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Coal-gangue interface detection during top-coal caving mining is a challenging problem. This paper proposes a new vibration
signal analysis approach to detecting the coal-gangue interface based on singular value decomposition (SVD) techniques and
support vector machines (SVMs). Due to the nonstationary characteristics in vibration signals of the tail boom support of the
longwall mining machine in this complicated environment, the empirical mode decomposition (EMD) is used to decompose the
raw vibration signals into a number of intrinsic mode functions (IMFs) by which the initial feature vector matrices can be formed
automatically. By applying the SVD algorithm to the initial feature vector matrices, the singular values of matrices can be obtained
and used as the input feature vectors of SVMs classifier. The analysis results of vibration signals from the tail boom support of a
longwall mining machine show that the method based on EMD, SVD, and SVM is effective for coal-gangue interface detection
even when the number of samples is small.

1. Introduction

Today a major problem facing the mining industry is how
to develop an automated top-coal caving system that can
maximize the ratio of coal to gangue. The working proce-
dure of top-coal caving is automatically controlled by an
electrohydraulic system, which determines the recovery ratio
of top-coal to gangue. In order to improve the recovery
ratio of top-coal, a lot of work has been done on coal-
gangue interface detection (CID) [1–3]. This paper proposes
a new CID method based on the analysis of vibration signals
due to the collapse of coal and gangue onto the tail boom
of a longwall mining machine. Some significant features
that differ between coal and gangue can be extracted by
analyzing these vibration signals. The acquired vibration
signals are usually nonlinear and nonstationary, so it is
difficult to effectively extract features. Recently, the time-
frequency analysis methods are widely used in the feature
extraction of vibration signals [4, 5]. Among all available
time-frequency analysis methods, the wavelet transformmay
be the best one [6, 7].However, wavelet transform is not a self-
adaptive signal processing method. Also, energy leakage will
occur when wavelet transform is used to process signals, due

to the fact that it is an adjustable windowed Fourier transform
in nature [8]. The empirical mode decomposition (EMD)
decomposes any time-varying signal into its fundamental
intrinsic oscillatory modes [9]. The EMD is a self-adaptive
time-frequency analysis method that is perfectly applicable
to nonlinear and nonstationary processing [10, 11].

Recently, singular value decomposition (SVD) of matrix
has been widely applied to signal processing, statistical
analysis, automatic control, and so forth [12]. According to
the matrix theory, singular values have good stability and
represent the inherent characteristics of the matrix. That is,
when a slight change of matrix elements occurs, the change
of matrix singular values is small.

In practice, a large number of samples are usually not
available. Support vector machine (SVM) is a new machine
learningmethod developed on the basis of statistical learning
theory [13]. SVM can solve the learning problem of a smaller
number of samples. Meanwhile, SVM has better generaliza-
tion than artificial neural network (ANN) and guarantees that
the local and global optimal solutions are exactly the same.

In this paper, the SVD technique based on EMD is
applied to the feature extraction of vibration signals from
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Figure 1: Hydraulic support and installation position of sensors (1:
coal, 2: coal-gangue, 3: gangue, and 4: sensor).

coal and gangue collapse during top-coal caving. The SVM
is introduced into the CID due to its high accuracy and good
generalizatio n for a smaller sample number.

This paper is organized as follows: in the next section,
the feature extraction algorithm based on SVD and EMD
is discussed. Section 3 briefly reviews the SVM theory. In
Section 4, the basic principle of the vibration-based CID
experimental system is introduced. The application of the
SVM to classification of the caving states is then discussed
and the results from a CID validation study are reported.The
conclusions are given in the last section.

2. The SVD Technique Based on EMD

The EMD is a nonlinear and nonstationary signal analysis
method proposed by Huang et al. EMD can decompose
any time-varying signal into its fundamental intrinsic mode
functions (IMFs), which must satisfy two conditions [9] as
follows.

(1) In the whole data set of each intrinsic mode function
component, the number of extreme values and the
number of zero-crossings must be equal to or differ
at most by one.

(2) At any point, the mean value of the envelope defined
by local maxima and that defined by the local minima
is zero.

With the definition, any time series signal 𝑋(𝑡) can be
expressed as the sum of the IMF components and the residue

𝑋(𝑡) =

𝑛

∑

𝑖=1

𝐶
𝑖
(𝑡) + 𝑅

𝑛
(𝑡) , (1)

where 𝐶
𝑖
(𝑡) are the IMF components. Here 𝑅

𝑛
(𝑡) is the

residue.The IMF includes different frequencies ranging from
high to low. Acting as an adaptive data-driven filter bank, the
EMD extracts the signal features of disturbances dynamically
according to their different physical characteristics.

The IMFs (𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) are chosen to construct the

initial feature vector matrix 𝐴 as follows:

𝐴 = (

𝐶
1

𝐶
2

...
𝐶
𝑚

) ∈ 𝐶
𝑚×𝑛

𝑟
, 𝑚 ≤ 𝑛. (2)

Due to the orthogonality of the EMD method, all IMFs
are pairwise orthogonal.Therefore, the matrix𝐴must be full
rank. By applying the SVD to matrix 𝐴, then there exists

𝐴 = 𝑈𝑆𝑉, (3)

where 𝑈 ∈ 𝑅
𝑚×𝑚, 𝑈𝑈

󸀠

= 𝐼; 𝑉 ∈ 𝑅
𝑛×𝑛, 𝑉𝑉

󸀠

= 𝐼; 𝑆 =

diag{𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
}, 𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑚
. The values of 𝜆

𝑖

are the singular values of matrix 𝐴.
As singular values can reflect the nature characteristic

of the matrix, the characteristic of vibration signals of coal
and gangue can be described effectively by singular values of
the initial feature vector matrix. Thus, the singular values of
matrix could be used as feature vectors. The SVM could be
chosen as the pattern classifier to classify the caving states
after the vibration feature vector has been extracted.

3. Support Vector Machine (SVM)

As a new generation learning system, SVM enables the
nonlinear mapping of an 𝑛-dimensional input space into
a high dimensional feature space. SVM uses a nonlinear
mapping to transform an input space to a high-dimension
space based on a kernel function and then looks for a
nonlinear relation between inputs and outputs in the high-
dimension space.

Suppose that there is a given training sample set 𝐺 =

{(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛}, with each sample𝑥

𝑖
∈ 𝑅
𝑑

, 𝑦
𝑖
∈ {+1, −1}.

The classification boundary can be described as follows:

𝑤
󸀠

⋅ 𝑥 + 𝑏 = 0, (4)

where 𝑤 is a weight vector and 𝑏 is a bias. Therefore, the
following decision function can be used to classify any data
set in two classes:

𝑓 (𝑥) = sgn (𝑤
󸀠

⋅ 𝑥 + 𝑏) . (5)

In order to correctly classify two-class samples, the
optimal hyperplane separating the samples can be obtained as
a solution to the following constrained optimization problem:

minimize

𝜑 (𝑤) =
1

2
‖𝑤‖
2

=
1

2
w𝑇𝑤 (6)

subject to

𝑦
𝑖
[w𝑇𝑥
𝑖
+ 𝑏] − 1 ≥ 0, 𝑖 = 1, . . . , 𝑛. (7)



Journal of Applied Mathematics 3

1
0

−1

0.5
0

−0.5

0.05
0

0

−0.05

0.3
0

−0.3

0.3
0

−0.3

0.3
0

−0.3

0.3
0

0

−0.3

0.2

−0.2

0.02

0.02

−0.02

0.01

−0.01

0.01

−0.01

0
0.01

−0.01

0.04

Re
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

S
C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

Figure 2: EMD results for top-coal caving.
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Figure 3: EMD results for coal-gangue.

Defining Lagrange multipliers 𝛼
𝑖
≥ 0, the optimization

problem can be converted to the following:

maximize

𝑃 (𝑎) =
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So the decision function can be expressed as follows:
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) . (10)



4 Journal of Applied Mathematics

Table 1: Comparison of singular values of selected IMFs for each caving state.

𝜆
1

𝜆
2

𝜆
3

𝜆
4

𝜆
5

𝜆
6

𝜆
7

Top-coal caving 5.8913 5.0226 4.7560 3.5182 2.7658 2.6858 1.0905
Coal-gangue caving 19.3695 13.7673 12.2830 6.8331 6.5870 4.2883 3.0371
IMF component 𝐶

3
𝐶
2

𝐶
4

𝐶
5

𝐶
1

𝐶
6

𝐶
7

Table 2: Samples for singular values of IMFs.

Number 𝜆
1

𝜆
2

𝜆
3

𝜆
4

𝜆
5

𝜆
6

𝜆
7

Expected output
1 6.8036 5.1018 3.8767 2.8366 2.1208 1.8678 1.0817 (1, 0)
2 6.1150 4.8672 4.5894 3.3310 2.8880 2.3330 1.2493 (1, 0)
3 6.2398 5.8762 4.1749 3.0470 2.4142 1.9705 0.8274 (1, 0)
4 5.7488 5.2618 3.9826 3.1724 2.6175 2.1648 1.4194 (1, 0)
5 6.9123 5.8563 4.6258 3.2843 2.2754 2.1075 0.9596 (1, 0)
6 6.3855 5.2633 3.6245 3.2700 2.4509 2.1743 0.8024 (1, 0)
7 8.9377 8.6310 4.5831 4.5361 3.1545 1.8105 0.9570 (0, 1)
8 15.2788 11.2140 7.2233 5.1752 3.4570 1.7460 1.0975 (0, 1)
9 19.2038 13.6730 12.1804 6.7688 6.5208 4.1607 2.5960 (0, 1)
10 14.5418 12.4612 8.7011 6.1077 5.0121 3.2906 1.6954 (0, 1)
11 22.5342 14.4046 9.4929 5.9841 5.3480 3.6622 2.2097 (0, 1)
12 12.0520 10.0045 9.6424 4.9427 4.4479 3.5481 1.3674 (0, 1)

Table 3: Classification results of SVM.

Caving states Test samples Error Classification accuracy
Top-coal caving 18 0 100%
Coal-gangue caving 18 0 100%

4. Applications

In order to investigate the EMD-based SVD technique and
SVM as a means of distinguishing between top-coal and
gangue caving impacts on the tail boom of aminingmachine,
an experiment has been carried out on number 2303 working
face, Zhangcun Mine, Shanxi, China. The CID experimental
system is composed of a data acquisition device, an embedded
signal analysis platform, and vibration acceleration sensors,
as shown in Figure 1. When coal and gangue fall down and
shock the tail boom, the acceleration sensors, which are
installed on the hydraulic support, acquire vibration signals
from the steel plate [14].

4.1. Feature Extraction of Coal-Gangue Vibration Signals. As
an example, two different vibration signals of top-coal caving
and coal-gangue caving are chosen for further analysis. The
sampling frequency of these signals is 8000Hz and the
sampling time is one second. Firstly, the EMD is applied
to the analysis of separate vibration signals of pure coal
and coal-gangue. As shown in Figures 2 and 3, the EMD
decomposes the two original signals 𝑆 into eleven IMFs,
which contains important information correlated with the
vibration signals of coal and gangue impacts.Obviously, IMFs
𝐶
1
, 𝐶
2
, 𝐶
3
, and 𝐶

4
have much higher frequencies than other

IMFs. IMFs from 𝐶
8
to 𝐶
11
oscillate so slowly that they only

contain very low frequencies, which are composed of clutter

or noise, for example, vibration signals caused by mechanical
devices themselves. As shown in Figure 3, there are two
shock characteristics at the time from 0.1 s to 0.2 s and from
0.8 s to 0.9 s, which correspond with gangue falling events.
Meanwhile, the frequency and the amplitude of the first seven
IMFs are greater than those of other IMFs during coal-gangue
caving.Therefore, the first seven IMFs are selected for further
study, and the other IMFs are the resuide accordingly.

For each vibration signal of each caving state, the initial
feature vector matrix 𝐴 can be constructed according to (2).
Then SVD is applied to the initial feature vector matrix 𝐴;
namely, 𝐴 = 𝑈𝑆𝑉, where 𝐴 ∈ 𝑅

7 × 8000

, 𝑈 ∈ 𝑅
7 × 7

, 𝑆 ∈

𝑅
7 × 8000

, 𝑉 ∈ 𝑅
8000 × 8000. The singular values 𝜆

𝑖
can be

obtained, which are shown in Table 1
𝜆
𝑖
= [𝜆
1
, 𝜆
2
, . . . , 𝜆

7
] . (11)

It can be seen from Table 1 that the singular values of
matrix are arranged in descending order of significance. The
correspondence between the singular values and IMFs is also
given. Especially for the coal-gangue caving, the singular
values 𝜆

1
, 𝜆
2
, and 𝜆

3
are much bigger than the others, so the

singular values could be regarded as the feature vectors to be
input to the SVM classifier.

4.2. CID Based on SVM. Actually, the CID is to distinguish
two caving states, that is, to solve a two-class pattern classi-
fication problem. SVM has the advantage of solving a two-
class problem on the basis of searching for structural risk
minimization, even in the case of few learning samples [15].
The newCIDmethod based on SVD, EMD, and SVM is given
as follows.

Step 1. Acquire 𝑁 signals at the sample frequency 𝑓
𝑠
under

the condition of top-coal caving and coal-gangue caving,
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Table 4: Classification results of SVM under few samples.

Testing sample number
(from Table 2) Real caving state Distance to optimal hyperplane𝐻 Results

126 training samples 8 training samples
5 Top-coal caving 0.9473 0.6561 +1 (right)
6 Top-coal caving 1.0137 0.9807 +1 (right)
11 Coal-gangue caving −1.0223 −0.4178 −1 (right)
12 Coal-gangue caving −1.0004 −0.4182 −1 (right)

Start

EMD and IMFs selection

Design SVM classifiers

Coal-gangue interface detection

End

Acquire 2N samples

Construct feature vector matrix A

SVD and get the singular values

Figure 4: The flowchart of EMD-based SVD and SVM.

respectively.The 2𝑁 samples are divided into two subsets, the
training samples sets and the testing samples set.

Step 2. Each signal is decomposed by EMD. Choose the
first seven IMFs and construct feature vector matrix 𝐴. The
singular values can be got by applying SVD to matrix 𝐴.

Step 3. Design SVMclassifiers.When the feature input vector
is a sample with known state of top-coal caving, the output of
SVM classifier is set to 1, otherwise to −1. The singular values
of the training samples are used as the input to train the SVM
classifier. Then the state of caving can be distinguished after
the testing samples have been input into the trained SVM
classifier.

The flowchart of the proposed method is presented in
Figure 4.

4.3. Validation Study. The caving state detection method
based on SVD, EMD, and SVM is applied to a vibration
sample set of both pure coal and coal-gangue caving. At first,
a total of 126 vibration signals are acquired with a sample
frequency of 8000Hz, 63 signals for each caving state. In
addition, the testing data sets consisting of 18 signals for each
caving are used for validation of this detection method.Then
the singular values of each signal are obtained after applying
SVD based on EMD, parts of which are listed in Table 2.

Choose RBF kernel function and set 1/𝜎2 = 0.5, 𝐶 = 10. It
takes about 0.003 s to establish the SVM classification model.
The number of support vectors is twelve, which accounts for
9.52% of the total of the training samples. The classification
results are shown in Table 3. Obviously, the results are totally
consistent with the real caving state.

In order for further study of the classification perfor-
mance of SVM in the case of a small sample, the number
of training samples decreases to eight (number 1 to number
4 and number 7 to number 10 from Table 2 and the rest
as testing samples). The classification results are shown in
Table 4. Table 4 shows that the SVM classifier can classify the
two caving states accurately even in the case of decreasing
the training samples. By comparing the distances between
testing samples and the optimal hyperplane𝐻, it is found that
the overall performance of the SVM classifier weakens as the
samples reduce.

5. Conclusions

The problem of coal-gangue interface detection (CID) on a
fullymechanizedmining face has been addressed by applying
the SVD technique and EMD to extracting longwall mining
machine tail boom support vibration features that can be
used for top-coal and coal-gangue caving state classification.
EMD is a self-adaptive analysis method that can decompose
the signal into a number of IMFs. These functions provide a
compact natural representation of nonstationary, nonlinear
signals such as those detected by the vibration monitoring of
the tail boom support of a longwallminingmachine. Singular
values were obtained by the application of SVD to the first
seven IMFs of the example raw vibration signals (those IMFs
containing key feature information), which could be used
as the feature input vectors of the classifier. Based on these
results, the SVM applied to the singular value vector is
proposed as the classification tool for top-coal or coal-gangue
caving state. The validation test had a 100% classification
accuracy rate, providing strong support for the robustness of
thismethod.Therefore, the analysis based on SVD, EMD, and
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SVM for longwallminingmachine tail boomvibrations offers
a new method for CID.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work for this paper was supported by the Shandong
Provincial Natural Science Foundation of China (Grant nos.
ZR2013EEM009 and ZR2013FL019). The authors are grateful
to the anonymous reviewers for their careful reviews and
detailed comments.

References

[1] Z.-C. Wang and X.-J. Zhang, “The research on detection of
rock content in coal rock mixture in top coal caving by natural
gamma ray,” Chinese Journal of Sensors and Actuators, vol. 16,
no. 4, pp. 442–446, 2003.

[2] G. L. Mowrey, “Horizon control holds key to automation,” Coal,
vol. 97, pp. 44–49, 1992.

[3] G. L. Mowrey, “New approach to coal interface detection:
the in-seam seismic technique,” IEEE Transactions on Industry
Applications, vol. 24, no. 4, pp. 660–665, 1988.

[4] J. Zou and J. Chen, “A comparative study on time-frequency
feature of cracked rotor by Wigner-Ville distribution and
wavelet transform,” Journal of Sound and Vibration, vol. 276, no.
1-2, pp. 1–11, 2004.

[5] N. Baydar and A. Ball, “A comparative study of acoustic and
vibration signals in detection of gear failures usingWigner-Ville
distribution,”Mechanical Systems and Signal Processing, vol. 15,
no. 6, pp. 1091–1107, 2001.

[6] Z. K. Peng and F. L. Chu, “Application of the wavelet trans-
form in machine condition monitoring and fault diagnostics:
a review with bibliography,” Mechanical Systems and Signal
Processing, vol. 18, no. 2, pp. 199–221, 2004.

[7] G. Meltzer and N. P. Dien, “Fault diagnosis in gears operating
under non-stationary rotational speed using polar wavelet
amplitudemaps,”Mechanical Systems and Signal Processing, vol.
18, no. 5, pp. 985–992, 2004.

[8] H. T. Vincent, S. L. J. Hu, and Z. Hou, “Damage detection using
empirical mode decomposition method and a comparison with
wavelet analysis,” in Proceedings of the 2nd International Work-
shop on Structural Health Monitoring, pp. 891–900, Stanford,
Calif, USA, 1999.

[9] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode
decomposition and the Hubert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol.
454, no. 1971, pp. 903–995, 1998.

[10] N. E. Huang, “Computer implicated empirical mode decompo-
sitionmethod, apparatus, and article ofmanufacture,” PatentUS
6311130 B1, 1996.

[11] W. Huang, Z. Shen, N. E. Huang, and Y. C. Fung, “Engineering
analysis of biological variables: an example of blood pressure
over 1 day,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 95, no. 9, pp. 4816–4821, 1998.

[12] A.-J. van der Veen, E. F. Deprettere, and A. L. Swindlehurst,
“Subspace-based signal analysis using singular value decompo-
sition,”Proceedings of the IEEE, vol. 81, no. 9, pp. 1277–1308, 1993.

[13] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
2000.

[14] W. Liu, R.-L. Wang, S.-X. Zhang, and Y. Zhang, “Real-time
vibration signal acquisition of coal and rock based on DSP and
ADS8509,” Coal Mine Machinery, vol. 30, pp. 87–199, 2009.

[15] X.-D. Zhang, Modern Signal Processing, Tsinghua University
Press, Beijing, China, 2002.


