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Akaike Information Criterion (AIC) based on least squares (LS) regression minimizes the sum of the squared residuals; LS is
sensitive to outlier observations. Alternative criterion, which is less sensitive to outlying observation, has been proposed; examples
are robust AIC (RAIC), robust Mallows Cp (RCp), and robust Bayesian information criterion (RBIC). In this paper, we propose a
robust AIC by replacing the scale estimate with a high breakdown point estimate of scale. The robustness of the proposed methods
is studied through its influence function. We show that, the proposed robust AIC is effective in selecting accurate models in the
presence of outliers and high leverage points, through simulated and real data examples.

1. Introduction

Akaike Information Criterion (AIC) [1] is a powerful tech-
nique for model selection, and it has been widely used for
selecting models in many fields of study.

Consider a multiple linear regression model:

𝑦
𝑖
= 𝜇 + x𝑇

𝑖
𝛽 + 𝜖
𝑖
, (1)

where x
𝑖
= (x
𝑖1
, . . . , x

𝑖𝑝
)
𝑇 is a vector containing 𝑝 explanatory

variables, 𝑦
𝑖
is the response variable, 𝛽 is a vector of 𝑝

parameters, 𝜇 is the intercept parameter, and 𝜖
𝑖
is the error

component, which is independent and identically distributed
(iid), with mean 0 and variance 𝜎2. The classical AIC is
defined as

AIC = ln(SSE
𝑛
) + 2𝑝, (2)

where SSE = ∑ 𝑟
2

𝑖
, with 𝑟

𝑖
= 𝑦
𝑖
− 𝜇LS − x𝑇

𝑖
𝛽̂LS.

Since the LS estimator is vulnerable in presence of out-
liers, it is not surprising that AIC inherits this problem. Sev-
eral robust AIC alternatives to the AIC have been proposed
in the literature (see [2–4]). For an example Ronchetti [3] has
proposed and investigated the properties of a robust version
of AIC, with respect to𝑀-estimation. A similar ideawas used
by Martin [2] for autoregressive models. Furthermore, very
recently Tharmaratnam and Claeskens [4] have proposed

a robust AIC with respect to 𝑆-estimation and 𝑀𝑀-
estimation, to generalize the information criteria, using the
full likelihood models. In spite of all these complicated
approaches of deriving robust AIC, we introduce a straight-
forward approach to derive robust AIC, which focuses on
modifying the estimate of the scale.

To set the idea, the influence of outlier on AIC is illus-
trated through the presence of outliers in the 𝑌-direction
(called a vertical outlier) or in the 𝑋-direction (called a
leverage point). For this, a point with coordinates (0, 𝑦

10
) is

added, where the value of 𝑦 ranges between (−1.5 and 3). A
similar approach is done for leverage points, by replacing the
value xwith (𝑥

10
, 0) (Figure 1). Table 1 and Figure 2 show that

the value of AIC increases as the size of contamination in
(𝑥
10
, 𝑦
10
) increases, as expected, and if 𝑥 or 𝑦 is extremely

large, the AIC is unbounded; that is, it will tend to infinity.
The remainder of the paper has been organized as follows.

Section 1.1 reviews some robust regression estimate methods.
In Section 1.2 we review a robust version of AIC; we discuss
the robustness problem from the viewpoint of model selec-
tion and point out the sensitivity of robust AIC, based on𝑀-
estimator to leverage points.We derive the influence function
of AIC and study its properties in Section 2.The performance
of robust AIC is evaluated and compared to the commonly
used classical AIC in Section 3. Finally, concluding remark is
presented in Section 4.
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Figure 1: Data and positions for 𝑦
10
and 𝑥

10
points.
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Figure 2: Effect of adding one observation (0, 𝑦
10
) or (𝑥

10
, 0) on the values of AIC.

Table 1: AIC for different values of 𝑦
10
and 𝑥

10
.

𝑦
10

AIC 𝑥
10

AIC
3 3.2 4.5 3.3
2.5 2.9 4 3.2
2 2.4 3.5 3.0
1.5 1.9 3 2.8
1 1.2 2.5 2.6
0.5 0.2 0 −0.5
0 −0.5 −2.5 2.6
−0.5 0.3 −3 2.9
−1 1.2 −3.5 3.1
−1.5 1.9 −4 3.2

1.1. A Robust Regression Estimate. The𝑀-estimator [5] 𝛽̂
𝑀
is

the value of 𝛽 that minimizes the following function:

𝑖=𝑛

∑

𝑖=1

𝜌 (𝑦
𝑖
− 𝜇 − x𝑇

𝑖
𝛽) , (3)

where 𝜌 is symmetric and nondecreasing on [0,∞). Further-
more, 𝜌(0) = 0, and 𝜌 is almost continuously differentiable,
anywhere. Furthermore,𝜌 is a function, which is less sensitive
to outliers than squares, yielding the estimating equation:

𝑖=𝑛

∑

𝑖=1

𝜓 (𝑦
𝑖
− 𝜇 − x𝑇

𝑖
𝛽̂) x
𝑖
= 0, (4)
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where 𝜓 = 𝜌
󸀠. If we choose 𝜌 function in (3) as Tukey

Biweight function

𝜌 (𝑟; 𝑑) =
{

{

{

3(
𝑟

𝑑
)

2

− 3(
𝑟

𝑑
)

4

+ (
𝑟

𝑑
)

6

, if |𝑟| ≤ 𝑑,

1, elsewhere,
(5)

where 𝑑 = 1.5476 yields 𝑏 = 𝐸
Φ
[𝜌(𝑍; 𝑑)] = 2(1 −

𝐹
0
(𝑑)), with Φ the standard normal cumulative distribution

function and 𝑍 ∼ 𝑁(0, 1), the resulting estimator is then
Biweight 𝑆-estimator. 𝑀-estimators are efficient and highly
robust to unusual value of 𝑌, but one rogue leverage point
can break themdown completely. For this reason, generalized
𝑀-estimators were introduced, which solve

𝑖=𝑛

∑

𝑖=1

𝑤 (x
𝑖
) 𝜓 (𝑦

𝑖
− 𝜇 − x𝑇

𝑖
𝛽̂) x
𝑖
= 0, (6)

where 𝑤 is a weight function [6].
In recent years, a good deal of attention in the literature

has been focused on high-breakdown methods; that is, one
method must be resistant to even multiple severe outliers.
Many methods are based on minimizing a more robust
scale estimate than sum of squared residuals. For example,
Rousseeuw [7] proposed LMS, a high-breakdown method
that minimizes the median of the squared residuals, rather
than their sum. In addition, Rousseeuw [8] proposed least
trimmed squares (LTS), which minimizes the sum of the 𝐻
smallest squared residuals, defined as

𝛽̂LTS,𝐻,𝑁 = arg min
𝑖=𝐻

∑

𝑖=1

𝑟
2

𝑖
(𝛽) , (7)

based on the ordered absolute residuals |𝑟
(1)
| ⩽ |𝑟

(2)
| ⩽

⋅ ⋅ ⋅ ⩽ |𝑟
(𝑛)
|. LTS converges at the rate of 𝑛1/2 with the

same asymptotic efficiency under normality, as Huber’s skip
estimator. The convergence rate of LMS is 𝑛

1/3, and its
objective function is less smooth than LTS.

1.2. The Robust Version of AIC. Consider scale estimate of
errors defined by

𝑆 =
SSE

(𝑛 − 𝑝)
, (8)

with SSE = ∑
𝑖=𝑛

𝑖=1
𝑟
2

𝑖
and 𝑟
𝑖
= 𝑦
𝑖
− 𝜇 − x𝑇

𝑖
𝛽̂. By replacing the

value of SSE in (2) in terms of 𝑆, AIC in (2) can be expressed
as follows:

AIC
𝑆
= ln(

(𝑛 − 𝑝) 𝑆
2

𝑛
) + 2𝑝. (9)

Notice that the largest values of AIC indicate that the model
(and hence the explanatory variables) is less successful in
explaining the variations in the response, while a small value
of AIC indicates an excellent fit (i.e., model) to the response
data.

Ronchetti [3] proposed a robust counterpart of the
AIC statistic. The extension of AIC to RAIC is inspired

by the extension of maximum likelihood estimation to 𝑀-
estimation.The author derivedRAIC for an error distribution
with density function𝑓(𝜖) = exp(−𝜌(𝜖)). For a given constant
𝛼 and a given function 𝜌, the author chose the model that
minimizes

RAIC (𝑝, 𝛼, 𝜌)

=

𝑖=𝑛

∑

𝑖=1

𝜌(
(𝑦
𝑖
− 𝜇 − x𝑇

𝑖
𝛽̂
𝑀
)

𝜎̂
) + 𝛼𝑝,

(10)

where 𝜎̂ is some robust estimate of 𝜎 and 𝛽̂
𝑀

is the 𝑀-
estimator defined as in (3). Huber [9] suggested 𝛼 =

2𝐸([𝜓
2
(((𝑦
𝑖
−𝜇− x𝑇

𝑖
𝛽̂))/𝜎̂)])/(𝐸[𝜓󸀠(((𝑦

𝑖
−𝜇− x𝑇

𝑖
𝛽̂))/𝜎̂)]) and

𝑘 = 1.345.
We introduce an alternative robust version of AIC, by

replacing 𝑆 in (8) to the robust estimator of scale which
attains a 50% breakdown point. When 𝐻 = 𝑛/2, (8) finds
the estimates corresponding to the half samples, having the
smallest sum of squares of residuals. As such, as expected, the
breakdown point is 50%, and the estimated scale from LTS is

𝜎̂
2

(LTS,𝐻,𝑁) =
1

𝐻

𝑖=𝐻

∑

𝑖=1

𝑟
2

(𝑖)
(𝛽̂
(LTS,𝐻,𝑁)) . (11)

For other robust estimations, the 𝑀-estimator and the
Biweight 𝑆-estimator are compared to least trimmed of
squares. Based on the results shown in Table 2, it is evident
that the𝑀-estimator is muchmore robust than LS but suffers
from leverage points.The Biweight 𝑆-estimator and LTS show
robust behavior: the AICBS is stable, even though the size of
the outliers increases. In the next section, we generalize these
findings, by computing the associated influence functions.

2. Influence Function

Consider the linear model in (1), for 𝑖 = 1, . . . , 𝑛. Assume the
distribution of errors satisfying 𝐹

𝜎
(x) = 𝐹

0
(x/𝜎), where 𝜎 is

the residual scale parameter and 𝐹
0
is symmetric with valid

probability density function.
Let x and 𝑦 be independent stochastic variables with

distribution 𝐻. The functional 𝑇 is Fisher-consistent for the
parameters (𝜇,𝛽) at the model distribution𝐻, as follows:

𝑇 (𝐻) = [
𝑎 (𝐻)

b (𝐻)] = [
𝜇

𝛽,
] . (12)

For a Fisher-consistent scale estimator, 𝐹
𝜎
(x) = 𝐹(x/𝜎), for

all 𝜎 > 0. In general, the influence function of 𝑇 at the
distribution 𝐹 is defined as

𝐼𝐹 ((x, 𝑦) , 𝑇,𝐻)

= lim
𝜖→0

𝑇 ((1 − 𝜖)𝐻 + 𝜖Δ
(x,𝑦) − 𝑇 (𝐻))

𝜖

=
𝜕

𝜕𝜖
(𝑇 (Δ

(x,𝑦))) ,

(13)

where 𝑇(𝐻) is the functional defined as the solution of the
objective model and Δ

(x,𝑦) is the distribution which contains
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Table 2: Robust AIC for different values of 𝑦
10

(vertical) and 𝑥
10

(leverage).

𝑦
10

AIC
𝑀

AICBS AICLTS 𝑥
10

AIC
𝑀

AICBS AICLTS

3 3.7 3.9 3.4 4.5 3.9 3.9 3.4
2.5 3.7 3.9 3.4 4 3.7 3.9 3.4
2 3.7 3.9 3.4 3.5 3.6 3.9 3.4
1.5 3.7 3.9 3.4 3 3.6 3.9 3.4
1 3.7 3.9 3.4 2.5 3.7 3.9 3.4
0.5 3.7 3.9 3.4 0 3.5 3.6 3.2
0 3.6 3.6 3.2 −2.5 3.7 3.9 3.4
−0.5 3.7 3.9 3.4 −3 3.7 3.9 3.4
−1 3.7 3.9 3.4 −3.5 3.9 3.9 3.4
−1.5 3.7 3.9 3.4 −4 4 3.9 3.4

outliers. The following theorem gives the influence function
of AIC with any scale 𝑆.

Theorem 1. Let 𝐻 be some distribution other than 𝐹. Take
(X, 𝑌) ∼ 𝐻 and denote by 𝜖 the error term of the model.
Assume that 𝑆has the property that is differentiablewith partial
derivatives equal to zero at the origin (0,0). Then,

𝐼𝐹 ((x, 𝑦) ,AIC
𝑆
, 𝐻)

=
2𝑛

(𝑛 − 𝑝)
𝐼𝐹(

𝑟
𝑖𝑝

𝜎
𝑝

, 𝑆, 𝐹
0
) ,

(14)

where 𝑟
𝑖𝑝
= 𝑦
𝑖
−𝜇− x𝑇

𝑖
𝛽̂
𝑝
and 𝜎̂2
𝑝
= 𝑆𝑆𝐸/(𝑛 − 𝑝) are computed

from sum model. (The proof is in the Appendix.)

It is clear that the influence function in (13) is bounded
if the 𝐼𝐹(𝑟

𝑖𝑝
/𝜎
𝑝
, 𝑆, 𝐹
0
) is also bounded. It is evident that

AIC is nonrobust, since the LS estimate has unbounded
influence function. The influence function of 𝑀-estimation
with respect to 𝑌 is bounded by choice of 𝜓, but it is
unbounded with respect to the𝑋 direction. That is,

𝐼𝐹 ((x, 𝑦) , 𝑇, 𝐹)

= 𝑀
−1
(𝜓, 𝐹) x𝜓 (𝑦 − x𝑇𝑇 (𝐹)) ,

(15)

where 𝜓 = 𝜌
󸀠 and𝑀 is a certain 𝑝 × 𝑝matrix given by

𝑀(𝜓, 𝐹)

= ∫𝜓
󸀠
(𝑦 − x𝑇𝑇 (𝐹)) xx𝑇𝑑𝐹 (x, 𝑦) .

(16)

The influence function of the AIC using LTS estimators,
followingTheorem 1, takes the form

𝐼𝐹 ((x, 𝑦) ,AICLTS, 𝐻)

=
2𝑛

(𝑛 − 𝑝)
⋅ 𝐼𝐹(

𝑟
𝑖𝑝

𝜎
𝑝

, 𝜎̂
2

LTS, 𝐹0) .
(17)

We have noted that the influence function of AICLTS is
bounded in both 𝑌 and 𝑋 directions, as 𝐼𝐹(𝑟

𝑖𝑝
/𝜎
𝑝
, 𝜎̂
2

LTS, 𝐹0)

is bounded. Moreover, we conclude that AIC with high
breakdown point estimator provides reliable fits to the data
in presence of leverage points.

3. Numerical Examples

In this section, AICLTS, AICLMS, and AICBS are compared
with AIC and RAIC. In this study, 50 independent replicates
of 3 independent uniform random variables on [−1, 1] of
x
𝑖1
, x
𝑖2
, and x

𝑖3
and 50 independent normally distributed

errors 𝜖
𝑖
∼ 𝑁(0, 9) were generated. The true model is given

by 𝑦
𝑖
= x
𝑖1
+ x
𝑖2
+ 𝜖
𝑖
, for 𝑖 = 1, . . . , 50, using two variables

x
𝑖1
and x

𝑖2
. We have computed the following AIC, based on

the respective estimation criterion: (i) LS estimation; (ii)𝑀-
estimator; (iii) BS estimator; (iv) LTS estimator; and (v) LMS
estimator. In order to illustrate the robustness to outliers, we
consider the following cases:

(a) vertical outliers (outliers in the 𝑦 only),
(b) good leverage points (outliers in the 𝑦 and x),
(c) bad leverage points (outliers in the x only).

For all situations, we randomly generate (0%, 5%, 10%, 20%,
30%, and 40%) of outliers from𝑁(50, 0.1

2
) and𝑁(100, 0.52)

distributions, respectively. For each of these settings we
simulate 1000 samples.

3.1. Simulation Result. The resulting fit to the data is classified
as one of the following:

(i) correct fit (true model);
(ii) overfit (models containing all the variables in the true

model plus other variables that are redundant);
(iii) under fit (models with only a strict of the variables in

true model);
(iv) wrong fit (model that are neither of the above).

Tables 3, 4, and 5 show detailed simulation result for different
versions of AIC methods. For uncontaminated datasets, the
classical AIC performs best, compared to robust AIC. By
introducing vertical outliers, the classical AIC selects a large
proportion of wrong fit models and, as expected, the robust
AIC will usually (i.e., with higher proportion) select the
correct model.

For bad leverage points, we observe that AIC tends to
produce overfit and with high level of contamination it takes
a higher proportion of wrong fit. However, AIC

𝑀
tend to

produce either an under fit or wrong fit model. However, the
robust estimate produces comparable power in the presence
of bad leverage points.

For good leverage points, AIC tends, also, to produce
overfit. On the other hand, the robust AIC tend to produce
either correct fit or under fit model.

3.2. Example 2 (Stack Loss Data). Stack loss data was pre-
sented by [10]. This data set consists of 21 observations on
three independent variables, and it contains four outliers
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Table 3: Percentage of select models from classical AIC, robust RAIC, AICLTS, AICLMS, and AICBS, with vertical outliers.

𝜖

%
AIC RAIC AICLTS AICLMS AICBS

0

Correct fit 84.6% 54.4% 57.6% 65.2% 45.2%
Overfit 15.4% 0% 0% 0% 0%
Under fit 0% 43.6% 41.2% 34% 54.6%
Wrong fit 0% 2.0% 1.2% 0.8% 0.2%

5

Correct fit 2.8% 49.6% 56.8% 62.6% 45.4%
Overfit 2% 0% 0% 0% 0%
Under fit 22% 51% 42.8% 36.6% 54.6%
Wrong fit 73.2% 1.4% 0.4% 0.8% 0%

10

Correct fit 3.2% 45.0% 51% 56% 39.8%
Overfit 0.8% 0% 0% 0% 0%
Under fit 20.2% 52.4% 48% 43.8% 55.2%
Wrong fit 75.8% 2.6% 1.0% 0.2% 0%

20

Correct fit 4.2% 30.8% 49.4% 58% 34.2%
Overfit 0.2% 0% 0% 0% 0%
Under fit 22.8% 67.8% 49.6% 41.4% 65.8%
Wrong fit 72.8% 1.4% 1.0% 0.6% 0%

30

Correct fit 1.6% 0% 44.0% 51.2% 23.2%
Overfit 0.2% 0% 0% 0% 0%
Under fit 22.6% 73.8% 55.4% 48.2% 76.8%
Wrong fit 72.8% 26.2% 0.6% 0.6% 0%

40

Correct fit 2.2% 0% 37.6% 41.2% 12.4%
Overfit 0.6% 0% 0% 0% 0%
Under fit 22.8% 70.8% 62.4% 58.4% 87.4%
Wrong fit 74.4% 29.2% 0% 0.4% 0.2%

(cases 1, 3, 4, and 21) and high leverage points (cases 1, 2, 3,
and 21). The data are given in Table 6.

We applied the traditional and robust versions of AIC
methods on the data. Table 7 shows that the classical method
selects the full model, and robust RAIC method ignored one
of the important variables (x

𝑖2
), whereas robust AICmethods,

based on high break down points estimators, agreed with the
importance of the two variables, x

𝑖1
and x
𝑖2
.

4. Conclusions

The least trimmed squares (LTS) and the least median
squares (LMS) are robust regression methods, frequently
used in practice. Nevertheless, they are not commonly used
for selecting models. This paper introduced the Akaike
Information Criterion (AIC) based on LTS and LMS scales,
which are robust against outliers and leverage point. Our sim-
ulation result illustrated excellent performance of AICLTS and
AICLMS for contaminated data sets. This paper focused on
the AIC variable selection criteria; one might be interested in
extending other robust model selection criteria to advanced
robust breakdown point estimation methods, such as LTS,

LMS, or BS estimators. In addition, this paper has considered
regression model with continuous variables; however, future
studies might consider mixed variables (i.e., continuous and
dummy).

Appendix

Proof of Theorem 1. Consider

𝐼𝐹 ((x, 𝑦) ,AIC, 𝐻) = 𝜕

𝜕𝜖
(AIC (Δ

(x,𝑦)))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0

=
𝜕

𝜕𝜖
(ln

𝑛 − 𝑝

𝑛
⋅ 𝑆
2

𝑝
(𝐻
𝜖
)) + 2𝑝

=
𝑛

(𝑛 − 𝑝) ⋅ 𝑆2
𝑝
(𝐻)

⋅
𝜕

𝜕𝜖
(𝑆
2

𝑝
(𝐻
𝜖
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0

(A.1)

=
𝑛

(𝑛 − 𝑝) 𝜎2
𝑝

⋅ 2𝜎
𝑝

𝜕

𝜕𝜖
(𝑆
𝑝
(𝐻
𝜖
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0
,

(A.2)
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Table 4: Percentage of select models from classical AIC, robust RAIC, and robust AICLTS, AICLMS, and AICBS with bad leverage points.

𝜖

% AIC RAIC AICLTS AICLMS AICBS

5

Correct fit 0% 0% 54.6% 60.8% 43.8%
Overfit 70.4% 0% 0% 0% 0%
Under fit 0% 64.4% 44% 38.4% 55.4%
Wrong fit 29.6% 35.6% 1.4% 0.8% 0.8%

10

Correct fit 0% 0% 63.8% 67.8% 51.0%
Overfit 63% 0% 0% 0% 0%
Under fit 0% 54.6% 34.6% 31.4% 48.8%
Wrong fit 37% 42.4% 1.6% 0.8% 0.2%

20

Correct fit 0% 0% 56.6% 63.4% 49.2%
Overfit 54.8% 0% 0% 0% 0%
Under fit 0.2% 60.8% 42.4% 35.8% 50.6%
Wrong fit 44.8% 39.2% 1.0% 0.8% 0.2%

30

Correct fit 0% 0% 56.6% 61.4% 46%
Overfit 37.6% 0% 0% 0% 0%
Under fit 0.25% 29.6% 42.6% 36% 53.8%
Wrong fit 60.4% 42.6% 0.8% 2.4% 0.2%

40

Correct fit 1.0% 0% 55.2% 64.6% 51.4%
Overfit 13.8% 0% 0% 0% 0%
Under fit 1.2% 54.4% 43.8% 33.8% 48.6%
Wrong fit 81% 45.4% 1.0% 1.6% 0%

Table 5: Percentage of select models from classical AIC, robust RAIC, and robust AICLTS, AICLMS, and AICBS, with good leverage points.

𝜖

% AIC RAIC AICLTS AICLMS AICBS

5

Correct fit 0.2% 47.0% 53.6% 58.4% 42.6%
Overfit 99.8% 0% 0% 0% 0%
Under fit 0% 50.4% 46% 41.2% 57.4%
Wrong fit 0% 2.6% 0.4% 0.4% 0%

10

Correct fit 0% 44.2% 54.6% 59.4% 40.4%
Overfit 99.6% 0% 0% 0% 0%
Under fit 0.2% 53.8% 44.6% 39.8% 59.6%
Wrong fit 0.2% 2.0% 0.8% 0.8% 0%

20

Correct fit 0.8% 32.4% 50.4% 56.2% 33.2%
Overfit 97.6% 0% 0% 0% 0%
Under fit 0.8% 66.6% 48.4% 43% 66.4%
Wrong fit 0.8% 1.0% 1.2% 0.8% 0.2%

30

Correct fit 1.8% 0% 46.0% 50.6% 27.0%
Overfit 97.8% 96.8% 0% 0% 0%
Under fit 2.8% 2.8% 53.6% 49.2% 72.8%
Wrong fit 0.6% 0.4% 0.4% 0.2% 0.2%

40

Correct fit 0.2% 0% 37.4% 37% 13.8%
Overfit 97.4% 100% 0% 0% 0%
Under fit 2.2% 0% 62.6% 62.6% 86.2%
Wrong fit 0.2% 0% 0% 0.4% 0%
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Table 6: Stack loss data set.

x
1

x
2

x
3

𝑦

80 27 89 42
80 27 88 37
75 25 90 37
62 24 87 28
62 22 87 18
62 23 87 18
62 24 93 19
62 24 93 20
58 23 87 15
58 18 80 14
58 18 89 14
58 17 88 13
58 18 82 11
58 19 93 12
50 18 89 8
50 18 86 7
50 19 72 8
50 19 79 8
50 20 80 9
56 20 82 15
70 20 91 15

Table 7: The result variable selection of stack loss data.

Selected variables AIC RAIC AICLTS AICLMS AICBS

x
1

6.7 8.0 4.7 4.3 5.5
x
2

7.1 6.5 5.9 5.4 7.0
x
3

8.4 7.3 7.0 6.4 7.3
x
1
, x
2

8.2 9.0 5.5 4.7 6.9
x
1
, x
3

8.7 8.9 6.9 6.3 7.6
x
2
, x
3

9.1 9.0 8.1 7.3 8.8
x
1
, x
2
, x
3

4.7 10.6 7.6 6.7 9.1

where

AIC (Δ
(x,𝑦)) = ln(

𝑛 − 𝑝

𝑛
⋅ 𝑆
2

𝑝
(𝐻
𝜖
)) + 2𝑝,

AIC (𝐻) = ln(
𝑛 − 𝑝

𝑛
⋅ 𝑆
2

𝑝
(𝐻)) + 2𝑝,

𝑆
2

𝑝
(𝐻) = 𝜎

2

𝑝
,

𝜕

𝜕𝜖
𝑆
𝑝
(𝐻
𝜖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0
=

𝜕

𝜕𝜖
𝑆 ((1 − 𝜖) 𝐹𝜎𝑝

+ 𝜖Δ
𝑟𝑖𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0

= 𝜎
𝑝

𝜕

𝜕𝜖
𝑆 ((1 − 𝜖) 𝐹0 + 𝜖Δ 𝑟𝑖𝑝/𝜎𝑝

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0

= 𝜎
𝑝
𝐼𝐹(

𝑟
𝑖𝑝

𝜎
𝑝

, 𝑆, 𝐹
𝜎
) ,

(A.3)

where

𝑟
𝑖𝑝
= 𝑦
𝑖
− 𝜇 − x𝑇

𝑖
𝛽̂
𝑝
. (A.4)

Inserting (A.2) into (A.1) yields

𝐼𝐹 ((x, 𝑦) ,AIC, 𝐻) = 2𝑛

(𝑛 − 𝑝)
𝐼𝐹(

𝑟
𝑖𝑝

𝜎
𝑝

, 𝑆, 𝐹
0
) . (A.5)
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