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This paper presents new classes of estimators in estimating the finite population mean under double sampling in the presence of
nonresponse when using information on fractional raw moments. The expressions for mean square error of the proposed classes
of estimators are derived up to the first degree of approximation. It is shown that a proposed class of estimators performs better
than the usual mean estimator, ratio type estimators, and Singh and Kumar (2009) estimator. An empirical study is carried out to
demonstrate the performance of a proposed class of estimators.

1. Introduction

Generally almost all surveys suffer from the problem of
nonresponse. Lack of information, absence at the time of
survey, and refusal of the respondent are the main causes of
nonresponse. Hansen and Hurwitz [1] suggested a procedure
of taking a subsample from the nonrespondent and collecting
information by a more expensive method like first attempt by
mail questionnaire and second attempt by personal interview.
In estimation of population parameters like mean, total, and
ratio, the auxiliary information is some time incorporated
with the study variable to improve the efficiency of the
estimators. Cochran [2], Rao [3, 4], Khare and Srivastava [5-
7], Okafor and Lee [8], Tabasum and Khan [9, 10], Sodipo
and Obisesan [11], Singh and Kumar [12-14], and Singh et al.
[15] have studied the problem of nonresponse under dou-
ble sampling using the auxiliary information. Dubey and
Uprety [16] used second raw moments for efficient estimation
of population means in the presence of nonresponse. Al-
Hossain and Khan [17] used maximum and minimum values
of population for improved estimation of population mean.
In double sampling, a large sample of size say 7’ is selected
by simple random sample without replacement (SRSWOR)
sampling scheme, at first phase from a population U =
(U,,U,,...,Uy), and then a smaller sample of size say n

(that is n < ') is also selected by SRSWOR at the second
phase or directly from U = (U,,U,,...,Uy). Nonresponse
occurs on the second phase sample of size n in which 7, units
respond and #, units do not. From the n, nonrespondents,
by SRSWOR a subsample of ¥ = n,/k; k > 1 units is
selected, where k is the inverse sampling rate at the second
phase sample of size n. All the r units are assumed to
respond this time round. The auxiliary information can be
used at the estimation stage to compensate for units selected
for the sample that fail to provide adequate responses and
for population units missing from the sampling frame. For
example, in a manufacturing survey, the number of labourers
can be used as an auxiliary variable for the estimation of items
produced in bales. Information can be obtained completely
on the number of labourers while there may be nonresponse
on the amount of item produced in bales.

Hansen and Hurwitz [1] proposed an unbiased estimator
of the population mean (Y) given by

V= w0y w, Yy, @

where w; = m/nfori = 1,2y, = Y} yi/n; and y,, =
Yyl
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The variance of unbiased estimator (y*) is given by

% 1 1 2 WZ (k 1) Sy(z 2

V(y)—(n N)Sy+ n ’ @
whereSf, = Z; (3 =Y /(N-1), Sy(z) = zf‘zle(yi_yz)Z/(Nz_
1),and W, = N,/N.

LetY, = Zf\:’ll ¥/N,and Y, = Zgzl y;/ N, be the popula-
tion means of respondents and nonrespondents, respectively,
andletY = Zf\:]l ¥;/ N be the mean of whole population mean.

Generally the auxiliary information can be used to
increase the precision of the estimators for estimating the
population mean (Y). Auxiliary information can be trans-
formed to enhance the precision of estimation even further.
Let us denote the auxiliary information by variable x and a
transformation of the auxiliary variable in the form of raw
moments by u = xf, where p > 0. Further, we assume
that x > 0. The variables x and u take values x; and u;,
(i =1,2,...,N) on ith unit of population.

Unbiased estimators for the population mean X =
Zﬁl x;/N and pth raw moments U = Zfil xP/N of the
population are given by

— — —
X = WX+ WyXy,

(3)

— _ _
U= wiu, + wyly,,

h = _ ny —_ _ r - _ ny P d
where x; = Y1, x;/ny, Xy, = Yo x;/r Uy = )1 x; /ny, an
— _ r p
Uy, = ), x;[r are the sample means and sample pth raw
moments of respondents and nonrespondents of population
based on a sample of size n; and a subsample of size r =

n,/k. The corresponding population means and population
pth raw moments of the respondents and nonrespondents

are given by X, = Z,le/Np X, = ZN x;/N,, U, =
i 1xp/Nl, andU, = Y, lxp/Nz, respectively.
Now the variances of X* and %" are given by

W, (k- 1)S;
VE) - (3o ) Se T, @

where 82 = YN (x; — X)*/(N - 1) and Sx(2) = Zf\:lzl(xi -
X,)*/(N, — 1) and

W, (k-1)S2

- 1 1\ 2 u(2)
N AP AGLL SR
@) ={-~)S ”
where $2 = YN (w; - U)*/(N - 1) and Shy = Y (u; -
U,)*/(N, - 1).
Now we define the relative error terms.
Let
. 7 -Y . xx-X
60 = y p— > el = — >
Y X
x-X x-X
el = — 5 e, = — 5
X X ©6)
N -U u-U
62 = 6 5 62 - —
, @-T
e, = ,
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such that E(ey) = E(e]) = E(e;) = E(e;) =0,i=1,2:

E(e?) = )LC ok cy(z),
(

e?) = AC; + 1"C3y,
E(el)=ACl,  E(ef)=7C],
E(e;?) = ACL + 1" Cly,
E(e})=AC,  E(ef)=MCl,
E(eger) = ApyCyCo + A" pyC

E(ee;)

v Cx)
=1p,,C,C, + /\*Pyu(z)cy(z)cu(z)’
E (e;ei) = /\'Pyxcycw
E(ege,) = ApyCyCrs

E(e;e;) Apyu y u’

E (6362) = /\pyucycu’
E(efe,) = AC2, E (efe;) =\'C,
E (elei) =\C, E(eje,) = AC,

™)

E (ezez) Nel, E (eze;) =\C,
E (eike;) = /\,qucxcu’

E (e 62) Apxuc ut A*pxu(Z)Cx(Z)Cu(Z)

E(ee;)

E (ele;) /\ pxu X u’

E (6162) = Aquchw

E (ereZ) = Apxucxcu’ = /\qucxcw

E (e;e;) =N pC.Cos
E (eie;) = /\’qucxcu’
E<e 62) /\ pxu x u’

_(l_f) /\Iz(l_fl)

Here (p,.> Pyu> Pru) A0 (Py4(2)> Pyx(2)> Pru2)) are, respectively,
the correlation coefficients of respondent and nonrespondent

groups to their respective subscripts. Let (C,,C,,C,) and
(C,2)> Cx2)» Cugz)) be the coefficients of variation of their
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respective subscripts for the respondent and nonrespondent
groups, respectively. Similarly we define

k _ & k _ ﬁyx(z)
yx = R1 > yx(2) — Rl >
k. = ﬁyu _ ﬁyu(z)
yu R_z, yu(2) — R2 >
k. = & k _ ﬁxu(Z)
Xu R3 > xu(2) R3 >
Y Y X
R1=:, Rz—:, RS_:’
X U U

21:1 (xi - ?)2 )
?\—le i—?z Xi—yz
Brer = 2is (}‘;I ) (_ i ) (8)
i (xi - Xz)
ZJI\:II (ul - 6) (y B Y)
ﬁyu - —\2 >
zz:l (ui - U)
_ Zf\:rzl (uz - 62) (yz - YZ)
ﬁyu(z) - >

2. A Proposed Class of Estimators

We propose a general class of estimators which utilizes
pth raw moments along with auxiliary information under
double sampling scheme. The estimator covers all situations
of nonresponse; for instance, there may be nonresponse on
both the study variable (y) and the auxiliary variable (x)
and in other cases there may be complete response on the
auxiliary variable and incomplete response on study variable.

Singh and Kumar [13] proposed the following class of
estimators:

= _, AE*+B>“<AE+B>ﬁ
Yoo = , )
K y(Ax’+B A% + B

wherex = Y7 x;/n,x' = Y, x;/n’, A and B are population
parameters, and « and 3 are constants to be determined

and are selected so that mean square error of Y becomes

minimum. The bias (B) and mean square error (M) of Y ¢, to
the first degree of approximation, are, respectively, given by

B(7) -7 [ (1-1)s
X <oc <kyx + “T_l‘p)
+ﬁ(kyx+“¢+ /3; 1¢>)Ci
+A° (o«/) (kyx(z) + %‘/’) Ci(z))] ’
M (V) =7 [(A- 1)
x{C + (a+ )¢ ((a+ B) ¢ + 2K,.) Ci}

+ A" {Ci(z) + ad (a¢ + Zkyx(z)) Ci(z)}
+/\'C§] ,

(10)

where ¢ = (AX/(AX + B)).

The mean square error of Y for optimum values of o

and f3, that is, « = ((kyx(Z) - kyx)/</>) and 3 = —(kyx(z)/¢)> is
given by
- _ 2 1 ~2 2
M(YSK)Opt =7 [(A-A)C2 {1-pL}

(11)
WG 1) 1)

Similarly, we propose an estimator using pth raw moments,
given by

= _./Ccu*+D\'/Cu+D\°
n-v(Z2)(222). ™
Cu +D Au +D
where u = Y. xf/nand ' = Zl”:’l xf/n'; y and & are

constants; C and D are known population parameters.

Replacing 3" in (9) by Y, from (12), we suggest the
following estimator:

s __*(AE*+B>“<A§+B>ﬁ
M=V \ax+8) \a¥ + B

(13)

X(@*+D)V<@+D>5
ciW+D/) \Aw +D/

Now expressing Y, in terms of s, we have

- s (155

X<1+1//e§>y<1+1//e2>5
L+yey ) \1+ye, /)’

where y = (CU/(CU + D)).

(14)




We assume that Igbelfl < 1lge;| < 1lge| < 1fori = 1,2,
such that the right hand side of (14) is expandable. Solving
(14), we have

(V2 -7)

_ Y * * * % x I * * I
= Y[e0 +oc</>(e1 +eye; —eoel)+,/3q5(e1 +ege —eoel)

* * ok * * *
+y1//(e2 +eye, —eoez) +61;/(e2 +eye, —eoez)

! !
—(a+B) e~ (y+9)ye,
+ocﬁ</>2( —ejel +eje +eje )
+ oy’ ( —ee, teje, +ere )

! ! !

+ afg’ (612 —ee, +eje + efel)
U

+ yoy’ (622 ee, +e,e, +e,e 2)

2 12 !

+afg’ (e —eje) +efe; +ejey)
202

+y81p (62 ~e,e; +ese, +ezez)

+y-1e’}

2
)
2
+Lo{@r el +@-1e)

+ aydy (e;‘e; e; r—elel +e ez)
+ Bydy (e;e; —ee, +eje )
+ addy (e;‘e2

—elel +e ez)

+Body (6162 —e 182 — eze1 +e ez)
(15)

Taking expectation of (15), the bias of ?M to the first degree
of approximation is given by

»
;?H(A—A’)¢<a(kyx+ “T_lqs)
E2))e

-1 6-1
+1/’(Y<kyu+YTW>+5(kyu+VW+TW>

B

—~

+[3<kyx+oc¢>+
Flay+ By +ad+0) )k Cl

" ( (ko
+yy <kyu(2) + y—_lllf + “‘kau(z)) Ci(2)>] .
(16)

4 —¢)
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Squaring both sides of (15) and neglecting €’s involving power
greater than two and then taking expectation, we get mean
square error of the suggested class of estimators to the first
degree of approximation as

M (¥y)
=Y [(A-2)
x{C + (a+B) ¢ ((a+p) ¢+ 2k, ) C:
+(y+8)y ((y+0)y+2k,)C.
+2(a+ B) (v +6) pykaCul

+ A* { + OC¢ (0“[) + 2kyx(2 ) x(2)

17)

+ YV/ (YV/ + 2kyu(2)) Ci(z)
+ 2“V¢V/kxu(2)c124(2)} + /\’Ci] .
From (17) the optimum values of «, 3, y, and § are given by
o= kys2) = Kyue) Kus)
¢ (1 - Pﬁu(z))
B=- {M} + kyx) ~ kyuekuxa)
¢(1-p%) $(1-p20)
_ kyu(z) - kyx(Z)kxu(Z)
y - >
yv(1

- Pﬁzcu(Z))
S=— {kyu - kyxkxu } + kyu(z) -
y(1-p2) y(1

Substituting the optimum values of &, f3, y, and § in (17) and
using the identity

(18)

kyx(z)kxu(Z)
) .
= Pru)

2
Peu) = Kux@Kxuc)

= kyupk

2 2
Pxu = kuxkxw Pyu(Z) uy(2)>

, (19)
Py = Kyukuys Pyx(z) = kyxky )

pix = kyxkxy’
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we get the optimum mean square error of Y ,, given by
m(Y M)opt

2 2
52 N 2 (pyx + pyu - 2Pnyyquu)
=Y [(A—A)Cyil— 0=72) }

2 2
A {1 B (Pyx(Z) T Pyu) ~ zpyx(Z)Pyu(Z)qu(Z)) }
y
(1-P0)

+ /\'Ci ] .
(20)

Similarly the bias and mean square error of 1:/13 given in (12)
can be deduced from (16) and (17) by putting« = 8 = 0, given

by

n

Y [(A-A){C2+(+8)y((y+0)y+2k,)C2}

+ A {Co) + v (yw + 2Ky00)) Ca | + 1G]
(22)

The mean square error of Y, for optimum values of y and &
is given by

M(T,), =P [(A-V)C f1- ) .

AL Pl + G

3. Some Members of the Proposed Family of

Estimators Y,

In Table 1, we give some members of a proposed family of
estimators.

For p = 1, the estimators given in Table 1 reduce to usual
ratio and product type estimators.

The biases and mean square errors of the estimators Y ;
fori = 1,2,...,10, to the first degree of approximation are
given in Table 2.

5
TABLE 1: Some members of a proposed family of estimators for o =
B =0in (13).
Estimator y ) C D
Yo =" 0 - -
—r
= " u
Yn=yv | = -1 0 1 0
M=) <ﬁ* >
= u
Yo=7 | = 0 -1 1 0
M2 =) < U )
= u\ (v
Yo =7 | = — -1 -1 1 0
w7 (5)(%)
—k —
= [ u u
Yiu = = 1 1 1 0
ma =) ( 7 ) ( B )
= N ' +C
Yus=7 < Mt ) 10 1 ¢
u +C,
—
= u +C
Yis =7 L 0 -1 1 C
M6 =V < u+C, ) u
—r —1
= u +C u +
Yy =7 - “ -1 -1 1 C
—
= (U + pyu
Yo = -1 0 1
M8 =Y (u* + Pyu ) p)’”
—r
= e u + Pyu
Yoo = 0 -1 1
M9 y ( U+ pyu ) Pyu
— —
= u + u +
Yy =7 | = P ) < = Py ) 1 -1 1 Pyu

4. Efficiency Comparison

A proposed class of estimators }_A’M will perform better than
the following:

(i) usual unbiased estimator Y, if

2k 2k
{0>y>max{—(8+ Y“) . yu(z)}
v 1%

2k 2k
0r0<y<min{—(5+_y“);_ yu(Z)}}’
y y

O>cx>max{_<ﬁ+ (Zkyx+2((;/+8)kux)>

(k) + 2k }
¢

(2ky +2(y +0)kyy)
—

_ (Zkyx(z) + Zqux(z)) } .
¢ >

>

(24)

>

or0<oc<min{—<ﬁ+
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[0+ {0 ("= ) b+ O} e+ {20 ("d = ) v+ ) (=) A= (") {20 (Y= ) v+ o (Y- he) (-0 &= (A g
[0+ @0+ [ (" - A) A+ 0F (v -v)] & T@E {2o("y- A) Y-V} a=("a)g

[0 {0 (Vg = ) o+ Do) i+ [0 (M- ) A+ 0} (- 0] &= (Ma) {O (@ = A) v+ (Y- ) (-0 2= (YA g
[0 +{ 0 (99— 9) $+ 0} v+ {20 ("4 - #) #v+0F (-] A= (P4 {0 (@y = ) v+ 20 ("ore - he) (Y -V} 2= (92)g
[0 +{ 90} x+{io("9e - 4) A+ 0} (v -1)] 4= ("2 ("= ) A -0} a=("4)g

[o0+ { @0 (9yz - ), \\IA% of e+ {30 (" - ) A+ 50} (Y -1) 4] = (4 [ (@ = ) v+ 20 ("a - A) AV -0} A= (Fa) g
[0+ [P0 (D™ yz + 1)+ D0} v+ 1o (" +1) 7+ 0?72 A=("a)w {0 (@) v+ (" +1) (-0} a= ("a)g
[0 +{ 0 (P -1)+ @0} v+ o ("y-1) v+ 0} (v -] &= (1) w [0 (y-1) x+ o (e -€) (Y -V} 2= ("2) g
RPT?@T«LBA Yo-1)+ D (v - 2 Aq;vs (-1 (v-vla=("4)g

[0+ { @5 (e - 1)+ @0} v+ o (" - 1) v+ 0 (v -] &= (Ma)w [P0 (@-1) v+ ("= 1) (-0t a=("a)g

s10119 arenbs UeIN

*[ 9[qE, UT UATS SI0JRWT)SS Y} JO SI01Id a1enbs ueaw pue saserq :g 414V],
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(i) the usual ratio estimator Y, if

0> y>max{—<8+ (Zky“_ 1)>;_(2k}'u(2) B 1)}
v 1
0f0<y<min<|—<6+(2k;";_l)>; (2kyu(2 )},

y
0> > max {_<ﬁ+ (Zkyx+2()/+8)kux)>'
¢
_ (2,0 + 2Vhux) }
¢
2k, +2(y+0)k
or 0 < & < min {—<ﬁ+( yx (y+9) ux)>;
¢
_ (Zk)’x(Z) + Zykux(z)) } )
¢ 5
(25)
(iii) the ratio estimator }:,Mz if
(2k,,-1)\ 2k
0>y>max{—(d+ yu . yu(2)
v 17
2k u 1 2k ”
0r0<y<min{—(5+( Y )>;_ ;V(Z)}’
v 1
0> a > max {_<,B+ (Zk;"x+2()/+8)kux)>.
¢
(Zkyxu) + 2YKn(a)) }
¢
2k +2(y+06)k
or 0 < & < min {—<ﬁ+( yx (y+9) ux)>;
¢
_ (Zk)’x(Z) + zykux(Z)) } .
¢ 5
(26)

(iv) the ratio estimator }_’M3 if

k, — k _
0>y>max<{—<a+2( yu 1));_(2 yu(2) 1)}
v 14
k, — k _
or0<y<min{—<8+2( yv”/ 1)>;_(2 yu(2) 1)})

14
{ ( (2k
0>a>max 1—-| S+

yx+2(y+8)kux)>.
$ ;
_ (Zkyx(z) + Zqux(z)) }

0

7
2k 2 o)k
or 0 < & < min {_<ﬁ+( }’x+ ((;/'l' ) ux)>;
_(zkyx(Z) + ZVkux(z))}_
$ ;
(27)

(v) the ratio estimator Y, if

0>y>max<|—<8+2(k +1)>; (2kyu(2)+1)}

k +1 2ku +1
or0<y<min{—( > J'(Z) },

05 s max {—(ﬁ (zk +2(y+6)kux))

_ (Zkyx(Z) + zykux(z)) }
¢

or 0 < & < min {—<ﬁ+ (Zkyx+2((;/+8)kux));

B (Zkyx(Z) + zykux(z)) } '
3 ;

(28)

(vi) the ratio estimator Y s if

k,, —vy' k _)
0>y>max{—<6+(2 b IV));_(Z yu(2) ‘/’)}
v v
(Zkyu _V/’) >._(2kyu(2) — q/')}
; " ,

14
05 oo max {_<ﬁ+ (Zkyx+2((;;+8)kux)>;

_ (Zk}’x(Z) + 2ykux(z)) }
¢

or 0 < & < min {—<ﬁ+ (Zky"+2((;}+8)kw<)>;

_ (Zkyx(Z) + zykux(Z)) } .
¢ >

or0<y<min{—<8+

(29)



(vii) the ratio estimator Y 4 if

0>Y>max<|—<8+ (Zkyu_v/’)>._2kyu(2)}
v 1
2k, -y 2k,

0r0<y<min<|—<8+( b4 1//));_ y(Z)}’

v 14
0> o > max {_<ﬁ+ (Zkyx+2(¢2/+8)kux)>;

_ <2k)’x(2) + Zykux(Z)) }
¢

2k, +2(y+0)k,,
or 0 < & < min {—<ﬁ+( b (y +9) )>’
¢
(Zkyx(Z) + zykux(z)) } )
(P bl

(30)

(viii) the ratio estimator Y if

2k, —v' 2k,
0>y>max{—<8+( 4 V/)>;_ y&)}

v v

(2k,, -v') ) 2k }

0r0<y<min{—<5+
4 14

0 > & > max <|—</3+ (2kyx+2(¢’:+8)kW)>,

~ (2kya) + 2Vkin) }
¢

or 0 < a < min {_</3+ (Zkyx+2((;/+6)kux)>;

_ (2k)’x(2) + 2ykux(2)) } )
¢ b

(31)

(ix) the ratio estimator Y g if

k. —u* k ot
O>y>max{—(8+(2 D ‘/’)>;_(2 yu(2) V’)}

v v

(2K, - v") > ;_(Zk;vu(Z) -v’) } )

or 0<y < min {—<6+
v 17

0>« > max {_(l;_'_ (Zkyx+2(y+6)kux)>;

¢

_ (Zkyx(z) + Zqux(z)) }
0
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2k, +2(y+90)k,,
or 0 < o < min {—<ﬁ+( B4 (y +9) )>,
¢
3 (zkyx(Z) + ZVkux(z)) } _
¢ bl
(32)
(x) the ratio estimator 1:’M9 if
2ku_ * Zku
0>y>max{—<8+( 4 W)>;_ y(2)}
14 v
2k, —v" 2k,
or0<y<min{—<5+( b4 V’));_ y(Z)})
v "
2k, +2(y+98)k,,
0 > « > max {—<ﬁ+( b4 (y+9) )),
¢
B (Zkyx(Z) + zykux(z)) }
¢
2k, +2(y+08)k
or 0 < « < min {—<ﬁ+( rx (y+9) ”x));
¢
B (zkyx(Z) + zykux(Z)) } '
¢ bl
(33)

(xi) the ratio estimator Y ;,, if

k. —u* k o
0>y>max<|—<6+2( Diad 1//)>;_(2 yu(2) 1/’)}

4 v
or 0<y < min{_<5+ z(kyu_‘// )>;_(2kyu(2)_1// )}’
v 1

05 oo max {_<ﬁ+ (Zkyx+2((;;+8)kux)>;

_ (Zkyx(z) + 2’Vkux(z)) }
¢

or 0 < & < min {—<ﬁ+ (Zkyx+2((;/+8)kux)>

_ (Zkyx(Z) + zykux(Z)) } .
¢ >

>

(34)
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TABLE 3: Percent relative efficiency of different estimators with respect to y*.

Estimator For p = 1in (13) For p = 0.81in (13)
(k,7) =(2,6) (k,7) = (3,4) (k,r) = (4,3) (k,7) = (2,6) (k,r) = (3,4) (k,7) = (4,3)
¥ 100.00 100.00 100.00 100.00 100.00 100.00
?Ml 29.09 31.94 34.65 54.02 5772 61.06
Yoo 74.56 68.74 64.70 9112 88.51 86.52
?M.,, 16.85 15.48 14.54 29.75 26.69 24.67
§M4 06.26 06.23 06.20 8.62 8.60 8.58
§M5 29.35 32.22 34.94 55.38 59.09 62.42
?M6 74.82 69.04 65.01 91.71 89.25 87.37
Yoo 16.99 15.61 14.65 30.45 2730 25.21
?MB 29.34 32.21 34.93 55.68 59.39 62.72
§M9 74.81 69.03 65.01 91.83 89.41 87.55
?Mm 16.99 15.60 14.65 30.60 27.30 25.33
?SK 314.68 258.16 225.75 314.68 258.16 225.75
?P 314.68 258.16 225.75 339.39 273.28 236.45
?M 314.68 258.16 225.75 398.61 307.40 259.86
TABLE 4: Percent relative efficiency of different estimator with respect to y".
Estimator For p = 0.51in (13) For p = 0.351in (13)
(k,r) = (2,6) (k,7) = (3,4) (k,r) = (4,3) (k,7) = (2,6) (k,r) = (3,4) (k,7) = (4,3)
¥ 100.00 100.00 100.00 100.00 100.00 100.00
?Ml 220.99 199.59 185.25 394.52 305.13 258.33
§M2 112.95 118.04 122.45 116.43 123.17 129.15
§M3 112.15 92.05 80.51 263.47 201.70 169.86
§M4 16.38 16.42 16.45 24.95 25.10 25.23
Y s 238.20 211.70 194.40 395.11 305.07 258.06
?MG 113.55 118.92 123.58 116.34 123.03 128.97
§M7 121.82 99.31 86.53 281.96 215.91 181.85
?Ms 255.10 223.20 202.91 383.69 298.38 253.34
?Mg 114.06 119.66 124.55 116.00 122.53 128.31
Yoo 13179 106.73 92.65 307.09 237,08 200.53
?SK 314.68 258.16 225.75 314.68 258.16 225.75
?P 378.35 295.98 252.11 395.97 305.87 258.79
?M 407.31 312.26 263.16 411.30 314.48 264.67
(xii) the Singh and Kumar [13] estimator }:fSK if 4.1. Comparison of Proposed Estimator with the Singh and
Kumar [13] Estimator. Comparison of a proposed estimator
0> a> max {_ < B+ (Zkyx +2(y +9) k”X) ) ; 1:’[, with other estimators given in Table 1 will yield similar
¢ expressions already derived by Singh and Kumar [13].
(k) + 20kinr) }
¢ (35) (i) For optimum values of Athe constant involved ?M will
or 0 < o < min {_ (ﬁ . (Zkyx +2 ((;’ +9) kux) ) ; be more efficient than Y; that is,

2k 0y + 27k, = Y
_( Y (2)':/) Y (2)) } . M(?M)Opt < M(?SK)OPt (36)
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TABLE 5: Percent relative efficiency of different estimator with
respect to ¥" for p = 0.3 in (13).

Estimator (k,7) =(2,6) (k,r) = (3,4) (k,7) = (4,3)
I 100.00 100.00 100.00
Yan 382.76 29788 253.02
Yo 115.99 122.51 128.28
Vs 314.25 242.94 205.63
Yo 29.27 29.49 29.66
Yuss 36793 289.48 24732
Y e 115.66 122.02 12763
Yoo 321.82 251.66 214.31
Y s 329.78 26725 232.08
Yo 114.77 120.70 125.91
Yo 32150 260.02 22554
Y 314.68 25816 22575
Y, 40111 308.73 260.72
Yo 412.55 315.18 265.15
if
(Pyu = Pysbra)
N 2 | (P = PyxPuu
(A-2)c R
(37)
2
AR (p;vu(Z) B Pyx(z)qu(z)) S 0.

2
¥(2) 1— P)Zm(z)

(ii) Further Y, will be more efficient than Y p; that is,

M(}_;M)opt < M({_,P)opt (38)
if
(P~ Pyrpr)
(- x)c { Pt
(39)
(Pyuce) - )
" A*Ci(z) Pyu(z) pyx(2)qu(2) S 0.

2
1- pxu(2)

Equations (37) and (39) are obviously true.

5. Empirical Study

We use the following data set for comparison.

5.1. Source (See [18]). Let y be the output of the factory and
let x be the number of workers working in the factory. We
randomly select a sample of size 20 from population of size
80 and considered this as the stratum of nonrespondents.
For this population, we have N = 80, N, = 20, n = 30,
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n, = 12,Y = 51826, X = 28513, U = 153514, S, =
3369642, S, = 73132.1, S}, = 66013595417, S, = 2800048,

Sty = 7659588, S, = 68803364254, S,, = 454211,
S,, = 380054066, S,, = 66781955, S ) = 4375949,
Syuzy = 381467001, S, = 70737846, p, = 0915,
Pyu = 0.806, p,, = 0.961, p,. () = 0.9449, p ) = 0.8691,
qu(Z) = 0.99744.

6. Discussion of Results

The results based on above data set are given in Tables 3, 4

and 5. For p = 1 in (13), the estimator Y, reduces to the
Singh and Kumar [13] estimator and for p = 1 in (13), both

Yp and Y, also have the same mean square error equal to
mean square error of Singh and Kumar [13] estimator. From
efficiency point of view the performances of all the ratio type
estimators given in Table 3 are poor for p = 0.8, 1. Further the

estimators, Y, Y p, and Y, (for optimum value), are equally
efficient for p = 1. Efficiency of the considered estimators
decreases with an increase in inverse sampling rate k, except

Y 1> Y asss and Yy 4 where it increased.
Further for p = 0.8,0.5,0.35, 0.3, efficiency of considered
estimators decreases with an increase in inverse sampling rate

kbut for Y, Y pg> and Y 16 (as they deal with the case when
there is incomplete information on the study variable and
complete information on the auxiliary variable), it increased.
Efficiency increased dramatically for all considered ratio type
estimators for values of p < 1. As the value of p decreases,
efficiency increases and reaches the maximum at p = 0.35
and then again starts decreasing. The performance of the

suggested class of estimators Y and Y, is better than all
considered estimators for different combination of k and p.

The estimator Y is the best among all considered estimators
and is preferable to use it.

7. Conclusion

In the present study auxiliary information has been used for
enhancing the efficiency of estimators of finite population
mean. Ratio, product, regression, and modification of these
estimators are example of estimators which utilize auxiliary
information. It is well established that ratio and product esti-
mators are conditionally relatively more efficient than mean
per unit estimator. Using fractional raw moments of auxiliary
variable helps relaxing the efficiency condition and as a result
the efficiency of ratio and product type estimators increases
in the presence of nonresponse. The relative efficiency of the
estimators of finite population mean can further be increased
by making a combined use of fractional raw moments and
mean of the auxiliary variable. We suggest using fractional
raw moments of auxiliary variable, if available, in order to
estimate the finite population mean more precisely.
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