝜆 > 0, 𝑎󸀠 = 𝜆𝑎, 𝑏󸀠 = 𝜆𝑏, 𝑐󸀠 = 𝜆𝑐, and 𝑑
󸀠
= 𝜆𝑑, we have

1

(𝑐 − 𝑎)
𝑝
∫

𝑏

𝑎

𝑤 (𝜆𝑥) 𝑑𝑥(∫

𝑐

𝑏

𝑤(𝜆𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

=
1

(𝑐 − 𝑎)
𝑝
∫

𝑏𝜆

𝑎𝜆

𝑤 (𝑥) 𝜆
−1
𝑑𝑥(∫

𝑐𝜆

𝑏𝜆

𝑤(𝑥)
1−𝑝
󸀠

𝜆
−1
𝑑𝑥)

𝑝−1

=
1

(𝜆 (𝑐 − 𝑎))
𝑝
∫

𝑏𝜆

𝑎𝜆

𝑤 (𝑥) 𝑑𝑥(∫

𝑐𝜆

𝑏𝜆

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

=
1

(𝑐󸀠 − 𝑎󸀠)
𝑝

∫

𝑏
󸀠

𝑎
󸀠

𝑤 (𝑥) 𝑑𝑥(∫

𝑐
󸀠

𝑏
󸀠

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶.

(16)

The proof is complete.

We say a weight 𝑤 satisfies the one-sided reverse Hölder
𝑅𝐻

+

𝑟
condition [18] if there exists 𝐶 > 0 such that for any

𝑎 < 𝑏 and 1 < 𝑟 < ∞,

∫

𝑏

𝑎

𝑤(𝑥)
𝑟
𝑑𝑥 ≤ 𝐶(𝑀(𝑤𝜒

(𝑎,𝑏)
) (𝑏))

𝑟−1
∫

𝑏

𝑎

𝑤 (𝑥) 𝑑𝑥, (17)

where𝑀 is the classical Hardy-Littlewoodmaximal operator.
The smallest such constant will be called the 𝑅𝐻

+

𝑟
constant

of 𝑤 and will be denoted by 𝑅𝐻
+

𝑟
(𝑤). Corresponding to the

classical reverse Hölder inequality, (17) is named the weak
reverse Hölder inequality. For 𝑟 = ∞, we say a weight 𝑤
satisfies the one-sided reverse Hölder𝑅𝐻+

∞
condition if there

exists 𝐶 > 0 such that 𝑤 (𝑥) ≤ 𝐶𝑚
+
𝑤(𝑥) for almost all 𝑥 ∈ R

where𝑚+ is the one-sided minimal operator defined as

𝑚
+
𝑓 (𝑥) = inf

ℎ>0

1

ℎ
∫

𝑥+ℎ

𝑥

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 𝑑𝑦.

(18)

The smallest such constant will be called the𝑅𝐻+

∞
constant of

𝑤 and will be denoted by 𝑅𝐻+

∞
(𝑤). It is clear that 𝑅𝐻+

∞
(𝑤) ≥

1. In [18], the authors give several characterizations of 𝑅𝐻+

𝑟

where the constants 𝐶 are not necessary the same.

Lemma8. Let 𝑎 < 𝑏 < 𝑐 < 𝑑, 1 < 𝑟 < ∞, and𝑤 ≥ 0 be locally
integrable. Then the following statements are equivalent:

(1) ∫𝑏
𝑎
𝑤(𝑥)

𝑟
𝑑𝑥 ≤ 𝐶(𝑀(𝑤𝜒

(𝑎,𝑏)
)(𝑏))

𝑟−1
∫
𝑏

𝑎
𝑤(𝑥)𝑑𝑥;

(2) (1/(𝑏 − 𝑎)) ∫
𝑏

𝑎
𝑤(𝑥)

𝑟
𝑑𝑥 ≤ 𝐶((1/(𝑐 − 𝑏)) ∫

𝑐

𝑏
𝑤(𝑥)𝑑𝑥)

𝑟

with 𝑏 − 𝑎 = 2(𝑐 − 𝑏);

(3) (1/(𝑏 − 𝑎)) ∫
𝑏

𝑎
𝑤(𝑥)

𝑟
𝑑𝑥 ≤ 𝐶((1/(𝑑 − 𝑐)) ∫

𝑑

𝑐
𝑤(𝑥)𝑑𝑥)

𝑟

with 𝑏 − 𝑎 = 𝑑 − 𝑏 = 2(𝑑 − 𝑐);

(4) (1/(𝑏 − 𝑎)) ∫
𝑏

𝑎
𝑤(𝑥)

𝑟
𝑑𝑥 ≤ 𝐶((1/(𝑐 − 𝑏)) ∫

𝑐

𝑏
𝑤(𝑥)𝑑𝑥)

𝑟

with 𝑏 − 𝑎 = 𝑐 − 𝑏;

(5) (1/(𝑏 − 𝑎)) ∫
𝑏

𝑎
𝑤(𝑥)

𝑟
𝑑𝑥 ≤ 𝐶((1/(𝑑 − 𝑐)) ∫

𝑑

𝑐
𝑤(𝑥)𝑑𝑥)

𝑟

with 𝑏 − 𝑎 = 𝑑 − 𝑐 = 𝛾(𝑑 − 𝑎), 0 < 𝛾 ≤ 1/2.
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Lemma 9 (see [18]). A weight 𝑤 ∈ 𝐴
+

𝑝
for 𝑝 > 1 if and only

if there exist 0 < 𝛾 < 1/2 and a constant 𝐶
𝛾
such that for

𝑏 − 𝑎 = 𝑑 − 𝑐 = 𝛾 (𝑑 − 𝑎) with 𝑎 < 𝑏 < 𝑐 < 𝑑, the following
inequality holds:

∫

𝑏

𝑎

𝑤 (𝑥) 𝑑𝑥(∫

𝑑

𝑐

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶
𝛾(𝑏 − 𝑎)

𝑝
. (19)

Combining the results in [12, 15, 18, 19], we can deduce
Lemma 10. In what follows, we will include its proof with
slight modifications for the sake of completeness.

Lemma 10. Let 𝑤 ∈ 𝐴
+

𝑝
. Then there exists 𝜀 > 0 such that

𝑤
1+𝜀

∈ 𝐴
+

𝑝
.

Proof. By Lemma 6, we have 𝑤 = 𝑤
1
𝑤
1−𝑝

2
with 𝑤

1
∈ 𝐴

+

1

and 𝑤
2
∈ 𝐴

−

1
. For fixed interval 𝐼 = (𝑎, 𝑏), we next claim

that 𝑤
1

∈ 𝑅𝐻
+

𝑟
for all 1 < 𝑟 < 𝐶/(𝐶 − 1) with 𝐶 =

max{𝐴+
1
(𝑤
1
), 𝐴

−

1
(𝑤
1
)} > 1. In fact, we consider the truncation

of 𝑤 at height 𝐻 defined by 𝑤
𝐻

= min{𝑤
1
, 𝐻} which also

satisfies 𝐴+
1
condition (with a constant 𝐶

𝐻
≤ 𝐶). Therefore, if

𝜆
𝐼
= 𝑀(𝑤

𝐻
𝜒
𝐼
)(𝑏) and 𝑆

𝜆
= {𝑥 ∈ 𝐼 : 𝑤

𝐻
(𝑥) > 𝜆}, then we

have

∫
𝑆
𝜆

𝑤
𝐻 (𝑥) 𝑑𝑥 ≤ 𝐶

𝐻
𝜆
󵄨󵄨󵄨󵄨𝑆𝜆

󵄨󵄨󵄨󵄨 , 𝜆 ≥ 𝜆
𝐼
. (20)

Indeed, it is straightforward if 𝑆
𝜆
= 𝐼 since

𝑤
𝐻
(𝑆
𝜆
) = ∫

𝑏

𝑎

𝑤
𝐻 (𝑥) 𝑑𝑥 ≤ 𝜆

𝐼 (𝑏 − 𝑎) ≤ 𝐶
𝐻
𝜆
󵄨󵄨󵄨󵄨𝑆𝜆

󵄨󵄨󵄨󵄨 .
(21)

We now assume 𝑆
𝜆

̸= 𝐼 and fix 𝜀 > 0 and an open set 𝑂 such
that 𝑆

𝜆
⊂ 𝑂 ⊂ 𝐼 with |𝑂| ≤ 𝜀 + |𝑆

𝜆
|. Let 𝑂

𝑖
= (𝑐, 𝑑), which

is connected. There are two cases; that is, 𝑎 ≤ 𝑐 < 𝑑 < 𝑏

and 𝑎 ≤ 𝑐 < 𝑑 = 𝑏. In the first case, it is easy to check
that 𝑑 is not contained in 𝑆

𝜆
. By the definition of 𝑆

𝜆
, 𝑤+

1
, we

have ∫
𝑑

𝑐
𝑤
𝐻
(𝑥) 𝑑𝑥 ≤ 𝐶

𝐻
𝜆(𝑑 − 𝑐), while the second case is

handled as the case 𝑆
𝜆
= 𝐼 since ∫

𝑑

𝑐
𝑤
𝐻
(𝑥) 𝑑𝑥 ≤ 𝐶(𝑏 − 𝑐).

Thus 𝑤
𝐻
(𝑂
𝑖
) ≤ 𝐶

𝐻
𝜆|𝑂

𝑖
|. Adding up with 𝑖, we get

𝑤
𝐻
(𝑆
𝜆
) ≤ 𝑤

𝐻 (𝑂) ≤ 𝐶
𝐻
𝜆
󵄨󵄨󵄨󵄨𝑂𝑖

󵄨󵄨󵄨󵄨 ≤ 𝐶
𝐻
𝜆 (𝜀 +

󵄨󵄨󵄨󵄨𝑆𝜆
󵄨󵄨󵄨󵄨) . (22)

Therefore, we obtain (20). For fixed 𝜃 > −1, multiply both
sides of (20) by 𝜆

𝜃 and integrate from 𝜆
𝐼
to infinity; we can

obtain

1

𝜃 + 1
∫
𝐼

(𝑤
𝜃+2

𝐻
− 𝜆

𝜃+1

𝐼
) (𝑥) 𝑑𝑥 ≤

𝐶
𝐻

𝜃 + 2
∫
𝐼

𝑤
𝜃+2

𝐻
(𝑥) 𝑑𝑥. (23)

Now if 𝑟 = 𝜃 + 2 < 𝐶
𝐻
/(𝐶

𝐻
−1), then 1/(𝜃+1)−𝐶

𝐻
/(𝜃+2) > 0,

which implies

∫
𝐼

𝑤
𝑟

𝐻
(𝑥) 𝑑𝑥 ≤ 𝐶

𝐻
𝜆
𝑟−1

𝐼
∫
𝐼

𝑤
𝐻 (𝑥) 𝑑𝑥

= 𝐶
𝐻
(𝑀 (𝑤

𝐻
𝜒
𝐼
) (𝑏))

𝑟−1
∫
𝐼

𝑤
𝐻 (𝑥) 𝑑𝑥.

(24)

The inequality 𝐶
𝐻
≤ 𝐶 implies 𝐶

𝐻
/(𝐶

𝐻
−1) ≥ 𝐶/(𝐶−1).

Therefore, if 𝑟 ≤ 𝐶/(𝐶 − 1), then we have

∫
𝐼

𝑤
𝑟

𝐻
(𝑥) 𝑑𝑥 = 𝐶

𝐻
(𝑀 (𝑤

𝐻
𝜒
𝐼
) (𝑏))

𝑟−1
∫

𝑏

𝑎

𝑤
𝐻 (𝑥) 𝑑𝑥

= 𝐶(𝑀(𝑤
1
𝜒
(𝑎,𝑏)

) (𝑏))
𝑟−1

∫

𝑏

𝑎

𝑤
𝐻 (𝑥) 𝑑𝑥.

(25)

Hence 𝑤
1
∈ 𝑅𝐻

+

𝑟
by the monotone convergence theorem.

Since 𝑤
2
∈ 𝐴

−

1
, we next claim that 𝑤1−𝑝

2
∈ 𝑅𝐻

+

∞
. In fact, for

any interval 𝐼 = (𝑎, 𝑏), we have

(
1

|𝐼|
∫
𝐼

𝑤
2 (𝑥) 𝑑𝑥)

1−𝑝

≤
1

|𝐼|
∫
𝐼

𝑤
2(𝑥)

1−𝑝
𝑑𝑥 (26)

byHölder’s inequality and the𝐴−
1
condition. For almost every

𝑥 ∈ 𝐼
−
= (2𝑎 − 𝑏, 𝑎), we have

𝐶𝑤
2
≥

1

|𝐼|
∫
𝐼

𝑤
2 (𝑥) 𝑑𝑥. (27)

Thus,

𝑤
2(𝑥)

1−𝑝
≤ 𝐶(

1

|𝐼|
∫
𝐼

𝑤
2 (𝑥) 𝑑𝑥)

1−𝑝

≤ 𝐶
1

|𝐼|
∫
𝐼

𝑤
2(𝑥)

1−𝑝
𝑑𝑥

≤ 𝐶
1

𝑏 − 𝑥
∫

𝑏

𝑥

𝑤
2(𝑥)

1−𝑝
𝑑𝑥,

(28)

which implies our claim. Hence,
1

|𝐼|
∫
𝐼

𝑤
𝑟
≤

1

|𝐼|
∫
𝐼

𝑤
𝑟

1
sup
𝐼

(𝑤
−𝑟(𝑝−1)

2
)

≤ 𝐶(
1

𝐼
1

∫
𝐼
1

𝑤
1
)

𝑟

(
1

𝐼
1

∫
𝐼
1

𝑤
1−𝑝

2
)

𝑟

≤ 𝐶(inf
𝐼
1

𝑤
1
)

𝑟

(sup
𝐼
1

𝑤
1−𝑝

2
)

𝑟

≤ 𝐶 (inf 𝑤
1
)
𝑟
(
1

𝐼
2

∫
𝐼
2

𝑤
1−𝑝

2
)

𝑟

≤ 𝐶(
1

𝐼
2

∫
𝐼
2

𝑤)

𝑟

,

(29)

where 𝐼
1
= (𝑏, 2𝑏−𝑎) and 𝐼

2
= (2𝑏−𝑎, 3𝑏−2𝑎). By Lemma 8,

we obtain 𝑤 ∈ 𝑅𝐻
+

𝑟
. Hence, 𝑤1−𝑝

󸀠

∈ 𝑅𝐻
−

𝑟
for all 1 < 𝑟 <

𝐶/(𝐶 − 1) by Lemma 6.
Let us fix 𝑎 < 𝑑 and choose 𝑏, 𝑐 such that 𝑏 − 𝑎 = 𝑑 − 𝑐 =

(𝑑 − 𝑎)/4 (e.g., we choose 𝑏 = (𝑑 + 3𝑎)/4, 𝑐 = (3𝑑 + 𝑎)/4).
Following from the five points 𝑎, 𝑏, (𝑏 + 𝑐)/2, 𝑐, 𝑑, we have
four intervals, namely,

𝐼
1
= (𝑎, 𝑏) , 𝐼

2
= (𝑏,

(𝑏 + 𝑐)

2
) ,

𝐼
3
= (

(𝑏 + 𝑐)

2
, 𝑐) , 𝐼

4
= (𝑐, 𝑑) .

(30)
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By Lemma 8, we have

1

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨

∫
𝐼

𝑤
𝑟
(

1

󵄨󵄨󵄨󵄨𝐼4
󵄨󵄨󵄨󵄨

∫
𝐼
4

𝑤
𝑟(1−𝑝

󸀠
)
)

𝑝−1

≤ (
1

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨

∫
𝐼
2

𝑤)

𝑟

(
1

󵄨󵄨󵄨󵄨𝐼3
󵄨󵄨󵄨󵄨

∫
𝐼
3

𝑤
(1−𝑝
󸀠
)
)

𝑟(𝑝−1)

≤ 𝐶
𝑟
.

(31)

Thus, 𝑤𝑟 ∈ 𝐴
+

𝑝
by Lemma 9. Choosing 0 < 𝜀 = 𝑟 − 1 < 1/

(𝐶 − 1), then we complete the proof of the lemma.

To prove Theorem 5, we still need a celebrated interpola-
tion theorem of operators with change of measures.

Lemma 11 (see [20]). Suppose that 𝑢
0
, V
0
, 𝑢
1
, V
1
are positive

weight functions and 1 < 𝑝
0
, 𝑝

1
< ∞. Assume sublinear

operator 𝑆 satisfies
󵄩󵄩󵄩󵄩𝑆𝑓

󵄩󵄩󵄩󵄩𝐿𝑝0 (𝑢
0
)
≤ 𝐶

0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝0 (V

0
)
,

󵄩󵄩󵄩󵄩𝑆𝑓
󵄩󵄩󵄩󵄩𝐿𝑝1 (𝑢

1
)
≤ 𝐶

1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝1 (V

1
)
.

(32)

Then,
󵄩󵄩󵄩󵄩𝑆𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝑢) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(V) (33)

holds for any 0 < 𝜃 < 1 and 1/𝑝 = 𝜃/𝑝
0
+ (1 − 𝜃)/𝑝

1
, where

𝑢 = 𝑢
𝑝𝜃/𝑝
0

0
𝑢
𝑝(1−𝜃)/𝑝

1

1
, V = V𝑝𝜃/𝑝0

0
V𝑝(1−𝜃)/𝑝1
1

, and 𝐶 ≤ 𝐶
𝜃

0
𝐶
1−𝜃

1
.

Lemmas 10 and 11 are the main tools in proving
Theorem 5.

3. Proof of Theorem 5

In this section, we will prove Theorem 5 by induction, which
is partly motivated by [8, 10]. We begin with the proof of (1).
For any nonzero real polynomial𝑃 (𝑥, 𝑦) in 𝑥 and 𝑦, there are
𝑘, 𝑙, 𝑚 ≥ 0 such that

𝑃 (𝑥, 𝑦) = 𝑎
𝑘𝑙
𝑥
𝑘
𝑦
𝑙
+ 𝑅 (𝑥, 𝑦) (34)

with 𝑎
𝑘𝑙

̸= 0 and

𝑅 (𝑥, 𝑦) = ∑

0≤𝛼<𝑘,0≤𝛽≤𝑚

𝑎
𝛼𝛽
𝑥
𝛼
𝑦
𝛽
+ ∑

0≤𝛽<𝑙

𝑎
𝑘𝛽
𝑥
𝑘
𝑦
𝛽
. (35)

We will write 𝑑
𝑥
(𝑃) = 𝑘 and 𝑑

𝑦
(𝑃) = 𝑙. Below we will carry

out the argument by using a double induction on 𝑘 and 𝑙.
If 𝑑

𝑥
(𝑃) = 0 and 𝑑

𝑦
(𝑃) is arbitrary, then 𝑃 (𝑥, 𝑦) = 𝑃 (𝑦)

and 𝑇
+
𝑓 can be written as

𝑇
+
𝑓 (𝑥) = lim

𝜀→0
+

∫

∞

𝑥+𝜀

𝐾(𝑥 − 𝑦) 𝑔 (𝑦) 𝑑𝑦, (36)

where 𝑔(𝑦) = 𝑒
𝑖𝑃(𝑦)

𝑓(𝑦). Therefore, the conclusion of
Theorem 5 follows fromTheorem 4.

Let 𝑘 ≥ 1 and assume that the conclusion of Theorem 5
holds for all 𝑃 (𝑥, 𝑦) with 𝑑

𝑥
(𝑃) ≤ 𝑘 − 1 and 𝑑

𝑦
(𝑃) arbitrary.

Wewill nowprove that the conclusion ofTheorem 5holds
for all 𝑃 (𝑥, 𝑦) with 𝑑

𝑥
(𝑃) = 𝑘 and 𝑑

𝑦
(𝑃) arbitrary.

If 𝑑
𝑥
(𝑃) = 𝑘 and 𝑑

𝑦
(𝑃) = 0, then

𝑃 (𝑥, 𝑦) = 𝑎
𝑘0
𝑥
𝑘
+ 𝑄 (𝑥, 𝑦) (37)

with 𝑑
𝑥
(𝑄) ≤ 𝑘 − 1. By taking the factor 𝑒𝑖𝑎𝑘0𝑥

𝑘

out of the
integral sign, we see that this case follows from the above
inductive hypothesis.

Suppose 𝑙 ≥ 1 and the desired bound holds when 𝑑
𝑥
(𝑃) =

𝑘 and 𝑑
𝑦
(𝑃) ≤ 𝑙 − 1.

Now, let 𝑃 (𝑥, 𝑦) be a polynomial with 𝑑
𝑥
(𝑃) = 𝑘 and

𝑑
𝑦
(𝑃) = 𝑙, as given in (34).

Case 1 (|𝑎
𝑘𝑙
| = 1). Write

𝑇
+
𝑓 (𝑥) = ∫

1+𝑥

𝑥

𝑒
𝑖𝑃(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

+

∞

∑

𝑗=1

∫

2
𝑗
+𝑥

2
𝑗−1
+𝑥

𝑒
𝑖𝑃(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

=: 𝑇
+

0
𝑓 (𝑥) +

∞

∑

𝑗=1

𝑇
+

𝑗
𝑓 (𝑥) .

(38)

Take any ℎ ∈ R, and write

𝑃 (𝑥, 𝑦) = 𝑎
𝑘𝑙(𝑥 − ℎ)

𝑘
(𝑦 − ℎ)

𝑙
+ 𝑅 (𝑥, 𝑦, ℎ) , (39)

where the polynomial 𝑅 (𝑥, 𝑦, ℎ) satisfies the induction
assumption and the coefficients of 𝑅 (𝑥, 𝑦, ℎ) depend on ℎ.

We consider first the estimates for 𝑇+
0
. It is easy to check

that

𝑇
+

0
𝑓 (𝑥)

= ∫

1+𝑥

𝑥

𝑒
𝑖(𝑅(𝑥,𝑦,ℎ)+𝑎

𝑘𝑙
(𝑦−ℎ)

𝑘+𝑙
)
𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

+ ∫

1+𝑥

𝑥

{𝑒
𝑖𝑃(𝑥,𝑦)

− 𝑒
𝑖(𝑅(𝑥,𝑦,ℎ)+𝑎

𝑘𝑙
(𝑦−ℎ)

𝑘+𝑙
)
}

× 𝐾 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

=: 𝑇
+

01
𝑓 (𝑥) + 𝑇

+

02
𝑓 (𝑥) .

(40)

Now we split 𝑓 into three parts as

𝑓 (𝑦) = 𝑓 (𝑦) 𝜒
{|𝑦−ℎ|<1/2}

(𝑦)

+ 𝑓 (𝑦) 𝜒
{1/2≤|𝑦−ℎ|<5/4}

(𝑦)

+ 𝑓 (𝑦) 𝜒
{|𝑦−ℎ|≥5/4}

(𝑦)

=: 𝑓
1
(𝑦) + 𝑓

2
(𝑦) + 𝑓

3
(𝑦) .

(41)

Observe that if |𝑥 − ℎ| < 1/4, then

𝑇
+

01
𝑓
1 (𝑥)

= ∫

1+𝑥

𝑥

𝑒
𝑖(𝑅(𝑥,𝑦,ℎ)+𝑎

𝑘𝑙
(𝑦−ℎ)

𝑘+𝑙
)
𝐾(𝑥 − 𝑦)𝑓

1
(𝑦) 𝑑𝑦.

(42)
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Thus, it follows from the induction assumption that

∫
|𝑥−ℎ|<1/4

󵄨󵄨󵄨󵄨𝑇
+

01
𝑓
1 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑦−ℎ|<1/2

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑦) 𝑑𝑦,

(43)

where 𝐶 is independent of ℎ and the coefficients of 𝑃 (𝑥, 𝑦).
Notice that if |𝑥 − ℎ| < 1/4, 1/2 ≤ |𝑦 − ℎ| < 5/4, then

𝑦 − 𝑥 > 1/4. Thus,

󵄨󵄨󵄨󵄨𝑇
+

01
𝑓
2 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐶∫

𝑥+1

𝑥+1/4

󵄨󵄨󵄨󵄨𝐾 (𝑥 − 𝑦)𝑓
2
(𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶𝑀
+
(𝑓
2
) (𝑥) .

(44)

So we have

∫
|𝑥−ℎ|<1/4

󵄨󵄨󵄨󵄨𝑇
+

01
𝑓
2 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑦−ℎ|<5/4

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑦) 𝑑𝑦,

(45)

where 𝐶 is independent of ℎ and the coefficients of 𝑃 (𝑥, 𝑦).
Again observe that if |𝑥 −ℎ| < 1/4 and |𝑦−ℎ| ≥ 5/4, then

𝑦 − 𝑥 > 1. Thus,

𝑇
+

01
𝑓
3 (𝑥) = 0. (46)

Combining (43), (45), and (46), we get

∫
|𝑥−ℎ|<1/4

󵄨󵄨󵄨󵄨𝑇
+

01
𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑦−ℎ|<5/4

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑦) 𝑑𝑦,

(47)

where 𝐶 is independent of ℎ and the coefficients of 𝑃 (𝑥, 𝑦).
Evidently, if |𝑥 − ℎ| < 1/4 and 0 < 𝑦 − 𝑥 < 1, then

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝑖𝑃(𝑥,𝑦)

− 𝑒
𝑖(𝑅(𝑥,𝑦,ℎ)+𝑎

𝑘𝑙
(𝑦−ℎ)

𝑘+𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄨󵄨󵄨󵄨𝑎𝑘𝑙

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 = 𝐶 (𝑦 − 𝑥) .

(48)

Therefore, when |𝑥 − ℎ| < 1/4, we have

󵄨󵄨󵄨󵄨𝑇
+

02
𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐶∫

𝑥+1

𝑥

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶𝑀
+
(𝑓 (⋅) 𝜒𝐵(ℎ,5/4) (⋅)) (𝑥) .

(49)

It follows fromTheorem 3 that

∫
|𝑥−ℎ|<1/4

󵄨󵄨󵄨󵄨𝑇
+

02
𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑦−ℎ|<5/4

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑦) 𝑑𝑦,

(50)

where 𝐶 is independent of ℎ and the coefficients of 𝑃 (𝑥, 𝑦).

From (47) and (50), it follows that the inequality

∫
|𝑥−ℎ|<1/4

󵄨󵄨󵄨󵄨𝑇
+

0
𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑦−ℎ|<5/4

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑦) 𝑑𝑦

(51)

holds uniformly in ℎ ∈ R+, which implies
󵄩󵄩󵄩󵄩𝑇
+

0
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (52)

where𝐶 is independent of the coefficients of 𝑃 (𝑥, 𝑦) and𝑤 ∈

𝐴
+

𝑝
.
We proceed with the proof of Theorem 5 with the esti-

mates for 𝑇+
𝑗
𝑓. Because of the size condition (2), we observe

that for 𝑗 ≥ 1

󵄨󵄨󵄨󵄨󵄨
𝑇
+

𝑗
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ ∫

2
𝑗
+𝑥

2
𝑗−1
+𝑥

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑦 ≤ 𝐶𝑀
+
(𝑓) (𝑥) , (53)

where 𝐶 is independent of 𝑗. By Lemma 10, we know that
there exists 𝜀 > 0 such that 𝑤1+𝜀 ∈ 𝐴

+

𝑝
. Thus we have

󵄩󵄩󵄩󵄩󵄩
𝑇
+

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑤1+𝜀)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝑤1+𝜀), (54)

where 𝐶 is independent of 𝑗. We now only need to recall
Lemma 3.7 in [16] to see that

󵄩󵄩󵄩󵄩󵄩
𝑇
+

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶2
−𝑗𝛿󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝 , (55)

where 𝐶 depends only on the total degree of 𝑃 (𝑥, 𝑦) and 𝛿 >

0. It follows from (54), (55), and Lemma 11 that
󵄩󵄩󵄩󵄩󵄩
𝑇
+

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑤)

≤ 𝐶2
−𝑗𝜃𝛿󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (56)

where 0 < 𝜃 < 1, 𝜃 is independent of 𝑗, and 𝐶 depends only
on the total degree of 𝑃 (𝑥, 𝑦).

From (52) and (56), it is clear that when 𝑤 ∈ 𝐴
+

𝑝
,

󵄩󵄩󵄩󵄩𝑇
+
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (57)

where 𝐶 depends only on the total degree of 𝑃 (𝑥, 𝑦).

Case 2 (|𝑎
𝑘𝑙
| ̸= 1). In this case, we write 𝜆 = |𝑎

𝑘𝑙
|
1/(𝑘+𝑙) and

𝑃 (𝑥, 𝑦) = 𝜆
−(𝑘+𝑙)

𝑎
𝑘𝑙(𝜆𝑥)

𝑘
(𝜆𝑦)

𝑙
+ 𝑅(

𝜆𝑥

𝜆
,
𝜆𝑦

𝜆
)

= 𝑄 (𝜆𝑥, 𝜆𝑦) .

(58)

Therefore,

𝑇
+
𝑓 (𝑥) = p.v. ∫ 𝑒

𝑖𝑄(𝜆𝑥,𝜆𝑦)
𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

= p.v. ∫ 𝑒
𝑖𝑄(𝜆𝑥,𝑦)

𝐾(
𝜆𝑥

𝜆
−
𝑦

𝜆
)𝑓(

𝑦

𝜆
)𝜆

−1
𝑑𝑦

= 𝑇
+

𝜆
(𝑓(

⋅

𝜆
)) (𝜆𝑥) ,

(59)
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where𝐾
𝜆
(𝑥 − 𝑦) = 𝜆

−1
𝐾(𝑥/𝜆 − 𝑦/𝜆) and

𝑇
+

𝜆
𝑓 (𝑥) = p.v. ∫ 𝑒

𝑖𝑄(𝑥,𝑦)
𝐾
𝜆
(𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦. (60)

It is easy to check that 𝐾
𝜆
satisfies (2) and (10). We have thus

established that
󵄩󵄩󵄩󵄩𝑇
+

𝜆
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) (61)

with similar statements as in Case 1. By Lemma 7, we have

∫
󵄨󵄨󵄨󵄨𝑇
+
𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

= ∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
+

𝜆
𝑓(

⋅

𝜆
) (𝜆𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥

= 𝜆
−1

∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
+

𝜆
𝑓(

⋅

𝜆
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑤(
𝑥

𝜆
)𝑑𝑥

≤ 𝐶∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (

𝑥

𝜆
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑤(
𝑥

𝜆
)𝑑𝑥

= 𝐶∫
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥;

(62)

that is,
󵄩󵄩󵄩󵄩𝑇
+
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤), (63)

where𝐶 depends on the total degree of𝑃 (𝑥, 𝑦) but not on the
coefficients of 𝑃 (𝑥, 𝑦).

(2) We omit the details, since they are very similar to that
of the proof of (1) with 𝑤 ∈ 𝐴

−

𝑝
instead of 𝑤 ∈ 𝐴

+

𝑝
.
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