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The Opial property of Hilbert spaces and some other special Banach spaces is a powerful tool in establishing fixed point theorems
for nonexpansive and, more generally, nonspreading mappings. Unfortunately, not every Banach space shares the Opial property.
However, every Banach space has a similar Bregman-Opial property for Bregman distances. In this paper, using Bregman distances,
we introduce the classes of Bregman nonspreading mappings and investigate the Mann and Ishikawa iterations for these mappings.
We establish weak and strong convergence theorems for Bregman nonspreading mappings.

1. Introduction

Let E be a (real) Banach space with norm || - || and dual space
E*. For any x in E, we denote the value of x* in E* at x
by (x,x"). When {x,}, is @ sequence in E, we denote the
strong convergence of {x,},y to x € Eby x,, — x and the
weak convergence by x,, — x. Let C be a nonempty subset of
E.LetT : C — E beamap. We denoteby F(T) = {x € C:
Tx = x} the set of fixed points of T. We call the map T

(i) nonexpansive if ||[Tx — Ty| < [lx — y| for all x, y in C,

(ii) quasi-nonexpansiveif F(T)# 0 and [Tx—y| < |lx—y|
for all x in C and y in F(T).

The nonexpansivity plays an important role in the study
of the Ishikawa iteration, given by

Yn = ﬂnTxn + (1 - ﬁn) Xp>

Xp+1 = ynTyn + (1 - Yn) Xn>

@

where the sequences {,},,cy and {y,},.c satisfy some appro-
priate conditions. When all 8, = 0, Ishikawa iteration
(1) reduces to the classical Mann iteration. Construction
of fixed points of nonexpansive mappings via Mann’s and

Ishikawa’s algorithms [1] has been extensively investigated in
the literature (see, e.g., [2] and the references therein).

A powerful tool in deriving weak or strong convergence
of iterative sequences is due to Opial [3]. A Banach space
E is said to satisfy the Opial property [3] if for any weakly
convergent sequence {x,},.y in E with weak limit x we have

lim sup ||x,, — x|| < lim sup |x, - y|, )
n— 00 n—0o

for all y in E with y# x. It is well known that all Hilbert
spaces, all finite dimensional Banach spaces, and the Banach
spaces I” (1 < p < 00) satisfy the Opial property. However,
not every Banach space satisfies the Opial property; see, for
example, [4, 5].

Working with the Bregman distance D, the following
Bregman-Opial-like inequality holds for every Banach space
E:

lim supD (x,, x) < lim sup D, (x,, ), 3)
n— 0o

n— 00

whenever x, — x#y. See Lemmall for details. The
Bregman-Opial property suggests introducing the notions of
Bregman nonexpansive-like mappings and developing fixed
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point theorems and convergence results for the Ishikawa
iterations for these mappings.

We recall the definition of Bregman distances. Let g :
E — R be a strictly convex and Gateaux differentiable
function on a Banach space E. The Bregman distance [6] (see
also [7, 8]) corresponding to g is the function D , i EXE - R
defined by

Dy(x,y)=g(x)-g(y)-(x-».Vg(y)), W
Vx,y € E.

It follows from the strict convexity of g that D (x, y) > 0 for
all x, y in E. However, D, might not be symmetric and D,
might not satisfy the triangular inequality.

When E is a smooth Banach space, setting g(x) = [l
for all x in E, we have that Vg(x) = 2]x for all x in E. Here
J is the normalized duality mapping from E into E*. Hence,
Dg(-, -) reduces to the usual map ¢(-, ) as

2
>

D, (x,y) =¢(xy) = lIxI” = 2(x, Jy) + ]

Vx,y € E.

©)

If E is a Hilbert space, then Dg(x, y) =llx - y||2.

Let g E — R be strictly convex and Gateaux
differentiable, and let C C E be nonempty. A mapping T :
C — Eissaid tobe

(i) Bregman nonexpansive if

D, (Tx,Ty) < D, (x.y), Vx,yeGC (6)

(ii) Bregman quasi-nonexpansive if F(T) #+0 and

D, (p.Tx) <Dy (p,x), VxeC, VpeF(T); (7)

(iii) Bregman skew quasi-nonexpansive if F(T') #+ 0 and

D, (Tx,p) <Dy (x,p), Vxe€C, VpeF(T), (8)

(iv) Bregman nonspreading if

D, (Tx,Ty) + D, (Ty, Tx)

©)
<D, (Tx,y)+ Dy (Ty,x), Vx,yeC.

It is obvious that every Bregman nonspreading map T with
F(T)+0 is Bregman quasi-nonexpansive. Bregman non-
spreading mappings include, in particular, the class of non-
spreading functions studied by Takahashi and his coauthors
(see, e.g., [9,10]), which is defined with the map ¢ in (5).

Let us give an example of a Bregman nonspreading
mapping with nonempty fixed point set, which is not quasi-
nonexpansive.

Example 1. Let g : R — R be defined by g(x) = x*. The
associated Bregman distance is given by

D,(xy)=x"-y'—4(x-y)y’
(10)

=x*+ 3y4 - 4xy3, Vx,y € R.

Abstract and Applied Analysis

Define T': [0,2] — [0,2] by

0 ifxel0,2),
Tx = 11
* {1 if x = 2. a

We have F(T) = {0}. Plainly, T is neither nonexpansive nor
continuous.

However, T is Bregman nonspreading. To see this, we
define f:[0,2] x [0,2] — R by

f(xy)= D, (Tx, Ty) + D, (Ty, Tx)

- D, (Tx,y) - D, (Ty,x), Vx,ye€l[0,2].
(12)

Consider the following three possible cases.

Case 1. If x = y = 2, then we have Tx = Ty = 1 and hence
f(2,2)=0+0-17-17 = -34 < 0. (13)

Case 2. If x =2and y € [0,2), then we have Tx =1, Ty = 0,
and hence

f(2y)=1+3-1-3y"+4y’ - 48
(14)
= -3y*+4y° —45<0.

Case 3. If x, y € [0, 2), then we have Tx = Ty = 0 and hence

floy)=-3(x"+y") <0 (15)

Thus we have f(x, y) < 0 forall x, y in [0, 2] and hence T is
a Bregman nonspreading mapping.

In Section 2, we collect and study some basic ties of
Bregman distances. In Section 3, utilizing the Bregman-Opial
property, we present some fixed point theorems. In Sections
4 and 5, we investigate weak and strong convergence of
the Ishikawa and Bregman-Ishikawa iterations for Bregman
nonspreading mappings. Our results improve and generalize
some known results in the current literature; see, for example,
[11].

2. Bregman Functions and Bregman Distances

Let E be a (real) Banach space, and let g : E — R. For any x
in E, the gradient Vg(x) is defined to be the linear functional
in E* such that
+ty) -

The function g is said to be Gateaux differentiable at x if
Vg(x) is well defined, and g is Gdteaux differentiable if it is
Gateaux differentiable everywhere on E. We call g Fréchet
differentiable at x (see, e.g., [12, page 13] or [13, page 508])
if, for all € > 0, there exists & > 0 such that

9(»)-gx) - (y-xVgx)| <ely-x,

whenever ||y — x|| < 6.
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The function g is said to be Fréchet differentiable if it is Fréchet
differentiable everywhere.

Let B be the closed unit ball of a Banach space E. A
function g : E — R is said to be

(i) strongly coercive if

9(x) _

el oo [

+00; (18)

(ii) locally bounded if g(rB) is bounded for all » > 0;
(iii) locally uniformly smooth on E ([14, pp. 207, 221]) if the
function g, : [0, +00) — [0, +00], defined by

o, (1)

= sup (Oég(x‘i'(l_“)t)’)
x€rB,yeSg,ae(0,1) (19)
+(1-a)g(x—aty) - g(x))
X (a(1 - 06))_1/2’
satisfies
limar_(t) =0, Vr>0; (20)
tlo t

(iv) locally uniformly convex on E (or uniformly convex
on bounded subsets of E ([14, pp. 203, 221])) if the
gauge p, : [0,+00) — [0, +00] of uniform convexity
of g, defined by

pr (t)

= inf
x,y€rB,||lx—yll=t,ae(0,1

)(cxg(x> +(1-a)g(y)
(21
—glax+(1-a)y))
x (a(1-a)) ™,
satisfies

p, (1) >0, Vr,t>0. (22)

For a locally uniformly convex map g : E — R, we have
glax+(1-a)y)<a(x)g+(1-a)g(y)

—a(l-a)p, (x-y])>

for all x, y in ¥B and for all « in (0, 1).

Let E be a Banach space and g : E — R a strictly convex
and Gateaux differentiable function. By (4), the Bregman
distance satisfies that [6]

D, (x,2) = Dy (x,y) + Dy (y,2)

+(x-y.V9(y)-Vg(2), Vx,yz€E.
(24)
In particular,
(25)
+{(y-xVg(y)-Vg(x), VxyckE

Lemma 2 (see [15]). Let E be a Banach space and g : E —
R a Gdteaux differentiable function which is locally uniformly
convex on E. Let {x,,},cny and {y,},en be bounded sequences in
E. Then the following assertions are equivalent:

(@) lim,, _, ,D(x,, y,) = 0,

(2) lim,, _, ,lIx,, — ¥, = 0.

The following Bregman-Opial-like inequality has been
proved in [16].

Lemma 3 (see [16]). Let E be a Banach space and let g : E —
R be a strictly convex and Gateaux differentiable function.
Suppose {x,},cv is a sequence in E such that x,, — x for some
x in E. Then

limsupD,, (x,,, x) < lim supD,, (x,, y), (26)

for all y in the interior of dom g with y # x.

We call a function g : E — (—00, +00] lower semicon-
tinuous if {x € E : g(x) < r} is closed for all  in R. For
a lower semicontinuous convex function g : E — R, the
subdifferential dg of g is defined by

og(x)={x" € E": g(x)

+(y-xx") <g(y),¥y € E},

(27)

for all x in E. It is well known that dg ¢ E x E* is maximal
monotone [17, 18]. For any lower semicontinuous convex
function g : E — (—00, +00], the conjugate function g* of g
is defined by

g (x") = sgg{(x,af) -g(x)}, Vx"eE". (28)

It is well known that

gx)+g" (x")=(x,x"), V(x,x")eExXE", (29)
(x,x") € 0g is equivalent to g (x) + g* (x*) = (x,x").
(30)

We also know thatif g : E — (—00,+00] is a proper
lower semicontinuous convex function, then g* : E* —
(—00,+00] is a proper weak™ lower semicontinuous convex
function. Here, saying g is proper we mean that dom g :=
{x € E: g(x) < +00} #0.

The following definition is slightly different from that in
Butnariu and Tusem [12].

Definition 4 (see [13]). Let E be a Banach space. A function
g: E — Ris said to be a Bregman function if the following
conditions are satisfied:

(1) g is continuous, strictly convex, and Gateaux differ-
entiable;

(2) theset {y € E : Dg(x, y) < r}is bounded for all x in
Eandr > 0.



The following lemma follows from Butnariu and Iusem
[12] and Zalinescu [14].

Lemma 5. Let E be a reflexive Banach space and g : E — R
a strongly coercive Bregman function. Then

(1) Vg : E — E" is one-to-one, onto, and norm-to-weak”
continuous;

(2) (x—»,Vg(x) - Vg(y)) = 0ifand only if x = y;

(3){x € E: Dg(x, y) < r}is bounded for all y in E and
r>0;

(4) dom g* = E*, g" is Gdteaux differentiable, and Vg"* =
(Vg) .

The following two results follow from [14, Proposition
3.6.4].

Proposition 6. Let E be a reflexive Banach space and let g :
E — R be a convex function which is locally bounded. The
following assertions are equivalent:

(1) g is strongly coercive and locally uniformly convex on
E;

(2) dom g* = E* and g" is locally bounded and locally
uniformly smooth on E;

(3) dom g* = E*,g" is Fréchet differentiable, and Vg~
is uniformly norm-to-norm continuous on bounded
subsets of E*.

Proposition 7. Let E be a reflexive Banach spaceand g : E —
R a continuous convex function which is strongly coercive. The
following assertions are equivalent:

(1) g is locally bounded and locally uniformly smooth on
E;

(2) g is Fréchet differentiable and V g™ is uniformly norm-
to-norm continuous on bounded subsets of E;

(3) dom g* = E* and g" is strongly coercive and locally
uniformly convex on E.

Lemma 8 (see [13, 19]). Let E be a reflexive Banach space,
g : E — R a strongly coercive Bregman function, and V the
function defined by

Vx € E, Vx" € E.
(31)

V(x,x")=g(x) —(x,x")+g" (x*),

The following assertions hold:
(1) Dy(x, Vg*(x*)) = V(x,x") forallxin Eand x* in E,
(2) V(x,x") + (Vg " (x") = x, y") < V(x,x" + y") for all
xin E and x*, y* in E*.

It also follows from the definition that V' is convex in the
second variable x*, and

V(x,Vg(y)) =Dy(xy). (32)
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Let E be a Banach space and let C be a nonempty convex
subset of E. Let g : E — R be a strictly convex and Gateaux
differentiable function. Then, we know from [20] that, for x
in E and x; in C, we have

D, (xq,x) = I;lelg D, (y,x) if and only if
(33)
(= %0, Vg (x) = Vg (x0)) <0,

Further, if C is a nonempty, closed, and convex subset of a
reflexive Banach space E and g : E — R is a strongly
coercive Bregman function, then, for each x in E, there exists
a unique x; in C such that

Vy e C.

D, (xq,x) = min D, (y,%). (34)

The Bregman projection projs, from E onto C defined by
projZ(x) = x, has the following property:

D, (y, proj. x) + D, (projZ x,x)

(35)
<D,(y.x), VyeC VxeE.
See [12] for details.
Let E be a reflexive Banach space and let g : E —

R be a lower semicontinuous, strictly convex, and Géateaux
differentiable function. Let C be a nonempty, closed, and
convex subset of E and let {x,},y be a bounded sequence
in E. For any x in E, we set

Br (x, {x,}) = lim supD, (x,, x). (36)
n— 00
The Bregman asymptotic radius of {x,},c relative to C is
defined by

Br(C, {x,}) = inf {Br (x, {x,}) : x € C}. (37)

The Bregman asymptotic center of {x,},cy relative to C is the
set

BA(C,{x,}) = {x € C: Br(x,{x,}) = Br(C,{x,})}. (38)

Proposition 9. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E, and let g : E — R be strictly
convex, Gdteaux differentiable, and locally bounded on E. If
{x,} e 15 a bounded sequence of C, then BA(C, {x,},en) is a
singleton.

Proof. In view of the definition of Bregman asymptotic
radius, we may assume that {x, }, ., converges weakly to z in
C. By Lemma 3, we conclude that BA(C, {x,,},\) = {z}. O

3. Fixed Point Theorems

Lemma 10 (see [21]). Let C be a nonempty, closed, and convex
subset of a reflexive Banach space E. Let g : E — R be strictly
convex, continuous, strongly coercive, Gateaux differentiable,
and locally bounded on E. Let T : C — E be a Bregman quasi-
nonexpansive mapping. Then F(T') is closed and convex.
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Lemma 11. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be a strictly
convex and Gateaux differentiable function. LetT : C — E be
a Bregman nonspreading mapping. Then

D, (x,Ty) < Dy (x, y) + D, (Tx, x)

+(x=Tx,Vg(y)-Vg(Ty))
+(Tx - Ty, Vg (x) - Vg (Tx)),

(39)

Vx,y € C.
Proof. Let x, y € C. In view of (24), we have
Dg (Tx, Ty) < Dg (Tx, y) + Dg (Ty, x) - Dg (Ty, Tx)
=D, (Tx,x) + D, (x,y)
+(Tx - x,Vg(x)-Vg(y))
+ Dy (Ty,Tx) + D, (Tx, x)
+(Ty-Tx,Vg(Tx)-Vg (x)) -D, (Ty, Tx)
= D, (x,y) +2D, (Tx, x)
+(Tx = x,Vg(x) - Vg (y))

+(Tx - Ty,Vg(x) - Vg (Tx)) .
(40)

This, together with (24), implies that
D, (x,Ty) = D, (x,Tx) + Dy (Tx, Ty)

+(x = Tx,Vg(Tx) - Vg (Ty))

< D, (x,Tx) + Dy (x, y) + 2D, (Tx, x)
+(Tx - x,Vg (x) - Vg (y))
+(Tx - Ty, Vg (x) - Vg (Tx))
+(x = Tx,Vg (Tx) - Vg (Ty))

=D_(x,y)+D,(Ix, x)

g ( )’) 9 (41)

+(x-Tx,Vg(x) - Vg (Tx))
+ (Tx -Ty,Vg(x)-Vg (Tx))
+(Tx - x,Vg (x) - Vg (y))
+(x = Tx,Vg(Tx) - Vg (Ty))

=D, (x,y) + D, (Tx, x)
+{x-Tx,Vg (y) - Vg (Ty))
+(Tx - Ty,Vg(x) - Vg(Tx)).

O

Proposition 12 (demiclosedness principle). Let C be a
nonempty subset of a reflexive Banach space E. Let g : E —
R be a strictly convex, Gdteaux differentiable, and locally
bounded function. Let T : C — E be a Bregman nonspreading
mapping. If x, — z in C and lim,, _, | Tx, — x,|| = 0, then
Tz = z. That is, I — T is demiclosed at zero, where I is the
identity mapping on E.

Proof. Since {x,},cy converges weakly to z and
lim,_, ITx, — x, = 0, both the sequences {x,},ex
and {T'x,},n are bounded. Since Vg is uniformly norm-to-
norm continuous on bounded subsets of E (see, e.g., [14]),
we arrive at

nh—%o "Vg (xn) - Vg (Txn)" =0. (42)
In view of Lemma 2, we deduce that lim,,_, ,,D(x,, Tx,) =

0. Set
M, = sup {|Tx, ||, ITzl, Vg (@], Vg (T2)] : n € N}

< +o00.
(43)

By Lemma 11, for all n in N,
D, (x,,Tz)

< D, (x,,2) + Dy (Tx,, x,)
+{x, = Tx,,, Vg (2) - Vg (Tz))
+(Tx, = Tz,Vg (x,) = Vg (Tx,))

< D, (x,,2) + Dy (Tx,, x,,)
+[xn = Tx| Vg (2) - Vg (T2)]
+[Tx, = T2] [V (x,) = Vg (Tx,)|

<D, (x,,2) + Dy (Tx,, x,)

+2M, |x, — Tx,| + 2M, |Vg (x,) - Vg (Tx,)| -
(44)

This implies

lim sup D, (x,,, Tz) < lim sup Dy (x,,2).  (45)

n— 0o

From the Bregman-Opial-like property, we obtain Tz = z.
O

Let £*° be the Banach lattice of bounded real sequences
with the supremum norm. It is well known that there exists
a bounded linear functional ¢ on £ such that the following
three conditions hold:

(1) if {t,}en € €7 and t, > O for every n in N, then
p({t,}) = 0
(2) ift, = 1 for everynin N, then u({t,}) = 1;

(3) u{t, 1 }) = ut,}) for all {t,},,cn in €.



Here, {t,,,} denotes the sequence (t,,t5,t4...,t,1>...) I
£°°. Such a functional y is called a Banach limit and the value
of p at {t, },,cn in € is denoted by y,,t,,. Therefore, condition
(3) means y,t, = p,t,.,. If y satisfies conditions (1) and (2),
we call p a mean on £°. See, for example, [22].

To see some examples of those mappings T satisfying all
the stated hypotheses in the following result, we refer the
reader to [23].

Theorem 13 (see [23]). Let C be a nonempty, closed, and
convex subset of a reflexive Banach space E. Let g : E —
R be strictly convex, continuous, strongly coercive, Gateaux
differentiable, locally bounded and locally uniformly convex on
E. LetT : C — C be a mapping. Let {x,},cn be a bounded
sequence of C and let y be a mean on €*°. Suppose that

4Dy (%, Ty) < p,Dy (x,, ), ¥y eC.  (46)
Then T has a fixed point in C.

Corollary 14. Let C be a nonempty, bounded, closed, and
convex subset of a reflexive Banach space E. Let g : E —
R be strictly convex, continuous, strongly coercive, Gateaux
differentiable function, locally bounded, and locally uniformly
convex on E. Let T : C — C be a Bregman nonspreading
mapping. Then T has a fixed point.

Proof. Let u a Banach limit on €*° and x € C be such that
{T"x},,cn is bounded. For any # in N we have

Dg (T”x, Ty) + Dg (Ty, T”x)

(47)
<D, (T"x,y) + D, (Ty, T”_lx) , VyeC.
This implies that
#,Dy (T"x,Ty) + u,D, (Ty, T"x)
(48)

< u,D, (T"x, ) +u,D, (Ty, T"_lx) , VYyeC.
Thus we have
4, D, (T"x,Ty) <y, D, (T"x, y), VyeC. (49)

It follows from Theorem 13 that F(T') # 0. ]

4. Weak and Strong Convergence Theorems
for Bregman Nonspreading Mappings

In this section, we prove weak and strong convergence
theorems concerning Bregman nonspreading mappings in a
reflexive Banach space.

Lemma 15. Let C be a nonempty, closed, and convex subset of
a reflexive Banach space E. Let g : E — R be a strictly convex
and Gdteaux differentiable function. Let T : C — C bea
Bregman skew quasi-nonexpansive mapping with a nonempty
fixed point set F(T). Let {x,,} ey and {y,,},.en be two sequences
defined by (1) such that {f3,},en and {y,},en are arbitrary
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sequences in [0, 1]. Then the following assertions hold:

1) max{Dg(an,z), Dg(yn,z)} < Dg(x,,,z) for all z in
F(Tandn=1,2,...

(2) lim,,_, ong(xn’ z) exists for any z in F(T).
Proof. Let z € F(T). In view of (23), we have
Dy (y»2) = Dy (B,Tx, + (1= B,) X, 2)
< BuDy (Tx,,2) + (1= B,) Dy (x,,2)
< BuDy (x,,2) + (1 = B,) Dy (%, 2)

=D, (x,,2).

(50)

Consequently,
Dy (%41,2) = Dy (1, Ty + (1 = 1) %, 2)
< yuDy (T, 2) + (1~ y,) D, (x,,,2)
< YDy (4 2) + (1 =7,) Dy (x,02) (1)
< ¥uDy (%,,2) + (1= 7,) Dy (x,,2)
=D, (x,,2).

This implies that {D,(x,,2)},cy is a bounded and nonin-
creasing sequence for all z in F(T). Thus we have that
lim,, _, o, D,(x,, z) exists for any z in F(T). O
Theorem16. Let C be a nonempty, closed, and convex subset of
a reflexive Banach space E. Let g : E — R be strictly convex,
Gateaux differentiable, locally bounded, and locally uniformly
convexon E. Let T : C — C be a Bregman nonspreading and
Bregman skew quasi-nonexpansive mapping. Let {f3,},cn and
{Vutnen be sequences in [0,1], and let {x,},cn be a sequence
with x, in C defined by (1).

(@) If {x, },,en is bounded and liminf, _,
then the fixed point set F(T) # 0.

(b) Assume F(T)# 0. Then {x,},cy is bounded.

ITx, — x,ll =0,

(i) lim,, _, I Tx,, — x,| = 0 when lim inf, , y,(1-
y,) > 0andlim, , B, = 1.
(ii) lim inf |Tx, — x,|l = 0 when either

}’l—)OOI

(1) limsup,, _, . ,(1 y,) > 0 and
lim, , fB,=1or
(2) liminf, |, (y,(1 - y,) > 0 and

limsup, , B, =1

Proof. Assume  that  {x,},ny is bounded and
liminf, | IITx, — x, = 0. Consequently, there is a
bounded subsequence {Tx, }ieny of {Tx,} ey such that
limkﬁooHTxnk - X, | = 0. Since Vg is uniformly norm-
to-norm continuous on bounded subsets of E (see, e.g.,

(14]),

Jdim Vg (Tx,,) - Vg (%, )] =0 (52
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In view of Proposition 9, we conclude that BA(C, {xnk}) = {z}
for some z in C. Let

M, = sup {IT @I, |Tx, ||, [Va 2],
(53)
[Vg (T2)| : k € N} < +c0.
It follows from Lemma 11 that
Dg (x”k’ Tz)
S Dg (x”k’z) + Dg (Tx"k’ x”k)
+({x,, —Tx,.Vg(z) - Vg (Tz))
+ <Txnk -Tz, Vg (xnk) -Vg (Txnk»
< Dg (xnk,z) + Dg (Txnk, xnk)
(54)

+ |, - T2, | 199 2) - Va (T2)]
+[7x,, 2] V9 (x,) - Va (T, )|
<D, (x,,2)+ D, (Tx,,x, )
+2M, |x, —Tx, |

+2M, “Vg (xnk) -Vg (Txnk)” , k=1,2,....
This implies

limsupD, (xnk, Tz) < limsupD, (xnk, z) . (55)

k— 0o k— o0

From the Bregman-Opial-like property, we obtain Tz = z.
Let F(T) # 0 and let z € F(T). It follows from Lemma 15
that lim,, _, llx,, — z|| exists and hence {x,},y is bounded.
This implies that the sequence {T'y, },cy is bounded too. Let
s; = sup{lx, I, 1Ty, : n € N} < oo. In view of (23), we
obtain a continuous, strictly increasing, and convex function
ps, [0, +00) — [0, +00) with ps, (0) = 0 such that
Dg (an,Z) = Dg (ynTyn + (1 - Yn) xn’z)
< )}an (Tyn’ Z) + (1 - Vn) Dg (xn’ Z)
Y (1 - YH) Ps, ("Tyn - xn“)
< Yan (yn’ Z) + (1 - Vn) Dg (xn’ Z)
~Vn (1 - Yn) p51 ("Tyn - xn“)
< Yan (xn’z) + (1 - Yn) Dg (xn’z)
Y (1 - Yn) Ps, ("Tyn - xn“)

= Dg (xn’z) “Yn (1 - Yn) Ps, (”Tyn - xn") :
(56)

7
Consequently, we conclude that
Yn (1 - Yn) Ps, (”Tyn - xn")
ES Dg (xn’z) - Dg (xn+1’z) (57)

— 0, asn — 0.

It follows that

linlgiol(l)fpsl("Tyn — x,||)= 0 whenever lim supy,(1-y,) > 0.
(58)

From the property of p; we deduce that

lim inf | Ty, — x,|| = 0 whenever lim supy, (1 -1y,) > 0.
n— 00 n—00

(59)
In the same manner, we also obtain that

lim [Ty, - x,| = 0 whenever lim infy, (1 -y,) > 0.
(60)

Since Vg is uniformly norm-to-norm continuous on
bounded subsets of E (see, e.g., [14]), we arrive at

lim Vg (Ty,) - Vg(x,)| = o. (61)
On the other hand, from (1) we get

Txn ~Vn = (1 - ﬁn) (Txn - xn) >

Xn = VYn = ﬁn(xn_Txn)'

(62)

Assuming firstlim inf, ,  y,(1-v,) > 0. By (60) we see that

M, = sup {|Vg (x,)], Vg (Tx,)],
IVg (Ty,)| : n € N} < +oo.

(63)

Since T is Bregman nonspreading, in view of (24), (25), and
(62), we obtain

D, (x,, Tx,)
= Dy (%, Tyy) + Dy (T, Tx,)
+ (% = T, Vg (Ty,) = Vg (Tx,))
< Dy (%, T,)
+[D, (Ty,,x,) + D, (Tx,, y,) = D, (Tx,, Ty,)]

+ ”xn - Tyn” ”Vg (Tyn) - Vg (Txn)"
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< Dy (%, Ty,)
+ [=Dyg (% Ty) + (% = T3, Vg (x,) = Vg (Ty,)) |
+[=Dy (7 TX,) + (Y = T, Vg () = Vg (Tx,.)) |
+ 1% = Tyul IVg (Ty,) = Vg (Tx,)|
< [ = Tyl Vg (x.) = Vg (Ty,)]
+n =T Vg (3) = Vg (Tx,)|
+ 1% = Tyul IVg (Ty,) = Vg (Tx,)|
= (1= Ba) %, = T, Vg () = Vg (Tx,)|
+ %0 = Tyl [IVg (x,) = Vg (Ty)
+[Vg (Ty,) - Vg (Tx,)|]
<2(1-B,) M; ||x, = Tx,| + 4M; |x, = Ty,| -
(64)
When lim,, B, = 1, we conclude that
Tim D, (x,,Tx,) = 0. (65)
In view of Lemma 2, we have that
lim |lx, - Tx,[| = 0. (66)

Finally, we assume limsup, , y,(1 - y,) > 0 and
lim,_, B, = 1 instead. By (59) we have subsequences
{xnk}keN and {y, }ken Of {x,},en and {y,},en, respectively,
such that

klingo ”Ty"k B x”k " =0. (67)
Replacing M; with the finite number sup{IIVg(xnk)II,
IIVg(Txnk)II, IIVg(Tynk)II : k € N} < +00, and dealing with the
subsequences {x,, }xen and {y,, }xen in (60) and (62). Passing
to a further subsequence if necessary, we will arrive at the

desired conclusion with (66) that limk_)OOIITxnk - xnkll =0.
Hence, liminf,_, [ITx, — x,/| = 0. The other case can be
argued similarly. O

Theorem 17. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be strictly
convex, Gateaux differentiable, locally bounded, and locally
uniformly convex on E. Let T : C — C be a Bregman
nonspreading and Bregman skew quasi-nonexpansive mapping
with F(T) #0. Let {B,},en and {y,},en be sequences in [0, 1],
and let {x,},.n be a sequence with x, in C defined by (1).
Assume that liminf, _, _y,(1 - y,) > 0andlim,_, B, = 1.
Then {x,},cn converges weakly to a fixed point of T.

Proof. It follows from Theorem 16 that {x,}, . is bounded
and lim,, _, (ITx, — x,|l = 0. Since E is reflexive, then there
exists a subsequence {x,, };cy Of {x, } e Such thatx, — peC
as i — o00. By Proposition12, p € F(T). We claim that
x, — pasn — oo.If not, then there exists a subsequence
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{xnj} jen Of {x,},en such that {xn]_} jen converges weakly to
some g in C with p#q. In view of Proposition 12 again, we
conclude that ¢ € F(T). By Lemma 15, lim,Hong(xn,z)
exists for all z in F(T'). Thus we obtain by the Bregman-Opial-
like property that

lim D (x,, p)

lim Dy (x,,,p) < lim D (x,,,9)
(68)

Jim D (x,,q) = [im Dy (x"j’q)

< fim Dy (. p) = Jim Dy (5, 7).
This is a contradiction. Thus we have p = g, and the desired
assertion follows. O

Theorem18. Let C be a nonempty, compact, and convex subset
of a reflexive Banach space E. Let g : E — R be strictly
convex, Gateaux differentiable, locally bounded, and uniformly
convex on bounded sets. Let T : C — C be a Bregman
nonspreading and Bregman skew quasi-nonexpansive map-
ping. Let {B,},en and {y,},en be sequences in [0, 1]. Assume
that either limsup, _, . y,(1 = y,) > 0andlim,_, B, = 1
or liminf, _, y,(1 —v,) > 0 and limsup, , f, = L. Let
{x,}en be a sequence with x, in C defined by (1). Then {x,,},,en
converges strongly to a fixed point z of T.

Proof. By Corollary 14, we see that the fixed point set F(T') of
T is nonempty. In view of Theorem 16, we obtain that {x,},.cx
is bounded and liminf, | [ITx, — x, |l = 0. By the compact-
ness of C, there exists a subsequence {x,, }xe 0f {x,},,ry such
that {x,, }ien converges strongly to some z in C. In view of
Lemma 2 we deduce that lim;_, D (x,,z) = 0. We can
even assume that lim; _, ., [|T,, —x,, [| = 0, and in particular,
{Tx,, }xen is bounded. Since Vg is uniformly norm-to-norm
continuous on bounded subsets of E (see, e.g., [14]),

lim “Vg (Txnk) -Vg (xnk)” =0. (69)

k— o0

Let M, = sup{lTz|, ITx,, I, IVg2)I, IVg(T2)| : k € N} <
+00. In view of Lemma 11, we obtain

Dﬁ (x”k’ TZ)
S Dg (x”k’z) + Dg (Txnk’ x”k)

+ <xnk -Tx,,Vg(z) -Vg (Tz)>

(70)
+ <Txnk -Tz,Vg (xnk) - Vg (Txnk)>
< Dg (xnk,z) + Dg (Txnk, xnk)
+2M, [ xnk—Txnk +||Vg (xnk)—Vg (Txnk) ]
for all kin N.
It follows that limk_,oollxnk — Tz|| = 0. Thus we have
Tz = z.In view of Lemmas 15 and 2, we conclude that
lim, , llx, — zll = 0. Therefore, z is the strong limit of the
sequence {x,,},cn- O



Abstract and Applied Analysis

5. Bregman-Ishikawa’s Type Iteration for
Bregman Nonspreading Mappings

We propose the following Bregman-Ishikawa’s type iteration.
Let E be a reflexive Banach space andlet g : E — R bea
strictly convex and Gateaux differentiable function. Let C be
a nonempty, closed, and convex subset of E. Let T : C —
C be a Bregman nonspreading mapping such that the fixed
point set F(T') is nonempty. Let {x,},n and {y,},cy be two
sequences defined by

Yn = Vg* [:ang (Txn) + (1 - ﬁn) Vg (xn)] >

X1 = PrOj& (Vg" [v.Vg (Ty,) + (1 =9,) Vg (x,)])

where {f8,},.cn and {y,},,cn are arbitrary sequences in [0, 1].

(71)

Lemma 19. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be a strongly
coercive Bregman function. Let T : C — C be a Bregman
quasi-nonexpansive mapping. Let {x,} e and {y,},en be two
sequences defined by (71) such that {f,},en and {y,},en are
arbitrary sequences in [0, 1]. Then the following assertions hold:

) max{Dg(z, Xpe1)> Dg(z, Y} < Dg(z, x,) for all z in
F(T)andn=1,2,...,

(2) lim,, _, ,D(2, x,,) exists for any z in F(T).

Proof. Let z € F(T). In view of Lemma 8 and (71), we
conclude that

Dy (2,y,) = Dy (2, Vg™ [B,Vg (Tx,) + (1 - B,) Vg (x,)])
=V (2,B,V9(Tx,) + (1 - B,) Vg (x,))
< BV (2Vg(Tx,)) + (1= B,) V(2 Vg (x,))
= BuDy (2, Tx,) + (1= B,) Dy (2, x,.)
< BuDy (2,x,) + (1= B,) Dy (2, x,)

=Dy (z,x,).
(72)

Consequently, using (35) we have
Dy (2, Xp11)
=D, (2, proj¢. (Vg" [v.Vg (Ty,) + (1 = v,) Vg (x,)]))
<D, (z,Vg" [y,Vg (Ty,) + (1 -v,) Vg (x,)])
=V (27,9 (Ty,) + (1= 7,) Vg (x,))
<1V (zVg (Ty,)) + (1-7,)V (2 Vg (x,))
=¥.D, (2. Ty,) + (1 -v,) D, (2, x,)
<¥.D, (2 y,) + (1 =y,) D, (2, x,,)
Dy (z,x,) + (1= v,) Dy (2, x,)

< u
=D, (z,x,).
(73)

This implies that {Dg(z, X,)}en is @ bounded and nonin-
creasing sequence for all z in F(T). Thus we have that
lim, , Dg(z, x,,) exists for any z in F(T'). ]
Theorem 20. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be a strongly
coercive Bregman function which is locally bounded, locally
uniformly convex, and locally uniformly smooth on E. Let T :
C — C be a Bregman nonspreading mapping. Let {a,},en
and {,},en be two sequences in [0, 1] satisfying the control
condition:

ZYnﬁn (1 - :Bn) = +00. (74)

Let {x, },,cn be a sequence generated by algorithm (71). Then the
following are equivalent.

(1) There exists a bounded sequence {x,},,n C C such that
liminf, |, IITx, — x,|l = 0.

(2) The fixed point set F(T) # 0.

Proof. The implication (1) = (2) follows similarly as in the
first part of the proof of Theorem 16.

For the implication (2) = (1), we assume F(T') # 0. The
boundedness of the sequences {x,},n and {y,},y follows
from Lemma 19 and Definition 4. Since T is a Bregman quasi-
nonexpansive mapping, for any g in F(T'), we have

D,(g,Tx,) <D, (g x,), VneN. (75)

This, together with Definition 4 and the boundedness of
{x,}en»> implies that {Tx,,}, ¢ is bounded.

The function g is bounded on bounded subsets of E and
therefore Vg is also bounded on bounded subsets of E* (see,
e.g., [12, Proposition 1.1.11] for more details). This implies

that the sequences {Vg(x,)},en> {VI(V ) hens 1VI(TY, ) ens
and {Vg(Tx,)},cn are bounded in E*.

In view of Proposition 7, we have that dom g* = E*
and g is strongly coercive and uniformly convex on bounded
subsets of E*. Let s, = sup{[|[Vg(x I, IVg(Tx,)|l : n € N} <
coandlet p; : E* — R be the gauge of uniform convexity

of the conjugate function g*.
Claim. For any p in F(T) and nin N,
Dy (P, yu) < Dy (P x,)

- ﬁn (1 - ﬁn) ps*z ("Vg (xn) - Vg (Txn)") .
(76)

Let p € F(T). For each n in N, it follows from the
definition of Bregman distance (4), Lemma 8, (23), and (71)
that

Dy (p, )
=9(P) =9 () =P~y Vg (¥u))
=g(p)+ 39 (Va() = (3w Vg (7))
— (P, Vg (7)) + (I VI (3))



10

=g(p)+9" (1-B.)Vg(x,) + B.Vg(Tx,))
~(p.(1=B)Vg(x,) + Vg (Tx,))
<(1-B.)g(p)+B.g(p)
+(1-B,)9" (Vg (x,) + B.g" (Vg (Tx,))
=B (1= Ba) pe, (Vg (x,) = Vg (Tx,)])
~(1=B) (Vg (x,)) = B (P, Vg (Tx,))
=(1-B) g (p)+9" (Vg(x.) - (Vg (x,))]
+B.lg(p) + 9" (Vg (Tx,)) — (P, Vg (Tx,))]
=B (1=B.) ps, (IVg (x,) - Vg (Tx,)])
=(1-B)1g(p)-9(x,)
+ (% Vg (x,)) = (P, Vg (x,))]
+Ba[g(p) - 9(Tx,)
+(Tx,, Vg (Tx,)) = (p. Vg (Tx,))]
=Bu(1=B.) s (IVg (x,) = Vg (Tx,)])
=(1-B.) D(p.x,) + BD (P Tx,)
=B (1= B, s, (Vg (x,) = Vg (Tx,)])
< (1-B,) D(p.x,) + B.D (P x,)
=B (1= B, e, (Vg (x,) - Vg (Tx,)|)

=D (p’ xn) - Bn (1 - :Bn) P:; (”Vg (xn) - Vg (Txn)”) :
(77)

In view of Lemma 8 and (76), we obtain

Dy (psXps1) = Dy (P, Vg™ [14V 9 (Ty,) + (1= ,) Vg (x,)])
=V (p:y.V9(Ty,) + (1= 7,) Vg (x,))
<1V (P, Vg (Ty,)) + (1-7,)V (p: Vg (x,))
= .0, (1 Ty,) + (1 = v,) D, (P x,.)
< YDy (P> yu) + (1= 7,) Dy (ps x,.)
< Dy (P %) = VuBu (1= B,) p5,

x (Vg (x,) = Vg (Tx,)])-
(78)
Thus we have

Ynﬁn (1 - ﬁn) P:; (”Vg (xn) -Vg (Tnxn)")

< Dg (p’xn)_Dg (p>xn+1)'

Since {D,(p, x,)},en converges, together with the control
condition (74), we have

liminfp; (|Vg(x,) - Vg (Tx,)]) = 0. (80)

(79)
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Therefore, from the property of p; we deduce that
lim inf |[Vg (x,) - Vg (Tx,)| = 0. (81)

Since Vg" is uniformly norm-to-norm continuous on
bounded subsets of E* (see, e.g., [14]), we arrive at

lim inf |[x, - Tx,| = 0. (82)
U

Theorem 21. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be a strongly
coercive Bregman function which is locally bounded, locally
uniformly convex, and locally uniformly smooth on E. Let T :
C — C be a Bregman nonspreading mapping with F(T) + 0.
Let {a,},en and {B,},en be two sequences in [0, 1] satisfying
the control conditions Y., y,B,(1 - f8,) = +00. Let {x,} .y be
a sequence generated by the algorithm (71). Then, there exists
a subsequence {x,, }ien of {x,},en Which converges weakly to a
fixed point of T asi — oo.

Proof. It follows from Theorem 20 that {x,},y is bounded
andliminf, | |ITx,—x,|l = 0. Since E is reflexive, then there
exists a subsequence {x,, };cp of {x,},en such that x,, — p €
Casi — o00.In view of Proposition 12, we conclude that

p € F(T) and the desired conclusion follows. O

The construction of fixed points of nonexpansive map-
pings via Halperns algorithm [24] has been extensively
investigated recently in the current literature (see, e.g., [2] and
the references therein). Numerous results have been proved
on Halpern’s iterations for nonexpansive mappings in Hilbert
and Banach spaces (see, e.g., [11, 25, 26]).

Before dealing with the strong convergence of a Halpern-
type iterative algorithm, we need the following lemmas.

Lemma 22 (see [27]). Let {a,},y be a sequence in R with
a subsequence {a, };cn such that a, < a,,, for all i in N.
Then there exists another subsequence {a,,, }en such that for
all (sufficiently large) number k one have

Ay, < Ay 41> A < Gy iy (83)
In fact, one can set m;, = max{j <k: a; < aj+1}.

Lemma 23 (see [28]). Let {s,},cn be a sequence of nonnegative
real numbers satisfying

Spp1 S (1 - Yn) Syt Ynan’ Vn>1, (84)

where {y,},en and {0,},en satisfy the following conditions:

(1) Yulpen € [0,1] and Y21y, = +00, or, equivalently,
szl(l - Yn) =0,
(i) lim sup, _, ., 8, <0, or
(iil) Y2 Y40, < 0.

Then, lim s, =0.

n— 00
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Theorem 24. Let C be a nonempty, closed, and convex subset
of a reflexive Banach space E. Let g : E — R be a strongly
coercive Bregman function which is locally bounded, locally
uniformly convex, and locally uniformly smooth on E. Let T :
C — C be a Bregman nonspreading mapping with F(T) # 0.
Let {a,},eny and {B,},en be two sequences in [0, 1] satisfying
the following control conditions:

(a) lim,,_, o, = 0;

(b) X2, o, = +00;

(c) 0 < liminf, _, 3, <limsup,_, B, <L

Let {x,},cn be a sequence generated by

u € C,x, € C chosen arbitrarily,
In = Vg* [ﬁnvg (xn) + (1 - :Bn) Vg (Txn)] >
X1 = Proje (V" [a,Vg (w)

+(1-a,)Vg(y,)]) forninN.
(85)

Then the sequence {x,},,.n defined in (85) converges strongly to
projgmu asn — 0o.

Proof. We divide the proof into several steps. In view of
Lemma 10, we conclude that F(T) is closed and convex. Set

z= projf;(T)u. (86)
Step 1. We prove that {x,},.n and {y,},cn are bounded
sequences in C.

We first show that {x,},.y is bounded. Let p € F(T) be
fixed. In view of Lemma 8 and (85), we have

D, (p:y,)
=D, (p, Vg [(1-B,)Vg(x,) + B,Vg(Tx,)])
=V (p:[(1-B,) Vg (x,) + B,Vg (Tx,)])
<(1-B)V (P, Vg (x,) + BV (1 Vg (Tx,)  (87)
= (1-B,) Dy (p>x,) + B,Dy (p Tx,)
< (1-B,) Dy (p>x,) + B.D, (s x,)

=D, (p.x,).

This, together with (71), implies that
Dy (P xpi1)
=D, (pprojt. (Vg" [, Vg (W) + (1 - &,) Vg (3,)]))
<Dy (p,Vg" [,g9 W) + (1~ ,) Vg (,)])

=V (p,, Vg ) + (1 - ,) Vg (y,))

11
<a,V(p,Vgw)+(1-a,)V(p,Vg(y,)
= a,D, (p,u) + (1 -a,) Dy (p, 3,)
< a,D, (p,u) +(1-a,) Dy (p, y,)
<a,D, (pu)+(1-a,)D,(px,)
< max{Dy (p,u), Dy (p,x,)} -
(88)

By induction, we obtain

Dg (p,an)SmaX{Dg (P’u)’Dg (P’xl)} (89)

for all n in N. It follows from (89) that the sequence
{Dg( P> %)} ey s bounded and hence there exists M, > 0
such that

D, (px,) < M;, VneN. (90)

In view of Definition 4, we deduce that the sequence {x,},,cx
is bounded. Since T is a Bregman quasi-nonexpansive map-
ping from C into itself, we conclude that

D, (pTx,) < D, (p,x,), VneN. (91)

This, together with Definition 4 and the boundedness of
{x,}hen> implies that {Tx,}, . is bounded. The function g is
bounded on bounded subsets of E and therefore Vg is also
bounded on bounded subsets of E* (see, e.g., [12, Propo-
sition 1.1.11] for more details). This, together with Step I,
implies that the sequences {Vg(x,)},en> V(¥ )} nen» and
{Vg(Tx,)},cn are bounded in E*. In view of Proposition 7,
we obtain that dom g* = E* and g" is strongly coercive
and uniformly convex on bounded subsets of E. Let s; =
sup{lIVg(x)Il, IVg(Tx,)l : n € N} and let ps’; tE" - R
be the gauge of uniform convexity of the conjugate function
g

Step 2. We prove that

Dg (Z’yn) < Dg (z’xn) _ﬂn(l _ﬁn)p_:;

x (Vg (x,) - Vg (Tx,)|)»

For eachnin N, in view of the definition of Bregman distance
(4), Lemma 8, and (30), we obtain

D, (z, y,)

=9@) -9 ()~ (2=, Vg ()

(92)
Vn e N.

=9@+g (Va()) = (3w Vg (1))
~(2.Yg (3.)) + (Y Vg (7))

=g +g" ((1-B,) Vg (x,) +B.Vg(Tx,))
—(z,(1-B,) Vg (x,) + B,Vg (Tx,))
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<(1-B)g@+p.g@+(1-B)g"

x (Vg (x,)) + Bug” (Vg (Tx,))

=B (1= B p;, (IVg (x,) - Vg (Tx,)])

= (1-B,) (2 Vg (x,)) - B, (2 Vg (Tx,))
=(1-B)[9@) +g" (Vg(x,) - (2. Vg (x,))]

+B.[9(2) +g" (Vg(Tx,)) - (2 Vg (Tx,))]

= Bu(1=B4) ps, (Vg (x,) - Vg (Tx,)])
=(1-B.)[9() - g(x,)

+ (%, Vg (x,)) = (2. Vg (x,))]
+B.[9 () - g(Tx,)
+(Tx,, Vg (Tx,)) = (2. Vg (Tx,))]

=B (1= ps, (Vg (x,) = Vg (T,x,)])
=(1-B,) D (z.x,) + B,D (2 Tx,)

=B (1= B,) s, (Vg (x,) = Vg (Tx,)])
< (1= B,) Dy (2,x,) + BuDy (2, x,)

=B (1= B p;, (IVg (x,) = Vg (Tx,)])
=D(z.x,) - B, (1-B.) P,

x (Vg (x,) = Vg (Tx,)]) -

In view of Lemma 8 and (92), we obtain
Dy (2 %01)
=D, (2, projl (Vg™ [,Vg () + (1 - ,) Vg (3,)]))
<D, (zVg" [&,Vg ) + (1 -a,) Vg (7,)])
=V (z,e,Vg (W) + (1 -,) Vg (y,))
<a,V (2,Vg ) + (1 - a,) V(2 Vg (y,))
= a,Dy (z,u) + (1 - a,) Dy (2, 7,)
<a,D, (z,u)
+(1-a,) [D, (2.x,) = B, (1= B,) s,

x (Vg (x,) -Vg(Tx,)]) ]
(94)

Let
My = sup{|D, (z.4) - D, (2.x,)| + B, (1 - B.) P

x (|Vg (x,) = Vg (Tx,)[) : n € N}.
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It follows from (94) that
B.(1=B,) p:, (Vg (x,) - Vg (Tx,)])
<D, (2,x,) — Dy (2, %,11) + 0, M.
Let
2, =Vg [, Vg )+ (1-a,) Vg (). (97)

Then x,,,, = projZ(z,) for all nin N. In view of Lemma 8 and
(92) we obtain

Dy (2, %,.1)
= D, (2, projg (Vg™ [e,Vg () + (1 - &,) Vg (1,)]))
<Dy (2,Vg" [o,Yg () + (1 - ,) Vg (3,)])
=V (z,0,Yg ) + (1 - ,) Vg (y,))
<V (z,0,Yg ) + (1 - ,) Vg (y,)
~a, (Vg () = Vg (2)))
—(Vg" [@,Vg (W) + (1 - a,) Vg (3,)] -2,
~a, (Vg () - Vg (2)))
=V (2,0,Vg (2) + (1 - ,) Vg (3,))
+a,(z, -2, Vg ) - Vg (2))
<a,V(zVg(2) +(1-a,)V(zVg(y,)
+a, (2, ~2,Vg () - Vg (2))
= a,D,(z,2) + (1 -a,) D, (2, y,)
+a,(z, -2, Vg u) - Vg (2))
= (1-a,) Dy (2, x,)

+a, <Zn -z Vg (u) - Vg (Z)> .
(98)

Step 3. We show that x,, — zasn — oo.

Case 1. If there exists 1, in N such that {D g (z, xn)}ff:’n0 is non-
increasing, then {D,(z, x,,)} ¢y is convergent. Thus, we have
Dy(z,x,) = Dy(2,x,,) — Oasn — oo. This, together with

(96) and conditions (a) and (c), implies that
Jim p* (Vg (x,) - Vg (Tx,)]) = 0. (99)
Therefore, from the property of p; we deduce that

Jim Vg (x,) - Vg (Tx,)| = 0. (100)

Since Vg* = (Vg)_1 (Lemma 5) is uniformly norm-to-norm
continuous on bounded subsets of E* (see, e.g., [14]), we
arrive at

Jimx, - Tox, || = 0. (101)
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On the other hand, we have
Dy (Txy, y,)
=Dy (Tx,, Vg™ [BVg (x,) + (1 - B,) Vg (Tx,)])
=V (Tx,, Vg (x,) + (1 - B,) Vg (Tx,))
< BV (Tx,, Vg (x,))
+(1-B,)V (Tx,, Vg (Tx,))
= BuDy (Tx,> x,) + (1= B,) Dy (Tx,, Tx,,)

= ﬁan (Txn’xn) :

(102)

This, together with Lemma 2 and (101), implies that

lim D, (Tx,, y,) =

n— 00 g

(103)
Similarly, we have

Dg (yn’ Zn) < (Xan (yn’ u) + (1 - “n) Dg (yn’ yn)

=a,Dy(y,u) — 0 asn— oco.

(104)

In view of Lemma 2 and (101), we conclude that

Tim [y, ~Tx =0, lim |5 -x]=0. (o5
Since {x,},cy is bounded, together with (33) we can assume
that there exists a subsequence {x,, };cy Of {x,},ey such that
X, — Y€ F(T) (Proposition 12) and

lim sup (x,, — z, Vg (u) — Vg (2))

n— 00

= lim <xni -2,Vg(u)-Vg (z)> (106)
=(y-2zVg(u) -Vg(z)) <0.
We thus conclude
lim sup (z, — z, Vg (u) - Vg (2))
e (107)

= lim sup (x, - 2, Vg (u) - Vg (2)) < 0.

The desired result follows from Lemmas 2 and 23 and (98).

Case 2. Suppose there exists a subsequence {n;}; of {1},en
such that

D,(z,x,) <D, (2,x,.) (108)

for all i in N. By Lemma 22, there exists a nondecreasing
sequence {my};y Of positive integers such that m;,, — oo,

) <Dy (=

D, (z,x) <D, (z, xmkﬂ),

Dg (Z’ ’"k+1) (109)

Vk € N.

13
This, together with (96), implies that
ﬂmk (1 - ﬂmk) ps*3 ( |Vg (xmk Vg Tx "
<D, (z, xmk) -D, (z, xmk+1) (110)
+a, Mg <oy, Mg, VkeN.

Then, by conditions (a) and (c), we get

Jim p; (|99 (%) =V (Tx,,)[) = 0. ()

By the same argument, as in Case 1, we arrive at

lim sup <ka -2z,Vg(u)-Vg (z)>

k— o0
112)
= lim sup <xmk -z,Vg(u)-Vg (z)> <0.
k— o0
It follows from (98) that
Dg (Z’ xmk+1) < (l - (xmk) Dﬁ (Z’ xmk)
(113)

+a, <ka -2z,Vg(u)-Vg (z)> .
Since Dy(2, x,,, ) < Dy(2, X,y, 1), we have that
mk) S Dg (Z,ka) - Dﬁ (Z’ x'”k“)
+a, <ka -z,Vg(u)-Vg (z)> (114)

-z,Vg(u)-Vg (z)>.

%y, Dy (z,x

= L <ka

In particular, since Oy, > 0, we obtain

D, (2,%,,) < (2 -2 Y9 W) - Vg (2)) . (115)

In view of (112), we deduce that
Jim D, (2. %,,) =0. (116)
This, together with (113), implies that

lim D (

k— o0

Xopear) = 0. (u7)

On the other hand, we have D (z, x;) < D,(z, x,,, ,;) forall k
in N. This ensures that x, — zask — cobyLemma2. [
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