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Two mathematical models are used to simulate water quality in a nonuniform flow stream. The first model is the hydrodynamic
model that provides the velocity field and the elevation of water. The second model is the dispersion model that provides the
pollutant concentration field. Both models are formulated in one-dimensional equations. The traditional Crank-Nicolson method
is also used in the hydrodynamic model. At each step, the flow velocity fields calculated from the first model are the input into
the second model as the field data. A modified MacCormack method is subsequently employed in the second model. This paper
proposes a simply remarkable alteration to the MacCormack method so as to make it more accurate without any significant loss
of computational efficiency. The results obtained indicate that the proposed modified MacCormack scheme does improve the
prediction accuracy compared to that of the traditional MacCormack method.

1. Introduction

In general, the amount of pollution levels in a stream can be
measured via data collection from a real of field data site.
It is somehow rather difficult and complex, and the results
obtained tentatively deviate in the measurement from one
point in each time/place to another when the water flow in
the stream is not uniform. In water quality modelling for
nonuniform flow stream, the general governing equations
used are the hydrodynamic model and the dispersion model.
The one-dimensional shallow water equation and advection-
dispersion-reaction equation is govern the first and the
second models, respectively.

Numerous numerical techniques for solving such models
are available. In [1], the finite element method for solving
a steady water pollution control to achieve a minimum
cost is presented. The numerical techniques for solving
the uniform flow of stream water quality model, especially
the one-dimensional advection-dispersion-reaction equa-
tion, are presented in [2–6].

The nonuniform flow model requires data concerned
with the velocity of the current at any point and any time
in the domain. The hydrodynamics model provides the
velocity field and tidal elevation of the water. In [7–10], they
used the hydrodynamicsmodel and the advection-dispersion
equation to approximate the velocity of the water current
in bay, uniform reservoir, and stream, respectively. Among
these numerical techniques, the finite difference methods,
including both explicit and implicit schemes, are mostly used
for one-dimensional domain such as in longitudinal stream
systems [11, 12].

There are two mathematical models used to simulate
water quality in a nonuniform water flow systems.The first is
the hydrodynamic model that provides the velocity field and
the elevation ofwater.The second is the dispersionmodel that
gives the pollutant concentration field. A couple of models
are formulated in one-dimensional equations.The traditional
Crank-Nicolsonmethod is used in the hydrodynamic model.
At each step, the calculated flow velocity fields of the first
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model are input into the second model as the field data
[9, 10, 13].

The numerical techniques to solve the nonuniform flow
of stream water quality model containing one-dimensional
advection-dispersion-reaction equation have been presented
in [10] using the fully implicit scheme: Crank-Nicolson
method is used to solve the hydrodynamic model and
backward time central space (BTCS) for dispersion model,
respectively. In [13], the Crank-Nicolson method is also used
to solve the hydrodynamic model, while the explicit Saulyev
scheme is used to solve the dispersion model.

Their research on finite difference techniques for the
dispersion model has concentrated on computation accu-
racy and numerical stability. Many complicated numerical
techniques, such as the QUICK scheme, the Lax-Wendroff
scheme, and the Crandall scheme, have been studied to
increase performances. These techniques have focused on
advantages in terms of stability and higher order accuracy [3].

The simple finite difference schemes becomemore attrac-
tive for model use. The simple explicit methods include
the forward time-central space (FTCS) scheme, the Mac-
Cormack scheme, and the Saulyev scheme, and the implicit
schemes include the backward time-central space (BTCS)
scheme, and the Crank-Nicolson scheme [12].These schemes
are either first-order or second-order accurate and have the
advantages in programming and computing without losing
much accuracy and thus they are used for many model
applications [3].

A third-order upwind scheme for the advection-diffusion
equation using a simple spreadsheets simulation is proposed
in [14]. In [15], a new flux splitting scheme is proposed.
The scheme is robust and converges as fast as the Roe Split-
ting. The Godunov-mixed methods for advection-dispersion
equations are introduced in [16]. A time-splitting approach
for advection-dispersion equations is also considered. In
addition, [17] proposes a time-splitting method for multi-
dimensional advection-diffusion equations that advection is
approximated by a Godunov-type procedure, and diffusion is
approximated by a low-order mixed finite element method.
In [18], the flux-limiting solution techniques for simulation
of reaction diffusion convection system are proposed. A
composite scheme to solves the scalar transport equation in a
two-dimensional space that accurately resolve sharp profiles
in the flow is introduced. The total variation diminishing
implicit Runge-Kutta methods for dissipative advection-
diffusion problems in astrophysics is proposed in [19]. They
derive dissipative space discretizations and demonstrate that
together with specially adapted total-variation-diminishing
(TVD) or strongly stable Runge-Kutta time discretizations
with adaptive step-size control this yields reliable and efficient
integrators for the underlying high-dimensional nonlinear
evolution equations.

In this research, we propose simple revisions to the Mac-
Cormack scheme that improve its accuracy for the problem
of water quality measurement in a nonuniform water flow
in a stream. In the following sections, the formulation of the
traditional MacCormack scheme is reviewed.The revision of
the modified MacCormack scheme is proposed.
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Figure 1: The shallow water system.

The results from the hydrodynamic model are the data of
the water flow velocity for the advection-dispersion-reaction
equation which provides the pollutant concentration field.
The term of friction forces, due to the drag of sides of the
stream, is considered. The theoretical solution of the model
at the end point of the domain that guarantees the accuracy
of the approximate solution is presented in [9, 10, 13].

The streamhas a simple one-space dimension as shown in
Figure 1. By averaging the equation over the depth, discarding
the term due to the Coriolis force, it follows that the one-
dimensional shallow water and the advection-dispersion-
reaction equations are applicable.We use the Crank-Nicolson
scheme, the traditional MacCormack scheme, and the Mod-
ified MacCormack scheme to approximate the velocity, the
elevation, and the pollutant concentration from the first and
the second models, respectively.

2. Model Formulation

2.1. The Hydrodynamic Model. In this section, we derive a
simple hydrodynamicmodel for describingwater current and
elevation by one-dimensional shallow water equation. We
make the usual assumption in the continuity andmomentum
balance; that is, we assume that the Coriolis, shearing stresses,
and the surface wind are small [7, 9, 10, 20]; we obtain the
one-dimensional shallow water equations:

𝜕𝜁

𝜕𝑡
+
𝜕

𝜕𝑥
[(ℎ + 𝜁) 𝑢] = 0,

𝜕𝑢

𝜕𝑡
+ 𝑔
𝜕𝜁

𝜕𝑥
= 0,

(1)

where 𝑥 is the longitudinal distance along the stream (m), 𝑡
is time (s), ℎ(𝑥) is the depth measured from the mean water
level to the stream bed (m), 𝜁(𝑥, 𝑡) is the elevation from the
mean water level to the temporary water surface or the tidal
elevation (m/s), and 𝑢(𝑥, 𝑡) is the velocity components (m/s),
for all 𝑥 ∈ [0, 𝑙].

Assume that ℎ is a constant and 𝜁 ≪ ℎ. Then (1) lead to

𝜕𝜁

𝜕𝑡
+ ℎ
𝜕𝑢

𝜕𝑥
≐ 0,

𝜕𝑢

𝜕𝑡
+ 𝑔
𝜕𝜁

𝜕𝑥
= 0.

(2)



Journal of Applied Mathematics 3

We will consider the equation in the dimensionless
problem by letting 𝑈 = 𝑢/√𝑔ℎ, 𝑋 = 𝑥/𝑙, 𝑍 = 𝜁/ℎ, and
𝑇 = 𝑡√𝑔ℎ/𝑙. Substituting them into (2) leads to

𝜕𝑍

𝜕𝑇
+
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑈

𝜕𝑇
+
𝜕𝑍

𝜕𝑋
= 0.

(3)

In [9, 10, 13], they introduce a damping term into (3) to
represent the frictional forces due to the drag of sides of the
stream,

𝜕𝑍

𝜕𝑇
+
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑈

𝜕𝑇
+
𝜕𝑍

𝜕𝑋
= −𝑈,

(4)

with the initial conditions at 𝑡 = 0 and 0 ≤ 𝑋 ≤ 1 are 𝑍 = 0
and 𝑈 = 0. The boundary conditions for 𝑡 > 0 are specified:
𝑍 = 𝑒

𝑖𝑡 at 𝑋 = 0 and 𝜕𝑍/𝜕𝑋 = 0 at 𝑋 = 1. The system
of (4) is called the damped equation. We solve the damped
equation by using the finite difference method. In order to
solve (4) in [0, 1] × [0, 𝑇], it is convenient to use 𝑢, 𝑑 for 𝑈
and 𝑍, respectively:

𝜕𝑢

𝜕𝑡
+
𝜕𝑑

𝜕𝑥
= −𝑢,

𝜕𝑑

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
= 0,

(5)

with the initial conditions 𝑢 = 0, 𝑑 = 0, at 𝑡 = 0, and the
boundary conditions 𝑑(0, 𝑡) = 𝑓(𝑡) and 𝜕𝑑/𝜕𝑥 = 0 at 𝑥 = 1.

2.2. Dispersion Model. In a stream water quality model,
the governing equations are the dynamic one-dimensional
advection-dispersion-reaction equations (ADREs). A simpli-
fied representation by averaging the equation over the depth
is shown in [2–4, 6, 10] as follows:

𝜕𝐶

𝜕𝑡
+ 𝑢
𝜕𝐶

𝜕𝑥
= 𝐷
𝜕
2
𝐶

𝜕𝑥2
− 𝐾𝐶, (6)

where 𝐶(𝑥, 𝑡) is the concentration averaged in depth at the
point 𝑥 and at time 𝑡, 𝐷 is the diffusion coefficient, 𝐾 is the
mass decay rate, and 𝑢(𝑥, 𝑡) is the velocity component for all
𝑥 ∈ [0, 1]. We will consider the model with the following
conditions. The initial condition 𝐶(𝑥, 0) = 0 at 𝑡 = 0 for all
𝑥 > 0. The boundary conditions 𝐶(0, 𝑡) = 𝐶

0
at 𝑥 = 0 and

𝜕𝐶/𝜕𝑥 = 0 at 𝑥 = 1 where 𝐶
0
is a constant.

3. Crank-Nicolson Method for
the Hydrodynamic Model

The hydrodynamic model provides the velocity field and
elevation of the water. Then the calculated results of the
model will be the input into the dispersion model which
provides the pollutant concentration field. We will follow the

numerical techniques of [9]. To find the water velocity and
water elevation from (5), we make the following change to
variables V = 𝑒𝑡𝑢 and substitute it into (5). Therefore,

𝜕V
𝜕𝑡
+ 𝑒
𝑡 𝜕𝑑

𝜕𝑥
= 0,

𝜕𝑑

𝜕𝑡
+ 𝑒
−𝑡 𝜕V
𝜕𝑥
= 0.

(7)

Equations (7) can be written in the matrix form

(
V
𝑑
)

𝑡

+ [
0 𝑒
𝑡

𝑒
−𝑡
0
](

V
𝑑
)

𝑥

= (
0

0
) . (8)

That is

𝑈
𝑡
+ 𝐴𝑈
𝑥
= 0, (9)

where

𝐴 = [
0 𝑒
𝑡

𝑒
−𝑡
0
] ,

𝑈 = (
V
𝑑
) , (

V
𝑑
)

𝑡

= (

𝜕V
𝜕𝑡

𝜕𝑑

𝜕𝑡

) ,

(10)

with the initial condition𝑑 = V = 0 at 𝑡 = 0.The left boundary
condition for 𝑥 = 0, 𝑡 > 0 is specified: 𝑑(0, 𝑡) = sin 𝑡 and
𝜕V/𝜕𝑥 = −𝑒𝑡 cos 𝑡, and the right boundary condition for 𝑥 =
1, 𝑡 > 0 is specified: 𝜕𝑑/𝜕𝑥 = 0 and V(0, 𝑡) = 0.

We now discretize (9) by dividing the interval [0, 1] into
𝑀 subintervals such that𝑀Δ𝑥 = 1 and the interval [0, 𝑇] into
𝑁 subintervals such that𝑁Δ𝑡 = 𝑇. We can then approximate
𝑑(𝑥
𝑖
, 𝑡
𝑛
) by𝑑𝑛
𝑖
, value of the difference approximation of𝑑(𝑥, 𝑡)

at point 𝑥 = 𝑖Δ𝑥 and 𝑡 = 𝑛Δ𝑡, where 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤
𝑁, and similarly defined for V𝑛

𝑖
and𝑈𝑛

𝑖
.The grid point (𝑥

𝑛
, 𝑡
𝑛
)

is defined by𝑥
𝑖
= 𝑖Δ𝑥 for all 𝑖 = 0, 1, 2, . . . ,𝑀 and 𝑡

𝑛
= 𝑛Δ𝑡 for

all 𝑛 = 0, 1, 2, . . . , 𝑁 in which𝑀 and𝑁 are positive integers.
Using the Crank-Nicolson method [21] to (9), the following
finite difference equation can be obtained:

[𝐼 −
1

4
𝜆𝐴 (Δ

𝑥
+ ∇
𝑥
)]𝑈
𝑛+1

𝑖
= [𝐼 +

1

4
𝜆𝐴 (Δ

𝑥
+ ∇
𝑥
)]𝑈
𝑛

𝑖
,

(11)

where

𝑈
𝑛

𝑖
= (

V𝑛
𝑖

𝑑
𝑛

𝑖

) , Δ
𝑥
𝑈
𝑛

𝑖
= 𝑈
𝑛

𝑖+1
− 𝑈
𝑛

𝑖
,

∇
𝑥
𝑈
𝑛

𝑖
= 𝑈
𝑛

𝑖
− 𝑈
𝑛

𝑖−1
,

(12)

𝐼 is the unit matrix of order 2, and 𝜆 = Δ𝑡/Δ𝑥. Applying
the initial and boundary conditions given in (7), it can be
obtained the general form

𝐺
𝑛+1
𝑈
𝑛+1

= 𝐸
𝑛
𝑈
𝑛

+ 𝐹
𝑛
, (13)
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where
𝐺
𝑛+1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 −
𝜆

4
𝑎
𝑛+1

1
0 0

𝜆

4
𝑎
𝑛+1

2
1 −
𝜆

4
𝑎
𝑛+1

2
0 0 0

0
𝜆

4
𝑎
𝑛+1

1
1 0 0 −

𝜆

4
𝑎
𝑛+1

1

𝜆

4
𝑎
𝑛+1

2
0 0 1 −

𝜆

4
𝑎
𝑛+1

2
0

d d d d d d

0 0 0
𝜆

4
𝑎
𝑛+1

1
1 −

𝜆

4
𝑎
𝑛+1

1

0 0
𝜆

4
𝑎
𝑛+1

2
0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐸
𝑛
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 −
𝜆

4
𝑎
𝑛

1
0 0

−
𝜆

4
𝑎
𝑛

2
1
𝜆

4
𝑎
𝑛

2
0 0 0

0 −
𝜆

4
𝑎
𝑛

1
1 0 0

𝜆

4
𝑎
𝑛

1

−
𝜆

4
𝑎
𝑛

2
0 0 1

𝜆

4
𝑎
𝑛

2
0

d d d d d d

0 0 0 −
𝜆

4
𝑎
𝑛

1
1
𝜆

4
𝑎
𝑛

1

0 0 −
𝜆

4
𝑎
𝑛

2
0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑈
𝑛

=(

(

𝑈
𝑛

1

𝑈
𝑛

2

...

𝑈
𝑛

𝑀−1

)

)

,

𝐹
𝑛
=

(
(
(
(
(
(
(
(
(

(

−
𝜆

4
𝑎
𝑛+1

1
sin (𝑡𝑛+1) −

𝜆

4
𝑎
𝑛

1
sin (𝑡𝑛)

−
𝜆

4
𝑎
𝑛+1

2
Δ𝑥𝑒
−𝑡
𝑛+1 cos (𝑡𝑛+1) −

𝜆

4
𝑎
𝑛

2
Δ𝑥𝑒
−𝑡
𝑛 cos (𝑡𝑛)

0

0

...
0

0

)
)
)
)
)
)
)
)
)

)

,

(14)

where 𝑎𝑛
1
= 𝑒
𝑡
𝑛 , 𝑎
𝑛

2
= 𝑒
−𝑡
𝑛 , and 𝑡

𝑛
= 𝑛Δ𝑡 for all 𝑛 = 0

, 1, 2, . . . , 𝑁. The Crank-Nicolson scheme is unconditionally
stable [12, 21].

4. A Modified MacCormack Scheme for the
Advection-Dispersion-Reaction Equation

4.1. The Traditional MacCormack Scheme. First of all, we
consider the traditional MacCormack scheme.The scheme is
an explicit finite difference scheme with predictor-corrector
two-step method. The first step is a modification of forward
time central space (FTCS) by changing the central space
evaluation at time 𝑛 to a forward space evaluation. This step
is a forward time forward space (FTFS) scheme. The FTFS
scheme approximates the temporal and spacial derivatives
and the decay in (6) with the following discretization.

We can then approximate 𝐶(𝑥
𝑖
, 𝑡
𝑛
) by 𝐶𝑛

𝑖
, the value of the

difference approximation of 𝐶(𝑥, 𝑡) at point 𝑥 = 𝑖Δ𝑥 and 𝑡 =
𝑛Δ𝑡, where 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤ 𝑁.The grid point (𝑥

𝑛
, 𝑡
𝑛
) is

defined by 𝑥
𝑖
= 𝑖Δ𝑥 for all 𝑖 = 0, 1, 2, . . . ,𝑀 and 𝑡

𝑛
= 𝑛Δ𝑡 for

all 𝑛 = 0, 1, 2, . . . , 𝑁 in which𝑀 and𝑁 are positive integers.
Taking the forward time forward space technique [3, 21] into
(6), we get the following discretization:

𝐶 ≅ 𝐶
𝑛

𝑖
,

𝜕𝐶

𝜕𝑡
≅
𝐶
𝑛+1

𝑖
− 𝐶
𝑛

𝑖

Δ𝑡
,

𝜕𝐶

𝜕𝑥
≅
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
,

𝜕
2
𝐶

𝜕𝑥2
≅
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

i + 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

,

𝑢 ≅ �̂�
𝑛

𝑖
.

(15)

Note that �̂�𝑛
𝑖
are obtained by the Crank-Nicolsonmethod

with the hydrodynamic model of (5) that are presented in [9,
10, 13].

Substituting (15) into (6), we get

𝐶
𝑛+1

𝑖
− 𝐶
𝑛

𝑖

Δ𝑡
+ �̂�
𝑛

𝑖
(
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
)

= 𝐷(
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

) − 𝐾𝐶
𝑛

𝑖
,

(16)

for 1 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤ 𝑁 − 1. Substitute the difference
equation into (16), and then define slope 𝑆

𝑖
1

as

𝑆
𝑖
1

= −�̂�
𝑛

𝑖
(
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
) + 𝐷(

𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

) − 𝐾𝐶
𝑛

𝑖
.

(17)

Let 𝜆 = 𝐷Δ𝑡/(Δ𝑥)2 and 𝛾𝑛+1
𝑖
= (Δ𝑡/Δ𝑥)�̂�

𝑛+1

𝑖
, and then define

́𝛾
𝑛

𝑖
= 𝛾
𝑛

𝑖
/Δ𝑡 = �̂�

𝑛

𝑖
/Δ𝑥 and �́� = 𝐷/(Δ𝑥)2 = 𝜆/Δ𝑡. Equation (17)

takes a simplified form:

𝑆
𝑖
1

= − ́𝛾
𝑛

𝑖
(𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖
) + �́� (𝐶

𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1
) − 𝐾𝐶

𝑛

𝑖
, (18)

or

𝑆
𝑖
1

= (�́� − ́𝛾
𝑛

𝑖
) 𝐶
𝑛

𝑖+1
− (2�́� − ́𝛾

𝑛

𝑖
+ 𝐾)𝐶

𝑛

𝑖
+ �́�𝐶
𝑛

𝑖−1
. (19)

For upper boundary, where 𝑖 = 1, plug the known value
of the left boundary𝐶𝑛

0
= 𝐶
0
to (19) in the right hand side; we

obtain

𝑆
1
1

= (�́� − ́𝛾
𝑛

1
) 𝐶
𝑛

2
− (2�́� − ́𝛾

𝑛

1
+ 𝐾)𝐶

𝑛

1
+ �́�𝐶
0
. (20)

For the lower boundary, where 𝑖 = 𝑀, substitute the
approximate unknown value of the right boundary by the
forward difference approximation to 𝜕𝐶/𝜕𝑥 = 0. Let 𝐶

𝑀
=

𝐶
𝑀−1

and rearrange; we obtain

𝑆
𝑀
1

= − (�́� + 𝐾)𝐶
𝑛

𝑀−1
+ �́�𝐶
𝑛

𝑀−2
. (21)
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Taking the Euler formula, we obtain the MacCormack
predictor step formulation:

𝐶
𝑛+1

𝑖
= 𝐶
𝑛

𝑖
+ 𝑆
𝑖
1

Δ𝑡. (22)

The second step is amodified backward time central space
(BTCS) scheme by changing the central space evaluation
time 𝑛 with a backward space evaluation. It is essentially a
backward time backward space (BTBS) scheme. The BTBS
scheme approximates the temporal and spacial derivatives
and the decay in (6) with the following discretization:

𝐶 ≅
1

2
(𝐶
𝑛

𝑖
+ 𝐶
𝑛+1

𝑖
) ,

𝜕𝐶

𝜕𝑡
≅
𝐶
𝑛+1

i − 𝐶
𝑛

𝑖

Δ𝑡
,

𝜕𝐶

𝜕𝑥
≅
𝐶
𝑛+1

𝑖
− 𝐶
𝑛+1

𝑖−1

Δ𝑥
,

𝜕
2
𝐶

𝜕𝑥2
≅
1

2
(
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

+
𝐶
𝑛+1

𝑖+1
− 2𝐶
𝑛+1

𝑖
+ 𝐶
𝑛+1

𝑖−1

(Δ𝑥)
2

) .

(23)

Because the values at time level 𝑛+1 have been calculated
in predictor step, the second step is also explicit. It follows
that the slope base on their predictor points can be calculated
as follows:

𝑆
𝑖
2

= �́�𝐶
𝑛+1

𝑖+1
− (2�́� + ́𝛾

𝑛+1

𝑖
+ 𝐾)𝐶

𝑛+1

𝑖
+ (�́� + ́𝛾

𝑛+1

𝑖
) 𝐶
𝑛+1

𝑖−1
.

(24)

For upper boundary, where 𝑖 = 1, plug the known value
of the left boundary 𝐶𝑛+1

0
= 𝐶
0
to (24) in the right hand side.

We obtain

𝑆
1
2

= �́�𝐶
𝑛+1

2
− (2�́� + ́𝛾

𝑛+1

1
+ 𝐾)𝐶

𝑛+1

1
+ (�́� + ́𝛾

𝑛+1

1
) 𝐶
0
. (25)

For the lower boundary, where 𝑖 = 𝑀, substitute the
approximate unknown value of the right boundary by the
backward difference approximation to 𝜕𝐶/𝜕𝑥 = 0. Let
𝐶
𝑀+1
= 𝐶
𝑀
and rearrange; then, we obtain

𝑆
𝑀
2

= �́�𝐶
𝑛+1

𝑀
− (2�́� + ́𝛾

𝑛+1

𝑀
+ 𝐾)𝐶

𝑛+1

𝑀

+ (�́� + ́𝛾
𝑛+1

𝑀
) 𝐶
𝑛+1

𝑀−1
.

(26)

From both of the steps, the MacCormack scheme takes
the following form:

𝐶
𝑛+1

𝑖
= 𝐶
𝑛

𝑖
+
Δ𝑡

2
(𝑆
𝑖
1

+ 𝑆
𝑖
2

) . (27)

The MacCormack scheme is conditionally stable subject
to constraints in (16). The stability requirements for the
scheme are [22]

𝜆 =
𝐷Δ𝑡

(Δ𝑥)
2
<
1

2
,

𝛾
𝑛

𝑖
=
�̂�
𝑛

𝑖
Δ𝑡

Δ𝑥
< 0.9,

(28)

where 𝜆 is the diffusion number (dimensionless) and 𝛾𝑛
𝑖
is the

advection number or Courant number (dimensionless).

4.2. The Modified MacCormack Scheme. Since the derivative
approximation during discretization is not centered, numeri-
cal dispersion will be introduced. The dispersion coefficients
used in the dispersion model would take the value obtained
by subtracting the numerical dispersion from the real data
of the stream. The amounts of the numerical dispersion
introduced by backward space denoted by 𝐷𝑛

1
and forward

time denoted by𝐷𝑛
2
schemes as follow [3, 12]:

𝐷𝑛
1

𝑛

𝑖
=
Δ𝑥

2
�̂�
𝑛

𝑖
,

𝐷𝑛
2

𝑛

𝑖
= −
Δ𝑥

2
(�̂�
𝑛

𝑖
)
2

.

(29)

There are temporal and spacial numerical dispersion in
both predictor and corrector steps since the scheme uses
forward time forward space difference for prediction and
backward time backward space difference for correction.
From (29), the numerical dispersion for forward time for-
ward space prediction step and backward time backward
space correction step are

𝐷
𝑛prd

𝑛

𝑖
= −
Δ𝑥

2
�̂�
𝑛

𝑖
−
Δ𝑡

2
(�̂�
𝑛

𝑖
)
2

,

𝐷
𝑛crc

𝑛

𝑖
=
Δ𝑥

2
�̂�
𝑛

𝑖
+
Δ𝑡

2
(�̂�
𝑛

𝑖
)
2

.

(30)

The modified MacCormack scheme uses the following
corrected dispersion, rather than the real dispersion coeffi-
cients for calculation in both prediction and correction steps:

𝐷
1

𝑛

𝑖
= 𝐷real − 𝐷𝑛prd

𝑛

𝑖
,

𝐷
2

𝑛

𝑖
= 𝐷real − 𝐷𝑛crc

𝑛

𝑖
,

(31)

where𝐷
1

𝑛

𝑖
is the dispersion coefficient used in the prediction

step and 𝐷
2

𝑛

𝑖
is the dispersion coefficient used in the correc-

tion step.
The modified MacCormack scheme is conditionally sta-

ble subject to the constraint in (16).The stability requirements
for the scheme:

𝜆 =
𝐷maxΔ𝑡

(Δ𝑥)
2
<
1

2
,

𝛾
𝑛

𝑖
=
�̂�
𝑛

𝑖
Δ𝑡

Δ𝑥
< 0.9,

(32)

where the maximum of numerical dispersion coefficients is
𝐷max =max{𝐷

1

𝑛

𝑖
, 𝐷
2

𝑛

𝑖
: 0 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁}.

5. The Accuracy of the Hydrodynamic
Approximation

It is not hard to find the analytical solution 𝑑(𝑥, 𝑡) in (5) with
𝑓(𝑡) = sin 𝑡. By changing of variables, 𝑑(𝑥, 𝑡) = 𝑒𝑖𝑡D(𝑥)
and 𝑢(𝑥, 𝑡) = 𝑒𝑖𝑡U(𝑥) for some D(𝑥),U(𝑥) ∈ 𝐶2

0
[0, 1] by

substituting it in (5). Using a separable variables technique,
we can obtain 𝑑(1, 𝑡) a solution [10]:

𝑑 (1, 𝑡) =
sin 𝑡 cos𝛽 cosh𝛼 − cos 𝑡 sin𝛽 sinh𝛼

cos2𝛽 cosh2𝛼 + sin2𝛽 sinh2𝛼
, (33)
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Table 1: The velocity of water flow 𝑢(𝑥, 𝑡).

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.3125 1.2187 1.1125 0.9960 0.8704 0.7372 0.5977 0.4530 0.3041 0.1525 0.0000
20 −1.0899 −1.0355 −0.9644 −0.8782 −0.7784 −0.6670 −0.5456 −0.4162 −0.2808 −0.1414 0.0000
30 0.5200 0.5224 0.5088 0.4801 0.4380 0.3839 0.3196 0.2471 0.1683 0.0852 0.0000
40 0.2172 0.1586 0.1105 0.0723 0.0433 0.0226 0.0091 0.0014 −0.0015 −0.0015 0.0000

Table 2: The pollutant concentration 𝐶(𝑥, 𝑡) of traditional MacCormack scheme, Δ𝑥 = 0.025 and Δ𝑡 = 0.00125.

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.000000 0.174513 0.029152 0.004634 0.000697 0.000099 0.000013 0.000002 0.000000 0.000000 0.000000
20 1.000000 0.054532 0.003068 0.000180 0.000011 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000
30 1.000000 0.125937 0.015943 0.002012 0.000251 0.000031 0.000004 0.000000 0.000000 0.000000 0.000000
40 1.000000 0.105911 0.010827 0.001074 0.000104 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000
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Figure 2: Comparison of analytical solution for height of water
elevation with results obtained by numerical technique at the end
point of the domain.

Figure 3: The water velocity 𝑢(𝑥, 𝑡)m/s.

where 𝛼 = 21/4 cos(3𝜋/8) and 𝛽 = 21/4 sin(3𝜋/8). However, it
is not easy to find the analytical solution 𝑢(𝑥, 𝑡) of (5).We use
the solution 𝑑(1, 𝑡) obtained in (33) to verify our approximate
solution obtained by the Crank-Nicolson method equation
(13). Actually when the Crank-Nicolson method is used, we
get the approximate solution both 𝑑(𝑥, 𝑡) and 𝑢(𝑥, 𝑡). We

Figure 4: The pollutant concentration 𝐶(𝑥, 𝑡) (mg/L) using tradi-
tional MacCormack scheme.

Figure 5: The pollutant concentration 𝐶(𝑥, 𝑡) (mg/L) using modi-
fied MacCormack scheme.

assume that when we get a good approximation for 𝑑(𝑥, 𝑡),
this implies that the method gives a good approximation for
𝑢(𝑥, 𝑡). The verification of the approximate solution 𝑑(1, 𝑡) is
shown in Figure 2.
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Table 3: The pollutant concentration 𝐶(𝑥, 𝑡) of modified MacCormack scheme, Δ𝑥 = 0.025 and Δ𝑡 = 0.00125.

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.000000 0.146939 0.021001 0.002907 0.000388 0.000050 0.000006 0.000001 0.000000 0.000000 0.000000
20 1.000000 0.059627 0.003656 0.000233 0.000015 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000
30 1.000000 0.117948 0.013959 0.001648 0.000193 0.000022 0.000003 0.000000 0.000000 0.000000 0.000000
40 1.000000 0.103863 0.010501 0.001038 0.000101 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000
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Figure 6: The comparison of concentration at 4 different time instants of Modified MacCormack and Traditional MacCormack methods.

Figure 2 shows the comparison between the analytical
solutions 𝑑(1, 𝑡) and the approximate solutions 𝑑(1, 𝑡) only at
the end of the domain.

Unfortunately, the analytical solutions of the hydrody-
namic model could not be found over the entire domain [10].
This implied that the analytical solutions of the dispersion
model could not be computed at any points in the domain
as well.

6. Application to the Stream Water Quality
Assessment Problem

Suppose that the measurement of pollutant concentration
𝐶 in a nonuniform flow stream is considered. A stream
is aligned with longitudinal distance, 1.0 (km) total length
and 1.0 (m) depth. There is a plant which discharges waste
water into the stream and the pollutant concentration at the
discharge point is 𝐶(0, 𝑡) = 𝐶

0
= 1 (mg/L) at 𝑥 = 0

for all 𝑡 > 0 and 𝐶(𝑥, 0) = 0 (mg/L) at 𝑡 = 0. The
elevation of water at the discharge point can be described
as a function 𝑑(0, 𝑡) = 𝑓(𝑡) = sin 𝑡 (m) for all 𝑡 > 0, and
the elevation does not change at 𝑥 = 1.0 (km) The physical
parameters of the stream system are diffusion coefficient𝐷 =
0.0125 (m2/s) and a first-order reaction rate 10−5 s−1. In the
analysis conducted in this study, meshing the stream into 40
elements with Δ𝑥 = 0.025, and the time increment is 0.4 (s)
with Δ𝑡 = 0.00125, characterizing a one-dimensional flow.
Using the Crank-Nicolson method of [9, 10, 13], it can be

obtained the water velocity 𝑢(𝑥, 𝑡) in Table 1 and Figure 3.
Next, the approximate water velocity can be plugged into the
traditional MacCormack scheme in (27). We also plug the
approximate water velocity into the modified MacCormack
scheme (27) with numerical dispersion coefficients (31).
The approximation of pollutant concentrations 𝐶 of both
schemes is shown in Tables 2 and 3 and Figures 4 and 5.
The comparison of traditional MacCormack and modified
MacCormack is shown in Figure 6.

7. Discussion and Conclusions

The approximation of the pollutant concentrations of the
traditional and modified MacCormack schemes is shown
in Tables 2 and 3. The real-world problems require a small
amount of time interval in obtaining accurate solutions.
Unfortunately, the analytical solutions of the hydrodynamic
model could not be found over the entire domain. This
also implies that the analytical solutions of dispersion model
could not work out at any point on the entire domain as well
[13].

In [13], it is revealed that the diffusion coefficients of
the pollutant matter can reduce the concentration of the
nonuniform stream. If sewage effluent with a low diffusion
coefficient has discharged into a nonuniform flow stream,
then the water quality will be lower than a discharging of high
diffusion coefficients of other pollutant matters.
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We propose a modified MacCormack scheme by adding
a simple revision to the traditional MacCormack scheme.
The numerical dispersion has been introduced because the
derivative approximation during discretization is not cen-
tered. The traditional MacCormack scheme shows excessive
dispersion effects for large time and space step lengths,
significantly decreasing the efficiency of the traditional Mac-
Cormack scheme [3]. To eliminate the numerical dispersion
effect, themodifiedMacCormack scheme for the nonuniform
flow is proposed. Though revision shows a good agreement
in accuracy with the original one, the modifiedMacCormack
scheme becomes less efficient than the traditional MacCor-
mack scheme.

In this paper, the hydrodynamic model and the
convection-diffusion-reaction equation can be combined to
approximate the pollutant concentration in a stream when
the current reflecting water in the stream is not uniform.
The technique developed in this paper, the response of the
stream to the two different external inputs: the elevation of
water and the pollutant concentration at the discharge point,
can be obtained. Both of the traditional and the modified
MacCormack schemes can be used in the dispersion model
since the scheme is very simple to implement. By both of the
traditional and the modified MacCormack finite difference
formulations, we obtain that the proposed technique is
applicable and economical to be used in the real-world
problem due to its simplicity to program and the straight
forwardness of the implementation. It is also possible to find
tentative better locations and better periods of time of the
different discharge points to a stream.
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