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Studies on active magnetic bearing (AMB) systems are increasing in popularity and practical applications. Magnetic bearings cause
less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further
investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an
intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC). The mathematical model of
an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC),
the parameters of which are adjusted using a radial basis function neural network (RBFNN), is applied to the unbalanced vibration
in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved
transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system.
The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the
effectiveness of the NFC with self-learning and self-improving capacities is proven.

1. Introduction

Magnetic bearings are electromechanical devices that use
magnetic forces to completely levitate a rotor or suspend it
in an air gap without physical contact. Because the system
undergoes no friction or wear, it requires no lubrication. In
addition, magnetic bearings do not pollute the environment,
have a long working life, and can be used in a wide range
of applications in aerospace, energy, transportation, and
other high technology fields, as well as in high speed ultra-
precision machine tools [1–3]. By contrast, conventional
mechanical rotary bearings are in physical contact with the
shaft, resulting in friction between the shaft and bearings.The
temperature of the bearings increases greatly at high rotating
speeds, resulting in substantial energy loss and eventual
wearing down of the bearings. However, it is difficult to
design active controls for magnetic bearing systems because
of their high nonlinearity and unstable open-loop electro-
magnetic dynamics. The suspending structure of a magnetic

bearing differs from that of a conventional bearing. Because
no contact occurs between the shaft and the bearing, nearly
no friction occurs in the AMB system. Moreover, its stiffness
and damping can be changed through rotor displacement and
velocity feedback control.

In recent years, many intelligent control techniques, such
as fuzzy control, adaptive PID control, neural networks con-
trol, adaptive fuzzy control, and other control methods, have
been developed and applied to the position control for AMB
system [4–9]. Although fuzzy control has been successfully
applied in several industrial automations, it is not an easy task
to obtain an optimal set of fuzzy membership functions and
rules in FLC. RBFNNs are used in a variety of applications
such as pattern recognition, nonlinear identification, and
control time series prediction. In this study, an AMB that
supports a ventilator rotor was investigated to ensure the
absence of friction and wear between the rotor and stator
and improve the life of the ventilator and its rate of rotation.
This paper proposes a method for controlling the position
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Figure 1: Architecture of a ventilator magnetic bearing system.

of the rotor by using the neural fuzzy controller (NFC)
approach.Themethod employs a fuzzy controller systemwith
radial basis function neural network (RBFNN) rotation to
identify the AMB system by Jacobian transformation [10–
14]. The parameters of fuzzy logic controller (FLC) can be
optimally tuned to solve the problem of unbalanced vibration
in the AMB system by applying the gradient descent method
[15] and the real time values according to the AMB system
information. The experimental results of the AMB system
indicated a satisfactory control performance without over-
shoot and with no steady-state errors. This control system
also satisfies the requirements of real time response and
stability of the control AMB system under disturbances.

The remainder of this paper is organized as follows.
Section 2 introduces the principle and mathematical model
of the AMB system. Section 3 discusses the dynamics of the
AMB system. A motion of equation is formulated whereby
characteristics of the rotor for rolling and pitching motions
and interference between the horizontal and vertical direc-
tions can be analyzed. Section 4 presents the structure of
a fuzzy controller based on RBFNN identification of the
position control loop for mechanical model of the AMB
system. Section 5 presents the stability analysis for the AMB
system. Finally, Section 6 presents the results and discussion,
and Section 7 concludes the paper.

2. Structure and Mathematical Model of
the Active Magnetic Bearing System

Many recent studies on magnetic bearings have focused on
AMBs. The AMB system proposed in this paper is presented
in Figure 1. The system included a ventilator, a rotor shaft, a
magnetic bearing, a coupling device, and a driving motor.
The drive system of the AMB system included differential
driving mode power amplifiers and an analog to digital
(A/D) converter, as indicated in Figure 2. Two sensors were

positioned to measure the displacement of the rotor from
the reference position horizontally and vertically. The A/D
converter converted the analog signal received from the
position sensors into a digital signal. The NFC used this
signal as an input, generated a control effort according to
measurements, and conducted it using power amplifiers.
Four actuating magnets held the rotor at the reference
position and transformed the control signals into magnetic
forces. As indicated in Figure 2, two pairs of electromagnetic
coils were installed perpendicular to the E-shaped stators.
These coils produced attractive electromagnetic forces in the
perpendicular direction in response to direct currents. All
coils installed in the AMBs had the same turns and were
symmetrical and uncoupled. For two degrees of freedom, two
opposing electromagnets operated in a differential driving
mode [16].

As indicated in Figure 2, an electromagnetic force was
applied to the rotor along the 𝑥- or 𝑦-axis to keep the rotor
in the center of the AMB. The variable 𝑖𝑏 is the bias current
and 𝑖𝑥 and 𝑖𝑦 are control currents along the 𝑥- and 𝑦-axes,
respectively; 𝑥1 and 𝑦1 are the rotor displacements at the
magnetic bearing. Following Schweitzer [16–18], the total
nonlinear attractive electromagnetic forces along the 𝑥- and
𝑦-axes are given as follows:

𝑓2𝑥 − 𝑓1𝑥 = 𝑘(

(𝑖𝑏 + 𝑖𝑥)
2

(𝑥𝑔 − 𝑥1)

2
−

(𝑖𝑏 − 𝑖𝑥)
2

(𝑥𝑔 + 𝑥1)

2
) ,

𝑓1𝑦 − 𝑓2𝑦 = 𝑘(

(𝑖𝑏 + 𝑖𝑦)

2

(𝑦𝑔 − 𝑦1)

2
−

(𝑖𝑏 − 𝑖𝑦)

2

(𝑦𝑔 + 𝑦1)

2
) .

(1)

Figure 3 presents a three-dimensional plot of the magnetic
force, which is nonlinearly related to the current and the rotor
displacement.
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Figure 2: Drive system of an AMB.
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Figure 3: Characteristics of electromagnetic force.

A Taylor expansion is performed and linearization is
conducted using (1), yielding the following equations that
pertain to the 𝑥-axis:

𝑘𝑖𝑠 =

𝜕𝑓1𝑥 (𝑥1, 𝑖𝑥)

𝜕𝑖𝑥









𝑥
1
=0,𝑖
𝑥
=0

=

4𝑘𝑖𝑏

𝑥𝑔2

,

𝑘𝑑𝑠 =

𝜕𝑓1𝑥 (𝑥1, 𝑖𝑥)

𝜕𝑥1









𝑥
1
=0,𝑖
𝑥
=0

=

4𝑘𝑖
2

𝑏

𝑥𝑔3

,

(2)

where 𝑘𝑖𝑠 and 𝑘𝑑𝑠 are the displacement and current stiffness
parameters of the magnetic bearings, respectively. In this
AMB system, the coil on the𝑥- and𝑦-axes circulates the same
bias current (𝑖𝑏). Because the nominal air gaps along the 𝑥-
and 𝑦-axes are also the same (𝑥𝑔 = 𝑦𝑔), the position and
current stiffness parameters 𝑘𝑖𝑠 and 𝑘𝑑𝑠 that are obtained from
the 𝑥-axis are the same as those obtained for the 𝑦-axis.

3. Dynamic Model of Active Magnetic
Bearing System

Rotor dynamics is a crucial aspect of magnetic bearings,
particularly at high speeds. It refers to the results of classical
vibration theory and gyromechanics; we can know the phe-
nomena of natural vibration, forward and backward whirl,
critical speed, precession, and gyroscopic effect, and the
dynamic equation for the horizontal shaft magnetic bearing
is studied, and the control schemes are also discussed [19–
21]. In this section, the dynamic equation of the proposed
AMB system is derived. An electric AMB, whose rotor and
electromagnet are not in contact, was studied. The shaft was
suspended horizontally by magnetic forces at one side while
being connected to a driving motor with a flexible coupler at
the other side. A coordinate of a fixed frame (𝑥𝑓𝑦𝑓𝑧𝑓) was
defined as indicated in Figure 4.

The coordinate 𝑥𝑓 is in the coupling horizontal direction,
𝑦𝑓 is perpendicular to the 𝑥𝑓-axis, and the 𝑧𝑓-axis coincides
with the rotor’s axis. Four magnetic attractive forces, 𝑓1𝑥, 𝑓2𝑥,
𝑓1𝑦, and 𝑓2𝑦, are exerted on the rotor along the 𝑥𝑓- and 𝑦𝑓-
axes.The total external forces exerted on the rotor are denoted
by𝑓𝑒𝑥,𝑓𝑒𝑦, and𝑓𝑒𝑧, and the variables𝐹𝑥1 and𝐹𝑥2 are coupling
forces.
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Figure 4: Coordinate of a fixed frame.
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Figure 5: Coordinates of a rotor.

3.1. The Transformation between Rotor and Fixed Coordinate
of Rotor Dynamic. The fixed frames are related to the rotor
coordinates, as indicated in Figure 5. The 𝑧𝑟-axis is obtained
by rotating the 𝑧𝑓-axis by 𝜓 on the horizontal plane and by
𝜃 on the vertical plane. The rotating frame with regard to the
fixed frame of reference, 𝑥𝑜, 𝑦𝑜, and 𝑧𝑜, shows the location of
𝐺with respect to the fixed frame.When the rotor rotates by 𝜙
around the 𝑧𝑟-axis, the 𝑥𝑟- and 𝑦𝑟-axes also rotate.Therefore,

𝑥𝑟 = 𝑥𝑜 cos𝜙 + 𝑦𝑜 sin𝜙,

𝑦𝑟 = −𝑥𝑜 sin𝜙 + 𝑦𝑜 cos𝜙.
(3)

For a convenient expression, (3) can be rearranged in the
matrix form as follows:

[

𝑥𝑟

𝑦𝑟

] = [

cos𝜙 sin𝜙

− sin𝜙 cos𝜙] [

𝑥𝑜

𝑦𝑜

] . (4)
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Figure 6: Rotor in moving frame of reference.

To achieve an effective control result, 𝜓 and 𝜃 are assumed to
be negligible. Hence,

[

[

𝑢

V
𝑤

]

]

=
[

[

cos𝜙 sin𝜙 0

− sin𝜙 cos𝜙 0

0 0 1

]

]

[

[

�̇�𝑜

̇𝑦𝑜

�̇�𝑜

]

]

, (5)

[

[

𝑝

𝑞

𝑟

]

]

=
[

[

cos𝜙 sin𝜙 0

− sin𝜙 cos𝜙 0

0 0 1

]

]

[

[

�̇�

̇
𝜃

̇
𝜙

]

]

, (6)

where 𝑢, V, and𝑤 denote the components of the rotor velocity
along the 𝑥𝑓-, 𝑦𝑓-, and 𝑧𝑓-axes, respectively.

3.2. Equation Motion of Radial Force for AMB System. The
rotor was assumed to be a rigid body and (𝑥𝑓, 𝑦𝑓, 𝑧𝑓) was
assumed to be fixed to the end of the shaft and rotate with it,
as indicated in Figure 6.Therefore, the angular velocity of (𝑥𝑟,
𝑦𝑟, 𝑧𝑟) is equal to that of the rotor, and it follows that [22]

⇀
𝜔𝑥𝑦𝑧 = 𝑝

⇀

𝑖 + 𝑞

⇀

𝑗 + 𝑟

⇀

𝑘 , (7)

⇀

𝐻0 = 𝐽𝑥𝑝

⇀

𝑖 + 𝐽𝑦𝑞

⇀

𝑗 + 𝐽𝑧𝑟

⇀

𝑘 , (8)

where⇀𝜔𝑥𝑦𝑧 are the angular velocities of the coordinate system
(𝑥𝑟, 𝑦𝑟, 𝑧𝑟),

⇀

𝐻0 is the angular momentum around the origin
𝑂, and 𝐽𝑥, 𝐽𝑦, 𝐽𝑧 are the moments of inertia around the 𝑥𝑟-,
𝑦𝑟-, and 𝑧𝑟-axes, respectively. Calculating (8) with respect to
time yields

�̇�⇀

𝐻0 = (

�̇�⇀

𝐻0)

𝑥𝑦𝑧

+
⇀
𝜔𝑥𝑦𝑧

⇀

𝐻0

= [𝐽𝑥�̇� − (𝐽𝑦 − 𝐽𝑧) 𝑞𝑟]

⇀

𝑖 + [𝐽𝑥
̇𝑞 + (𝐽𝑦 − 𝐽𝑧) 𝑝𝑟]

⇀

𝑗

+ [𝐽𝑧
̇𝑟 + (𝐽𝑦 − 𝐽𝑥)]

⇀

𝑘 .

(9)
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Assuming that the rotor is a rigid body and symmetrical with
respect to the 𝑧𝑟-axis and that 𝐽𝑥 = 𝐽𝑦, the following equations
of motion are obtained:

𝐽𝑥�̇� − (𝐽𝑦 − 𝐽𝑧) 𝑞𝑟 = 𝑀, (10)

𝐽𝑥
̇𝑞 + (𝐽𝑦 − 𝐽𝑧) 𝑝𝑟 = 𝑁, (11)

𝐽𝑧
̇𝑟 = 𝐿. (12)

Figure 6 presents a coordinate system of moving frame
𝐺𝑥𝑟𝑦𝑟𝑧𝑟 from fixed frame (𝑂) to the magnetic bearing. The
angular velocity components of the rotor along the 𝑥𝑟-, 𝑦𝑟-,
and 𝑧𝑟-axes are denoted by 𝑝, 𝑞, and 𝑟, respectively. The
moments of external force along 𝑥𝑟-, 𝑦𝑟-, and 𝑧𝑟-axes are
denoted by 𝑀, 𝑁, and 𝐿, respectively. In physical terms, 𝑝,
𝑞, and 𝑟 represent the angular velocities of pitching, yawing,
and rolling, respectively (Figure 6).

The rotor, suspended by four magnetic forces, is attached
to a shaft that is connected to a fixed driving motor with a
coupler on the other side (Figure 4).Thus the external torques
exerted on the rotor can be described as

𝑥𝑟-axis: (𝑓1𝑥 − 𝑓2𝑥 − 𝛼𝑜) 𝑙,

𝑦𝑟-axis: (𝑓1𝑦 − 𝑓2𝑦 − 𝑀𝑔 − 𝛽𝑜) 𝑙,

𝑧𝑟-axis:𝑇𝑚 − 𝜌𝑟 − 𝑇0,

(13)

where 𝛼𝑜 and 𝛽𝑜 are the damping and stiffness force exerted
by the coupler, 𝑇𝑚 is the motor torque, 𝜌 is the damping
torque coefficient, and 𝑇0 is the coulomb friction torque.
Assuming that the rotor has a small displacement 𝑥𝑟 and 𝑦𝑟

in the horizontal and vertical planes, respectively, 𝛼𝑜 and 𝛽𝑜

are given by

𝛼𝑜 =

𝑘𝑙1

𝑙

𝑥𝑜 +

𝑐𝑙2

𝑙

�̇�𝑜

𝛽𝑜 =

𝑘𝑙1

𝑙

𝑦𝑜 +

𝑐𝑙2

𝑙

̇𝑦𝑜,

(14)

where 𝑐 and 𝑘 are displacement coefficients and 𝑙1 and 𝑙2

are the distances between the shaft center and the flexible
coupling and themagnetic bearing, respectively. By using (4),
the forces exerted on the rotor and the moments around the
original point are represented by the following matrix forms
in (15) and (16), respectively. Consider

[

𝑥𝑟

𝑦𝑟

]

= [

cos𝜙 sin𝜙

− sin𝜙 cos𝜙] [

𝑓1𝑥 − 𝑓2𝑥 − 𝛼𝑜

𝑓1𝑦 − 𝑓2𝑦 − 𝑀𝑔 − 𝛽𝑜

] ,

(15)

[

𝑀

𝑁
]

= [

cos𝜙 sin𝜙

− sin𝜙 cos𝜙][

− (𝑓1𝑦 − 𝑓2𝑦 − 𝑀𝑔 − 𝛽𝑜) 𝑙

(𝑓1𝑥 − 𝑓2𝑥 − 𝛼𝑜) 𝑙

] .

(16)

Deriving (6) leads to

[

�̇�

̇𝑞
] =

̇
𝜙 [

− sin𝜙 cos𝜙
− sin𝜙 − cos𝜙] + [

cos𝜙 sin𝜙

− sin𝜙 cos𝜙] [

̈
𝜃

�̈�

] . (17)

Equation (17) can be rearranged to

[

̈
𝜃

�̈�

] = [

cos𝜙 − sin𝜙

sin𝜙 cos𝜙 ] [

�̇�

̇𝑞
] − 𝑟 [

0 1

−1 0
] [

̇
𝜃

�̇�

] . (18)

By using (10) and (11), (18) becomes

[

̈
𝜃

�̈�

] =

1

𝐽𝑥

[

cos𝜙 − sin𝜙

sin𝜙 cos𝜙 ] [

𝑀

𝑁
]

+

(𝐽𝑥 − 𝐽𝑧) 𝑟

𝐽𝑥

× [

cos𝜙 − sin𝜙

sin𝜙 cos𝜙 ] [

𝑞

−𝑝
]

− 𝑟 [

0 1

−1 0
] [

̇
𝜃

�̇�

] .

(19)

Using (14), by letting 𝑥1 = 𝑙𝜓 and 𝑦1 = −𝑙𝜃 and eliminating 𝑝

and 𝑞 in (19) and assuming 𝜓 and 𝜃 to be small, (19) becomes
a linearizing equation of motion as follows:

[

̈
𝜃

�̈�

] =

[

[

[

[

−𝑐𝑙𝑙1

𝐽𝑥

−𝑟𝐽𝑧

𝐽𝑥

𝑟𝐽𝑧

𝐽𝑥

−𝑐𝑙𝑙1

𝐽𝑥

]

]

]

]

[

̇
𝜃

�̇�

] −

𝑘𝑙𝑙1

𝐽𝑥

[

1 0

0 1
] [

𝜃

𝜓
]

+

𝑙

𝐽𝑥

[

−𝑓1𝑦 + 𝑓2𝑦 + 𝑀𝑔

𝑓1𝑥 − 𝑓2𝑥

] .

(20)

From (20), the block diagram can be drawn, as indicated in
Figure 7. In this figure, the motion along the 𝑥𝑓-axis and the
𝑦𝑓-axis is independent if 𝑟 = 0. The horizontal motion is
coupled with the vertical motion if 𝑟 ̸= 0. This is the so-called
gyroscopic effect. Furthermore, the coupling effect increases
with 𝑟. To decrease the interaction between the 𝑥- and𝑦-axes,
the 𝐽𝑧/𝐽𝑥 ratio should be decreased [23].

4. Neural Fuzzy Controller Design for
Position Control

4.1. Fuzzy Logic Controller (FLC). Recently, the FLC has
emerged as an effective tool for stabilizing a nonlinear system,
such as an AMB system, a magnetic levitation system, or
other electronic devices [24–30]. The FLC is a methodical
approach for controlling a nonlinear system and is a heuristic
technique for enhancing the operation of a closed loop
system. Although FLC performance is a function of its ability
to simulate many functions simultaneously, its output results
are considerably thorough. The FLC presented in Figure 8
is composed of four main parts: one performs fuzzification;
one provides the rule base; one is an inference engine; one
performs defuzzification.

The structure of a fuzzy controller, based on RBFNN
identification of the AMB system, is presented in Figure 9. It
consists of a fuzzy controller, a reference model, an RBFNN,
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and an adjusting mechanism. The operating principle of this
controller is based on AMB dynamics and control knowledge
can be incorporated into an NFC design based on RBFNN
identification [14, 31, 32]. A detailed description of these is
shown in Figure 9, where 𝑥∗ and 𝑥𝑟𝑚 are a step reference and
a reference model, respectively. 𝑥𝑟𝑏𝑓 and 𝑢fn are the outputs
of neural and fuzzy neural controller, respectively. 𝑥𝑝 is the
response of displacement; 𝑍

−1 is the back shift operator.
𝑢𝑓 represents the output of the fuzzy controller. FPID is a
fuzzy proportional integral derivative control for the current
loop [33]. 𝐹𝑑 is the external torque from ventilator. FI and
DFI are the fuzzification converted controller inputs (𝑒 and
𝑑𝑒), respectively, and the defuzzification based on product
inference rule center average defuzzification the conclusions
of the inference mechanism into actual inputs.

Based on Figure 9, the tracking error 𝑒 and the error
change 𝑑𝑒 are defined by the following equations:

𝑒 (𝑘) = 𝑥𝑟𝑚 (𝑘) − 𝑥𝑝 (𝑘)

𝑑𝑒 (𝑘) = 𝑒 (𝑘) − 𝑒 (𝑘 − 1) .

(21)

The design procedure of the fuzzy controller algorithm is
as follows. First, 𝑒 and 𝑑𝑒 are taken as the input variables

of the fuzzy controller, and their linguistic variables are
defined as 𝐸 and 𝑑𝐸. The linguist values of 𝐸 and 𝑑𝐸 are
{𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6} and {𝐵0, 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6},
respectively. Each linguistic value of 𝐸 and 𝑑𝐸 is based on
the symmetrical triangular membership function, which is
presented in Figure 10. Second, the membership degrees of
𝑒 and 𝑑𝑒 are computed. Figure 10 indicates that only two
linguistic values are excited in any input value, and it is the
membership degree. The variables 𝜇𝐴

𝑖

(𝑒) and 𝜇𝐵
𝑗

(𝑑𝑒) are
easily derived using the flowchart presented in the figure, and
the membership degree is obtained as follows [34]:

𝜇𝐴
𝑖
(𝑒) =

𝑒𝑖+1 − 𝑒

𝑒𝑖+1 − 𝑒𝑖

,

𝜇𝐴
𝑖+1

(𝑒) = 1 − 𝜇𝐴
𝑖
(𝑒) .

(22)

Similar results are obtained on computing the membership
degree 𝜇𝐵

𝑗

(𝑑𝑒). Third, the initial fuzzy controller rules are
selected by referring to the dynamic response characteristics,
such as

IF 𝑒 is 𝐴 𝑖 and 𝑑𝑒 is 𝐵𝑗 THEN 𝑢𝑓 is 𝑐𝑗,𝑖, (23)

where 𝑖 and 𝑗 range from 0 to 6,𝐴 𝑖 and 𝐵𝑗 are fuzzy numbers,
and 𝑐𝑗,𝑖 is the real number. The graph of fuzzification and the
fuzzy rule table is presented in Figure 10. Finally, the fuzzy
system 𝑢𝑓(𝑒, 𝑑𝑒) is constructed using the singleton fuzzifier,
product inference rule, and the central average defuzzifier
method is presented. Although 49 fuzzy rules which are listed
in Figure 10 will be inferred, only four fuzzy rules can be
effectively excited to generate a nonzero output. Therefore, if
an error 𝑒 is located between 𝑒𝑖 and 𝑒𝑖+1 and an error change
𝑑𝑒 is located between𝑑𝑒𝑗 and𝑑𝑒𝑗+1, only four linguistic values
𝐴 𝑖, 𝐴 𝑖+1, 𝐵𝑗, and 𝐵𝑗+1 and the corresponding consequent
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values 𝑐𝑗,𝑖, 𝑐𝑗+1,𝑖, 𝑐𝑗,𝑖+1, and 𝑐𝑗+1,𝑖+1 can be excited, and the
output of the fuzzy controller can be calculated using the
following equation:

𝑢𝑓 (𝑒, 𝑑𝑒) =

∑
𝑖+1

𝑛=𝑖
∑
𝑗+1

𝑚=𝑗
𝑐𝑚,𝑛 [𝜇𝐴

𝑛
(𝑒) × 𝜇𝐵

𝑚
(𝑑𝑒)]

∑
𝑖+1

𝑛=𝑖
∑
𝑗+1

𝑚=𝑗
𝜇𝐴
𝑛
(𝑒) × 𝜇𝐵

𝑚
(𝑑𝑒)

=

𝑖+1

∑

𝑛=𝑖

𝑗+1

∑

𝑚=𝑗

𝑐𝑚,𝑛 × 𝑑𝑛,𝑚,

(24)

where 𝑑𝑛,𝑚 = 𝜇𝐴
𝑛

(𝑒) × 𝜇𝐵
𝑚

(𝑑𝑒). And those 𝑐𝑚,𝑛 are adjustable
parameters for fuzzy controller. In addition, by using (22), the
value of∑𝑖+1

𝑛=𝑖
∑
𝑗+1

𝑚=𝑗
𝑑𝑛,𝑚 = 1 in (24) can be easily derived. The

𝑢𝑓𝑛 is formulated by the output of fuzzy controller (𝑢𝑓) and
the output of the integral (I) controller (𝑢𝑓𝑛𝑖) as follows:

𝑢𝑓𝑛 (𝑘) = 𝑢𝑓𝑛𝑖 (𝑘 − 1) + (𝐾𝑝𝑤 + 𝐾𝑖𝑤) × 𝑢𝑓 (𝑘)

Δ𝑢𝑓𝑛 (𝑘) = 𝑢𝑓𝑛 (𝑘) − 𝑢𝑓𝑛 (𝑘 − 1) .

(25)

4.2. Radial Basic Function Neural Network

4.2.1. Radial Basis Function Neural Network Architecture. The
RBFNN adopted in this part of the study was a three-layer
structure, as shown in Figure 11 and comprised an input layer,
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Figure 11: The architecture of RBFNN.

a hidden layer, and an output layer. Each layer is explained in
detail below.

Input Layer. the RBFNN has three inputs by 𝑢𝑓𝑛(𝑘), 𝑥𝑝(𝑘),
𝑥𝑝(𝑘 − 1) and its vector form is represented by

𝑋 = [𝑢𝑓𝑛 (𝑘) , 𝑥𝑝 (𝑘) , 𝑥𝑝 (𝑘 − 1)]

𝑇

. (26)

Hidden Layer. The hidden layer is composed of 𝑛 RBFNNs
that are connected directly to all the elements in the output
layer. A node in the hidden layer produces a greater output
when the input pattern presented is closer to its center.
The multivariate Gaussian function is used as the activated
function in the hidden layer of the RBFNN, which is given by
the following equations:

ℎ𝑗 (𝑋) = 𝑒
−(1/2)‖𝑋−cj‖2/𝑏2𝑗

, 𝑗 = 1, 2, 3, . . . , 𝑚, (27)

where 𝑏𝑗 denotes the node center and node variance of the
𝑗th neuron, 𝑚 is the number of neurons in the hidden layer,





𝑋 − cj






is the norm value which is measured by the inputs

and the node center at eachneuron, and cj = [𝑐𝑗1, 𝑐𝑗2, . . . , 𝑐𝑗𝑛]
𝑇

is the center of the 𝑗th RBFNN unit.

Output Layer.The network output 𝑥𝑟𝑏𝑓 is formed by a linearly
weighted sum of the number of basic functions in the hidden
layer. The network output in Figure 11 is derived using the
following equation:

𝑥𝑟𝑏𝑓 =

𝑚

∑

𝑗=1

𝑤𝑗ℎ𝑗, (28)

where 𝑤𝑗 and ℎ𝑗 are the weights from the 𝑗th hidden layer
neuron to the output layer neuron and the output of the 𝑗th
node in the hidden layer, respectively.

4.2.2. Training Algorithm in Radial Basis Function Neural
Network. To describe the online learning algorithm of the
proposed NFC, the energy function 𝐸 is defined as follows:

𝐸 =

1

2

(𝑥𝑝 − 𝑥𝑟𝑏𝑓)

2

=

1

2

𝑒
2

𝑛𝑛
. (29)

Based on the gradient descent method, the learning algo-
rithm of the weights, node center, and variance are adjusted
using the following equations:

𝑤𝑗 (𝑘 + 1)

= 𝑤𝑗 (𝑘) + 𝜂𝑒𝑛𝑛 (𝑘) ℎ𝑗 (𝑘)

𝑐𝑗𝑖 (𝑘 + 1)

= 𝑐𝑗𝑖 (𝑘) + 𝜂𝑒𝑛𝑛 (𝑘) 𝑤𝑗 (𝑘) ℎ𝑗 (𝑘)

𝑋𝑖 (𝑘) − 𝑐𝑗𝑖 (𝑘)

𝑏
2

𝑗
(𝑘)

𝑏𝑗 (𝑘 + 1)

= 𝑏𝑗 (𝑘) + 𝜂𝑒𝑛𝑛 (𝑘) 𝑤𝑗 (𝑘) ℎ𝑗 (𝑘)






𝑋𝑖 (𝑘) − 𝑐𝑗𝑖 (𝑘)







2

𝑏
3

𝑗
(𝑘)

,

(30)

where 𝑗 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, 3, and 𝜂 is a learning
rate. Further, 𝜕𝑥𝑝/𝜕𝑢𝑓𝑛 is Jacobian transformation and can
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be derived from Figure 11 and (27) and (28). Consider the
following:

𝜕𝑥𝑝

𝜕𝑢𝑓𝑛

≈

𝜕𝑥𝑟𝑏𝑓

𝜕𝑢𝑓𝑛

=

𝑚

∑

𝑗=1

𝑤𝑗ℎ𝑗

𝑐𝑗1 − 𝑢𝑓𝑛 (𝑘)

𝑏
2

𝑗

. (31)

4.3. Reference Model. A second order system with natural
frequency𝜔𝑛 and damping ratio 𝜍 is used as a referencemodel
in the adaptive control system, as explained in the following
equation:

𝑥𝑟𝑚 (𝑠)

𝑥
∗
(𝑠)

=

𝜔
2

𝑛

𝑠
2
+ 2𝜍𝜔𝑛 + 𝜔

2
𝑛

. (32)

By applying the bilinear transformation, the second order
system (32) can be transformed into a discrete model using

𝜔𝑟 (𝑧
−1
)

𝜔
∗
𝑟
(𝑧
−1
)

=

𝑎0 + 𝑎1𝑧
−1

+ 𝑎2𝑧
−2

1 + 𝑏1𝑧
−1

+ 𝑏2𝑧
−2

. (33)

Furthermore, the difference equation is written as follows:

𝜔𝑟 (𝑘) = −𝑏1𝜔𝑟 (𝑘 − 1) − 𝑏2𝜔𝑟 (𝑘 − 2) + 𝑎0𝜔
∗

𝑟
(𝑘)

+ 𝑎1𝜔
∗

𝑟
(𝑘 − 1) + 𝑎2𝜔

∗

𝑟
(𝑘 − 2) .

(34)

4.4. Fuzzy Logic Control Parameters Adjusting Mechanism.
The gradient descent method is used to derive the FLC
control law in Figure 9. The adjusting parameters of the
fuzzy controller minimize the square error between the rotor
displacement and the output of the reference model. The
instantaneous cost function is defined as follows:

𝐸𝑒 =

1

2

𝑒
2
=

1

2

(𝑥𝑟𝑚 − 𝑥𝑝)

2

. (35)

The parameters of 𝑐𝑚,𝑛 are adjusted according to

Δ𝑐𝑚,𝑛 = −𝛼

𝜕𝐸𝑒

𝜕𝑐𝑚,𝑛

, (36)

where 𝛼 represents the adaptive rate of the system.The chain
rule is used, and the partial differential equation for𝐸𝑒 in (35)
is written as follows:

𝜕𝐸𝑒

𝜕𝑐𝑚,𝑛

= −𝑒

𝜕𝑥𝑝

𝜕𝑢𝑓

𝜕𝑢𝑓

𝜕𝑐𝑚,𝑛

. (37)

From (24) and using the Jacobian formulation from (31), the
following equation is derived:

𝜕𝑢𝑓 (𝑘)

𝜕𝑐𝑚,𝑛 (𝑘)

= 𝑑𝑛,𝑚. (38)

It is difficult to calculate 𝜕𝑥𝑝/𝜕𝑢𝑓 because of unknown
plant dynamics. To overcome this problem and to increase
the online learning rate of the connective weights, a delta
adaptation law is proposed as follows:

𝜕𝑥𝑝

𝜕𝑢𝑓

≈ (𝐾𝑝𝑤 + 𝐾𝑖𝑤)

𝜕𝑥𝑟𝑏𝑓

𝜕𝑢𝑓𝑛

= (𝐾𝑝𝑤 + 𝐾𝑖𝑤)

𝑚

∑

𝑗=1

𝑤𝑗ℎ𝑗

𝑐𝑗1 − 𝑢𝑓𝑛 (𝑘)

𝑏
2

𝑗

,

(39)

where 𝐾𝑝𝑤 and 𝐾𝑖𝑤 are the PI controller gains. Therefore,
substituting (38) and (39) into (37) and combining with (36),
the parameter 𝑐𝑚,𝑛 of the fuzzy controller described in (24)
can be adjusted using𝑚 = 𝑗, 𝑗+1, and 𝑛 = 𝑖, 𝑖+1, as indicated
by the following equation:

Δ𝑐𝑚,𝑛 (𝑘)

= 𝛼𝑒 (𝑘) (𝐾𝑝𝑤 + 𝐾𝑖𝑤) 𝑑𝑛,𝑚

𝑚

∑

𝑗=1

𝑤𝑗ℎ𝑗

𝑐𝑗1 − 𝑢𝑓𝑛 (𝑘)

𝑏
2

𝑗

.

(40)

5. Stability Analysis for Active Magnetic
Bearing System

The stability of the controller of an AMB system is critical
to its functioning, particularly during start-up. After the
operation of the controller starts, the rotor remains on touch-
down surfaces. While the rotor stays at the position, the
controller can never estimate the motion of the rotor inside
the stator because the electromotive force is proportional to
the rotational speed. Hence, movement toward its operating
position, the center of the two pair of electromagnets, is
necessary for the convergence of controller target. To ensure
stable functioning of the system, a stability analysis of the
NFC was conducted [35–37]. When the parameters of an
NFC move toward infinity, the NFC becomes an unstable
controller of the AMB system; when the center of one of the
membership functions (MFs) approaches infinity, the NFC
is stable. Because the firing of the rule which contains these
MFs is equal to zero, other rules can identify the system
without instability and when the standard deviations of MFs
move toward infinity the values of the MFs are equal to one,
and the output is finite; therefore, the areas of MFs that are
optimal for the NFC to control an AMB systemmust be used.
The RBFNN adopted in this study comprises three inputs, as
indicated in (26). The output is represented by (24), and the
objective function is defined by (35).The consequent weights
are as follows:

𝑊 = [�⃗�1 �⃗�2 �⃗�3, . . . , �⃗�𝑛
]
𝑚×(𝑛+1)

. (41)

Two types of parameter are defined as the antecedent param-
eters. The first type is the means of the MFs as follows:

𝐹 = [�⃗�
𝑇

1
�⃗�
𝑇

2
�⃗�
𝑇

3
, . . . , �⃗�

𝑇

𝑛
] . (42)

The second type is the standard deviations of the MFs as
follows:

𝑆 = [ ⃗𝑆
𝑇

1
⃗𝑆
𝑇

2
⃗𝑆
𝑇

3
, . . . , ⃗𝑆

𝑇

𝑛
] . (43)

From (29), the discrete Lyapunov function is defined using
(44) as follows:

𝑉 (𝑘) = 𝐸 (𝑘) =

1

2

𝑒
2
(𝑘) =

1

2

(𝑥𝑝 (𝑘) − 𝑥𝑟𝑏𝑓 (𝑘))

2

. (44)
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The change of the Lyapunov function at each iteration of (44)
is obtained using

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘) =

1

2

[𝑒
2
(𝑘 + 1) − 𝑒

2
(𝑘)]

=

1

2

[𝑒 (𝑘 + 1) − 𝑒 (𝑘)] [𝑒 (𝑘 + 1) + 𝑒 (𝑘)]

= Δ𝑒 (𝑘) [

1

2

Δ𝑒 (𝑘) + 𝑒 (𝑘)] .

(45)

Equations (41) to (45) were applied to achieve an approximate
error modification for the NFC as shown in the following
equation:

Δ𝑒 (𝑘) = 𝜃 (𝑘) + 𝜗 (𝑘) + 𝜌 (𝑘) (46)

with

𝜃 (𝑘) = (

𝜕𝑒 (𝑘)

𝜕𝑆 (𝑘)

)

𝑇

Δ𝑆 (𝑘) ,

𝜗 (𝑘) = (

𝜕𝑒 (𝑘)

𝜕𝐹 (𝑘)

)

𝑇

Δ𝐹 (𝑘) ,

𝜌 (𝑘) = tr((

𝜕𝑒 (𝑘)

𝜕𝑊 (𝑘)

)

𝑇

Δ𝑊(𝑘)) ,

(47)

where the tr(⋅) is the trace of matrices. In this controller, only
train the consequent parameters so 𝜃(𝑘) = 0; 𝜗(𝑘) = 0.
Therefore, substituting (46) and (47) into (45) obtains

Δ𝑉 (𝑘) = 𝜌 (𝑘) [

𝜌 (𝑘)

2

+ 𝑒 (𝑘)]

= tr((

𝜕𝑒 (𝑘)

𝜕𝑊 (𝑘)

)

𝑇

Δ𝑊(𝑘))

× [

1

2

tr((

𝜕𝑒 (𝑘)

𝜕𝑊 (𝑘)

)

𝑇

Δ𝑊(𝑘)) + 𝑒 (𝑘)] .

(48)

The updating rule for conclusion parameters is

𝜕𝑒 (𝑘)

𝜕𝑊 (𝑘)

=

𝜕𝑒 (𝑘)

𝜕𝑥𝑟𝑏𝑓 (𝑘)

×

𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)

= −

𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)

,

Δ𝑊 (𝑘) = 𝜂𝑒 (𝑘)

𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)

,

(49)

where 𝜂 is the learning rate that is used to adjust consequent
parameters. From (48) and (49) can be rewriting as follows:

Δ𝑉 (𝑘) = −𝜂𝑒
2
(𝑘) (











𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)









𝐹

)

2

+

1

2

𝜂
2
𝑒
2
(𝑘) (











𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)









𝐹

)

4

,

(50)

where ‖⋅‖𝐹 is the Frobenius norm, assuming that

Ψ𝑊 (𝑘) =

𝜕𝑥𝑟𝑏𝑓 (𝑘)

𝜕𝑊 (𝑘)

,

Ψ𝑊max = max
𝑘





Ψ𝑊 (𝑘)




𝐹

,

Υ𝑊 =

1

2

𝜂 (




Ψ𝑊 (𝑘)




𝐹

)
2
(2 − 𝜂 (





Ψ𝑊 (𝑘)




𝐹

)
2
) .

(51)

According to the standard Lyapunov theory, the change of the
Lyapunov function must be less than zero to ensure stability.
This can be achieved using (50) and (51) as follows:

Δ𝑉 (𝑘) < 0,

Δ𝑉 (𝑘) = −Υ𝑊𝑒
2
(𝑘) ⇒ Υ𝑊 > 0,

0 < 𝜂 <

2

(




Ψ𝑊 (𝑘)




𝐹

)
2
.

(52)

Equation (52) is an adaptive constraint and the learning
rate stability condition changes at each iteration. Therefore,
this constraint can be used easily for online training. By
calculating (52), the following equation can be derived:

0 < 𝜂 <

2

(Ψ
max
𝑊

)
2 (53)

with Ψ
max
𝑊

= max𝑘




Ψ𝑊(𝑘)




𝐹
.

Equation (53) is a conservative constraint and cannot be
calculated through online identification. The equation can
also be written using the chain rule as follows:

𝜌 (𝑘) = tr((

𝜕𝑒 (𝑘)

𝜕𝑊 (𝑘)

)

𝑇

Δ𝑊(𝑘))

= 𝜂𝑒 (𝑘) (




Ψ𝑊 (𝑘)




𝐹

)
2
.

(54)

The learning rate of the consequent part is selected to satisfy
(54) so that the identifier is stable at each learning cycle.
The adaptive controller functions online during AMB system
operation.The results of the AMB system are presented in the
next section.

6. Results and Discussions

The experimental setup of this study is presented in Figure
12.The laboratory setup included a horizontal shaft magnetic
bearing that was symmetrical and was controlled by two axes.

The system was driven by an induction motor with a
flexible coupling to isolate the motor vibration.Themagnetic
bearing included four identical electromagnets that were
equally spaced radially around a rotor composed of laminated
stainless steel, as indicated in Figure 13. Each electromagnet
included a coil and a laminated core composed of silicon steel.
The rotor displacement along the vertical 𝑦- and horizontal
𝑥-axes of the geometric center of the shaft was measured
using a pair of eddy current sensors, as indicated in Figure 14.
The conversion time of the 16-bit A/D converter was 10 𝜇s.
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Figure 18: Current loop control of magnetic bearing with 𝑥- and 𝑦-axes.

The sampling rate of the 16-bit converter was 100 kHz and
the control cycle was approximately 0.1ms. A photograph of
the experimental setup is presented in Figure 15. A current
amplifier and current sensing circuit design for AMB system
are indicated in Figure 16.

The AMB system and a fuzzy basis neural network
were implemented using Matlab software; the parameters are
listed in Table 1. The requisite interface was a PCI-1716 card
comprising an A/D part with 16 channels and a digital input
and output part with 16 channels. Matlab software was used
to code the proposed controllers.

Table 1: Parameters of an AMB system.

1 Mass of shaft (𝑚) 2.72 kg
2 Nominal length of air gap (𝑥𝑔) 0.5mm
3 Transverse moment of inertia of rotor (𝐽) 0.013 kgm2

4 Polar moment of inertia of rotor (𝐽𝑧) 0.008 kgm2

5 Displacement stiffness (𝐾𝑥) 34 2478N/m
6 Current stiffness (𝐾

𝑖
) 171N/A

7 Bias currents to be used (𝑖𝑏) 1 A
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An experiment for the AMB system has been verified
by the current-control loop, using FPID control and current
amplifier (Figure 16). The model established for real time
window target (RTWT) test for current-control loop using
FPID controller is shown in Figure 17 (single electromagnetic
coil), and the sample time is 0.1ms. The current responses
of four electromagnetic in current-control loop at the same
time are presented in Figure 18. From the results in Figure 18
we can see that the current response (four electromagnetic) is
very close to the reference signal with the setting time about
0.01 s.

The system and controller parameters are listed in Table
2.

The initial parameters in 𝑤𝑗, 𝑏𝑗, and 𝑐𝑗 were set as
follows: 𝑤𝑗 = [0.5 0.5 0.5]; 𝑏𝑗 = [40 0.5 0.5]; and 𝑐𝑗 =

[40 0.5 0.5; 40 0.5 0.5; 40 0.5 0.5]. The discrete model
of the reference model was obtained as follows by using
bilinear transformation at the sampling frequency of 1 kHz.

The AMB system included two pairs of electromagnets
on the 𝑥- and 𝑦-axes. The two pairs of electromagnets were
simultaneously controlled using twoNFCs.The experimental
results are presented in Figures 19 and 20 and in Table 3.
Figure 20 indicates that the practical output of the NFC
converged from −1 to 1.

Figure 21 indicates the rotor displacement of 𝑥- and 𝑦-
axes in the AMB system. The rotor displacement is small
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Figure 21: Rotor displacement of an AMB system with 𝑥- and 𝑦-axes.
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Figure 22: Step response of rotor position of AMB system.

about 0.12mm. In general, the rotor displacement in the
horizontal direction is smaller than the rotor displacement in
the vertical direction because of the effects of gravity on the
𝑦-axis. The response of rotor position of 𝑥- and 𝑦-axes in
AMB system covers the entire feasible region (Figure 22).
Figures 23(a) and 23(b) show that the orbit of the rotor
center is using an NFC at rotating speeds from 10000 rpm
to 15000 rpm. From rotating speed of 10000 rpm, the rotor
displacement is small about 0.1 to 0.15mm (Figure 23(a)).
When the rotor rotates at a high speed (15000 rpm), the rotor
displacement increases about 0.19 to 0.22mm (Figure 23(b)),
but it is still in the permitted limits of nominal length of
air gap (𝑥𝑔 = 0.5mm). To evaluate the performance and

characteristics of the RBFNN, we look at an AMB system
controlled by an NFC. As we can see, it is unstable system
before the first 1.2 s. The parameters of a FLC are adjusted
using a RBFNN. The whole controller is applied to the
unbalanced vibration in an AMB system into effect after 1.2 s.
The results further demonstrate that a short rise time implies
a short settling time, low overshoot, and a small steady-state
error with external disturbance.

7. Conclusions

In this study, an NFC was developed to levitate rotor dis-
placement in a highly unstable AMB system. The proposed
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Table 2: The controller parameters.

Parameters Values
Reference model

𝑎
0

98.10−6

𝑎1 196.10−6

𝑎2 98.10−6

𝑏1 −1.96
𝑏2 0.96
𝜁 1
𝜔𝑛 20 rad/s

PI controller
𝐾𝑝𝑤 5.6
𝐾𝑖𝑤 0.012

NFC
𝛼 0.07
𝜂 0.5

method can also be used to improve the control performance
of other nonlinear systems. The results indicated that the
NFC responds well to a reference signal. The ABM system
substantially reduced overshoot, shortened the adjustment
time, accelerated the response, produced a more robust sys-
tem, and improved its dynamic and static performance. The
proposed controller can be feasibly applied to AMB systems
with various external disturbances, and the effectiveness of
the NFC with self-learning and self-improving capacities is

Table 3: Rule table after adjustment of neuron fuzzy controller.

𝑑𝑒

𝑒

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝐵0 −6 −6 −4 −4 −2 −2 0
𝐵1 −6 −4 −4 −2 −2 0 2
𝐵2 −4 −4 −2.084 −2.109 0 2 2
𝐵3 −4 −2 −2.012 0 1.964 2 4
𝐵4 −2 −2 0 2.113 2.065 4 4
𝐵5 −2 0 2.074 2.058 4.022 4 6
𝐵6 0 2 2.055 4.027 4.024 6 6

proven with RBFNN learning algorithm. This controller has
been verified by the position control loop on a prototype
AMB system.
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