Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 271817, 8 pages
http://dx.doi.org/10.1155/2014/271817

Research Article

SCondi: A Smart Context Distribution Framework Based on
a Messaging Service for the Internet of Things

Jongmoon Park and Myung-Joon Lee

Department of Electrical/Electronic and Computer Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu,
Ulsan 680-749, Republic of Korea

Correspondence should be addressed to Myung-Joon Lee; mjlee@ulsan.ac.kr
Received 25 March 2014; Accepted 6 May 2014; Published 26 August 2014
Academic Editor: Young-Sik Jeong

Copyright © 2014 J. Park and M.-J. Lee. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When developing IoT (Internet of Things) applications, context distribution is a key feature to support effective delivery of related
contextual data obtained from things to all interested entities. With the advent of the IoT era, multiple billion devices can generate
huge amounts of data that might be used in IoT applications. In this paper, we present a context distribution framework named
SCondi utilizing the messaging service which supports MQTT—an OASIS standard IoT messaging protocol. SCondi provides the
notion of context channel as a core feature to support efficient and reliable mechanism for distributing huge context information
in the IoT environment. The context channel provides a pluggable filter mechanism that supports effective extraction, tailoring,

authentication, and security of information.

1. Introduction

Context-aware computing, as a component of a ubiquitous
computing [1-4], is a core technology that supports human-
centric intelligent service using contextual information in
real situations. As machine-centric world (M2M, machine-
to-machine) [5, 6] is coming, the notion of context awareness
supporting improved response ability plays an important
role in the IoT since things connected to the internet have
awareness/sensing ability in many cases [7-9].

The IoT which provides useful services combined with
various IT technologies is considered to have the potential
to change our world. The IoT is a future internet environ-
ment defined as a dynamic global network infrastructure
[10]. Things with identities and intelligent interfaces can
be active participants wherever they are enabled to interact
and communicate. To support useful services based on
the massive information related to these things, several
technologies such as REST (representational state transfer)
[11], MQTT (message queuing telemetry transport) [12, 13],
XMPP (extensible messaging and presence protocol) [14],
and CoAP (constrained application protocol) [15] are being
studied for information delivery, message process, and com-
munication protocol. Recently, the MQTT protocol has been

adopted by OASIS (organization for the advancement of
structured information standards) as a standard messaging
protocol for the IoT.

With the advent of the IoT era, multiple billion devices
can generate huge amounts of data that might be used in IoT
applications. However, it is not an easy challenge to deliver
these tremendous data at the right time, to the right place, and
with the right quality. As one of the important components in
context-aware computing, context distribution can be a key
feature to support effective delivery of contextual data in the
IoT environment [16]. As of now, although many research
works on context distribution has been conducted, there is
no standard mechanism for reliable and sophisticated context
distribution in the IoT environment.

In this paper, we propose a context distribution frame-
work named SCondi utilizing the messaging service which
supports MQTT. SCondi provides the notion of context
channel as a core feature to support efficient and reliable
mechanism for distributing huge context information in the
IoT environment. The context channel is an abstract commu-
nication channel which can reliably tailor and disseminate
a collection of information to service providers. Based on
the MQTT messaging service, the context channel provides a
pluggable filter mechanism that supports effective extraction,

http://dx.doi.org/10.1155/2014/271817

tailoring, authentication, and security of information. In
short, the context channel provides higher level abstract
mechanism for information delivery as a transport medium
of context-aware systems in the IoT environment.

2. Backgrounds

IoT is a future internet environment that focuses on machine
to machine communication, referring to uniquely identifiable
objects and their virtual representations. MQT'T is a standard
Internet of Things connectivity protocol that is designed
as an extremely lightweight publish/subscribe messaging
transport, considering limited computing power and poor
network connectivity. The MQTT protocol is developed by
IBM and chosen as standard by OASIS.

As HTTP has made a web to be an infrastructure that
share information over the internet, MQTT is expected to
be a key infrastructure that makes billions of embedded low
price devices to go online. It is already widely used in a lot of
embedded systems.

Mosquitto is an open source (BSD licensed) message bro-
ker that implements the MQTT 3.1, providing a lightweight
method of carrying out messaging using a publish/subscribe
model [17, 18]. Mosquitto is designed to fit messaging among
machines such as low-power sensors, mobile devices, embed-
ded computers, and microcontrollers, supporting various OS
platforms such as Microsoft’s Windows, Apple’s OS X, and
Linux family.

Context-aware computing is a core technology that
supports human-centric intelligent service using contextual
information in real situations. Context refers to a variety
of information that can define the state of the real world’s
entities, generally consisting of information such as entity
identity, activity, status, time, and location [19]. Since many
devices which can sense contextual information are getting
connected to the internet, the context-aware computing plays
an important role in the IoT.

3. Design of SCondi

In this section, we introduce a context distribution frame-
work named SCondi which is based on a messaging service
for the IoT, supporting smart and effective dissemination of
context data. We begin by mentioning the core requirements
for the context data distribution proposed by Bellavista et
al. [20]. To satisfy the requirements, the context channel is
provided with filter mechanism as a key facility for reliable
context data distribution.

3.1. Key Requirements of Context Data Distribution. Bellav-
ista et al. mentioned that context data distribution needs
to meet following 5 requirements for providing an effective
context-aware service in IoT environment.

(1) Communication should be asynchronous and anony-
mous among context producers and consumers.

(2) To support mobile heterogeneous and wireless sce-
narios, the context data distribution has to promptly
adapt to mobility and current available resources.

Journal of Applied Mathematics

(3) The context data distribution must enforce visibility
scopes of context data to avoid useless management
overhead.

(4) The context data distribution has to enforce QoC-
based constraints for timeliness and reliability guar-
antees of data delivery.

(5) The context data distribution has to handle data life
cycle for self-control of the distribution process.

To satisfy the requirements, SCondi provides the fol-
lowing features. First, adopting MQTT as a messaging
mechanism, our framework supports asynchronous and
anonymous communication among message publishers and
subscribers (satisfying (1)). Secondly, our framework pro-
vides effective mobility and reliable message delivery based
on MQTT’s QoS (Quality of Service) in limited network
environments (satisfying (2)). Thirdly, the context channel
in our framework provides filter chain mechanism for the
QoC constraints such as context data management, resource
access control, data validation, and timeliness (satisfying (3)
and (4)). Finally, it also provides common filters for general
usage and customized filters through predefined interfaces
(satisfying (5)).

3.2. Architecture of SCondi. SCondi has two key components:
context channel and channel selector. The context channel isa
transmission facility used to convey a collection of contextual
data specified by the channel creator. The channel selector
receives raw data from external data providers (e.g., sensors,
SN data, calendar data, email, etc.), spreading each raw con-
text data to all the context channels that need the contextual
data as their constituent, using the MQTT messaging facility
as shown in Figure 1. To receive the required data, context
channels should subscribe to the channel selector. When
receiving the collection of the associated contextual data, the
context channel delivers the collection of data to each sub-
scribers of the channel after processing the collection of data
with the filter chain through the MQTT messaging facility.
In this way, the MQTT message delivery mechanism is used
twice to pass the associated data to channel subscribers.

A topic with unique namespace in MQTT is allocated
to each context channel. The topic manages the associated
contextual data as subtopic, forming a hierarchal structure. In
other words, A channel ID is assigned as a main topic while
each contextual data is assigned as a subtopic separated by a
“/” following the channel ID. Based on the MQTT messaging
facility, SCondi provides decoupled one-to-many pub/sub
through the context channel which allows any contextual data
to be published once and multiple consumers to receive the
collection of the needed contextual data.

In SCondi, a context is composed of a set of context
primitives (CPs), where a CP is a set of related data that are
used as a practical unity in applications. For instance, most
elevators in the modern era have been fitted with several
safety devices such as overload sensor, door sensor, fire
sensor, gas sensor, cable sensor, and fault diagnosis module as
shown in Figure 2. A manufacturer needs information such
as equipped sensors and location of installed elevators for

Journal of Applied Mathematics

Row data

Application A
ppiication Context Channel 1 Channel selector

Row data id Channel id
Lovextthonne? - jfOverloadelarm CH [0,1,2,K] |

/ Publish Current weight CH [3, 12, 19, K]

Fire alarm
Ch(2.K] Address
/ Context Channel M Indoor position
Elevator model Ch [I,], K]
Elevator model
Context primitives I
Single message Context Channel M
CEEEEE | ~[EW Overoadalam
) 2
== e
=
I3
Address el Address
! C indoorposiion
Indoor position hag G
S
Elevator model Single message
FIGURE 1: Overall structure of SCondi.
Context primitives
. Elevator
Fire and rescue .
.] _ Image from admiral elevator
service http://www.admiralelevator.com/
o Cumntoor o i
| Commwegn s Bl o™
Motor generator set ¢ . Governor
Car guide rail . Deflector shave
Roller guide —— Final limit switch
o mwelem "
B d
— Toe guard 1 racero
Traveling cable ——{ll| |
Current weight Counterweight
Landing entrance || Counterweight
_ Emergency stop guide rail
Security b \ ; u Directional
v || limit switch
E Address Car buffer Final limit switch
\-\ Buffer channel L Governor tension
\ o uiter channe sheave assembly
. Indoor position L
b\
\ Elevator model

Monitoring center 1N \

/

FIGURE 2: Example of context primitive.

) Filter chain)
) OOD > 3
context context

FIGURE 3: Pluggable ordered filter chain mechanism.

maintenance all together. In emergency situation, informa-
tion such as floor, time, and location are required for the
rescue service at the same time. As above, CP can be used
effectively when information is commonly used or needed to
be provided as a meaningful unit.

SCondi provides an authentication and authorization
mechanism to manage access levels for context channels.
To access a context channel, a subscriber should have a
retrieval authority for the channel. For convenience of users,
the framework supports three types of context channel
according to the purpose of the application: open, access-
limited, and group channel. An open channel allows everyone
to access while an access-limited channel accepts the qualified
subscriber who has the related access key. A group channel
accepts the users authorized by the authentication module for
the related group only.

To process contextual data with different characteristics
depending on the purposes of context channels, we provide
context channels with the filter chain mechanism. A filter
chain is a collection of ordered filters. As a key feature to
determine the characteristics of a context channel, the filter
chain of the channel provides predefined filter interfaces to
process contextual data. In addition, it allows pluggable filter
adaptation which supports dynamic filter insertion/removal
without interruption of service during run-time. For the
effective run-time channel configuration, the framework uses
the concept of ownership to context channels.

3.3. Context Filter for Quality of Context. QoC (Quality
of Context) is a very important factor to be considered
for the context data distribution efficiency and reliability.
Traditionally QoC has focused on the quality of data only.
Recently, to ensure the availability of data with the right
quality, in the right place and at the right time, many related
studies concentrate on complex characteristics such as data
transmission time, data reliability, data accessibility, data
refreshment/up-to-date, and data precision. In other words,
QoC must be considered depending on the purpose of the
services. To reflect these aspects, SCondi provides filter chain
mechanism that allows filters to be applied for supporting
QoC in context channels.

A filter changes original contextual data to qualified
data according to QoC criteria. Also, as shown in Figure 3,
filters can be logically combined to create more complex
subscriptions patterns depending on the characteristics of
context channels. In other words, filter chain mechanism
helps to reduce bandwidth and to enhance scalability and
to increase QoC for context distribution in the IoT environ-
ment. Our framework provides common filters that can be

Journal of Applied Mathematics

TABLE 1: Filter interface.

Interface Description
Changes original contextual data
execute(context) to qualified data according to the

filter logic

After execute(), passes context to

nextFilter(context,
ilter() next filter in the filter chain

TABLE 2: Filter chain interface.

Interface Description
Adds the specified filter at the

addLast(flter) beginning of this chain

. Adds the specified filter at the end of
addFirst(filter) this chain
addBefore(filter, base Adds the specified filter before the base
filter) filter in this chain
addAfter(filter, base Adds the specified filter after the base
filter) filter in this chain
invoke(context) Invokes the filters of the chain in order
delete(filter) Deletes the specified filter in this chain
replace(base filter, new Replace the specified filter with new
filter) filter

commonly used in context channels for QoC constraints such
as value_range, time, value_changed, and average filter.

(1) The value_range filter passes values only within a
certain range.

(2) The time filter passes values within a specific time
period.

(3) The value_changed filter passes values different from
previous values.

(4) The average filter calculates the average value with the
specified condition, transmitting the calculated value.

In addition, SCondi provides predefined interfaces to
create a custom filter and to manage filter chain apart from
the common filters.

4. Implementation of SCondi

In this section, we explain the implementation of context
distribution framework to support reliable delivery of context
data. SCondi is implemented with Java program language,
using Mosquitto as the MQTT message broker to support
efficient and reliable messaging. The context channel provides
a filter chain mechanism through the filter interface and the
filter chain interface. The filter interface provides execute() to
process contextual data through a specific filter as shown in
Table 1. To pass the processed contextual data to the next filter
in the filter chain, it provides nextFilter(). Additionally, as
shown in Table 2, it provides the filter chain interface to add,
delete, and replace a filter in a chain. The filter chain interface
provides addFirst(), addLast(), addBefore(), and addAfter() to
add filters at a specific position in a chain. It also gives delete()
to remove filters and replace() to replace filter with a new one.

Journal of Applied Mathematics

<Context>
<Context Primitivel>
<Overload Alarm>OFF</Overload Alarm>
<Current Weight>120 KG</Current Weight>
</Context Primitivel>
<Context Primitive2>
<Fire Alarm>QOFF</Fire Alarm>
<Current EV Temp>24"C</... >
</Context Primitive 2>
<Context Primitive 3>
<Address>
</Context Primitive 3>
</Context>

ALGORITHM 1: Context definition.

Lastly, It provides invoke() to execute the filters of the chain
in order. In this way, the context channel can be configured
to have various characteristics depending on the ordering of
filters. A context is defined by a set of CPs as described in
Algorithm 1.

Algorithm 2 shows an example of using a filter chain. In
this case, the associated context channel executes Average-
Filter for calculating average value of 10 recent weights of
the underlying elevator. Then, ChangedValueFilter compares
the calculated value with the previous average value. If
the calculated value is not equal to the previous one, the
context channel delivers the calculated value to subscribed
applications.

According to the rapidly increasing number of devices
in the IoT, both context channels and the channel selector
can impose heavy overloads on a single MQTT message
broker. Thus, SCondi uses 2 message brokers for the channel
selector and context channels, respectively. A topic of the
first Mosquitto message broker (for channel selection) is
assigned to each source of contextual data which is provided
by the external context adapter. The channel selector manages
a contextual data and the associated channels through the
context-channel mapping table, publishing the data to the
message broker through the assigned topic. To subscribe a
specific contextual data, each context channel should request
a subscription of the associated topic to the message broker.
After acquiring the approval from subscription authorization,
the context channel can receive the interested data from the
message broker by subscribing to the associated topic.

After processing the received data through its filter chain,
the context channel publishes the specified set of data to the
second message broker (for end user delivery). To receive the
set of interested contextual data from the context channel,
end user applications should subscribe to the context channel.
Our framework also provides the management facility for
subscription permissions on context channels. In addition,
the channel provides the context-filter mapping table to
manage each context data and its related filters. The channel
supports 2 types of filter: global filter and local filter. Whole
context data in the channel is affected by the global filter while

FilterChain =
Channel.getFilterChain(CurrentWeight)

FilterChain.addFirst(new AverageFilter(10));

FilterChain.addLast(new ChangedValueFilter());

class AverageFilter
implemented Filter

Object execute(Object c){
sum +=¢;
if (checkCount()){
result = sum/avgCount;
init();
return nextFilter.execute(result);

class ChangedValueFilter
implemented Filter{
Object execute(Object c){
old = cur;
cur =G
if (isChanged() == true)
return nextFilter.execute(cur);

ArGoriTHM 2: Example of filter chain.

local filter is applied only to the specific context data based on
the table.

5. Performance Analysis

Since SCondi provides higher level abstract mechanism for
information delivery in the IoT environment, the qualitative
effectiveness of our framework is very clear. So, we focus on
the effectiveness in terms of quantity of delivered messages
as illustrated in Figure 4. Whereas each data should be
transmitted in an original MQTT message broker, all data in
a CP can be passed as a single message through our context
channel with appropriate setting. To show effectiveness of our
framework, we compare the quantity of delivered messages in
a formal way. For this, let us begin by defining the following
terms:

t;: total number of source data;
t,: total number of CPs;

m,,;: average number of source data in a single CP.

Then, in case that every CP is used once by application, the
amount of source messages can be written as

6 Journal of Applied Mathematics
: average channel .
Tap e o CP redundancy ;gaundangcy used for Tept AVETE ? CP}{ edunldancy
used for applications applications CH, used for channels
App, Tpq: Average source data App; Context; 7 pq; average source data
q&‘ y edundancy used for CPs| ﬁ§\ redundancy used for CPs
™~
CP Context primitive CH; secp . Context primitives
% Overload alarm % Overload alarm
Current weight Current weight
CPy Fire alarm CP, Fire Alarm
Current EV temp Current EV temp
Address Address
Cpé» Indoor position Ccp 1(< Indoor position
Elevator model App, Elevator model
A,
‘ . Context
Applications Context primitive set ~ Data set Applications channel Context primitive set Data set

F1GURE 4: Context distribution with/without context channel.

In general, a source data can belong to multiple CPs. So we
define r,,; denoting the average source data redundancy used
for CPs:

m

Tpd =1, * (rpd > 0). (2)

d
Let f, denote the total number of applications and m,,, denote
average number of CPs in a single application.
For simplicity, assume that every application receives its
needed data once for a certain period of time p. Then, the
total number of CPs used during time interval p is

ta * M. (3)

Since a CP is generally required by multiple applications,we
definethe average CP redundancy used for applications
denoted by r,,,:

Tap = 1o %

(> 0): (4)

Now, we can calculate the amount of all messages (denoted
by S,) passing through the original MQTT message broker:

Sb =ty * map * mpd' (5)

Applying (2) and (4) to (5), we have the following:
Sp = Tap * Tpg * tg. (6)

Now, we measure the amount of all messages in our SCondi.
We start by new terms ¢, and m,,, that denote the total number
of channels in SCondi and the average number of CPs used in
a single channel, respectively. We assume that every context
channel receives its needed CP once for a certain period of
time p;. Then, the total number of CPs passed during time
interval p, can be written as

te * M. (7)

c

Since a CP generally belongs to multiple context channels, r,
which is the average CP redundancy used for channels can be
defined by

Mgy
p=ter (rcp >0). (8)
P

We assume that every application receives its needed CP once
from the related context channels for a certain period of time
p,. Let m,. denote the average number of channels required
in a single application. Since a context channel can belong to
multiple applications, let us define r,, meaning the average
channel redundancy used for applications by

o (ree>0). 9)

Recall that each data should be transmitted in an original
MQTT message broker while all data in a CP can be passed
as a single message from context channels with appropriate
setting. Now, we can count the amount of all messages
(denoted by S,) passing through SCondi during time period

(p1+ po):

Sc =ty x My * mcp +i* mcp * mpd' (10)
Applying (2), (8), and (9) to (10), we have the following:
Se =t * oo %My + 1, % 1y % My
(11)
= Mg KTy ¥ t, Tl ¥ Tpg * ty.

Since the time required to transmit messages is fairly smaller
than the time interval that applications require source data,
we can assume p = p; + p, without loss of generality.
Now, we discuss the condition over which the amount of all
messages passing through SCondi is less than the amount of

Journal of Applied Mathematics

all messages passing through original MQT T message broker.
Consider

Sp > Sc = oy #Tpg s bg > Tae Ty ki by + 1, % 1py %ty

(applying (6), (11)).
(12)

Note that the condition

Tap > Tep (13)

should always satisfy to hold S.b > S, since ro * 1o, 1, s
always greater than zero. Consider

(rap - rcp) K Tpg % bg > Tac Tyt (14)
In case that r,, > r,,, (14) is equivalent to

ty Tep
Tpa * 3 > Tac* ————. (15)
p ap ~Tep

Sincer,y = t,, xm,,/t; (by (2)), we finally have the following:

r,

ac ¥ 7,

_ac ch
(rap - Tcp)

To capture the meaning of conditions for S, > S, using a
practical data, let us calculate the amount of total delivered
messages in SCondi and that of MQTT broker. We assume
that £; = 100000, t, = 80000, t, = 5000, and mp; = 3. For
MQTT broker case, we assume the average number of CPs
in a single application is 200. In SCondi, we assume that the
total number of channels is 2000, the average number of CPs
in a single channel is 50 and the average number of channels
in a single application is 4. Table 3 shows the calculation of
the total delivered messages in both cases. As a result, S,
is 3000000 and S is 1300000 when m,,; is 3. In this case,
both conditions (13) and (16) “rap(: 12.5) > rcp(: 1.25)”
and “mpg (= 3) > 14, * 1,/ (rg, — 1.,)(= 1.11)” are satisfied,
resulting in S, < Sp,.

Figure 5 depicts the total amount of messages according
to the value of m,; under the same conditions. Considering
the result, even in the aspect of the amount of total messages
passing through, the concept of context channel is very useful
and effective when CP is composed of two or more source
data.

Mpa > (16)

6. Conclusion

In this paper, we introduced a context distribution frame-
work named SCondi that supports effective dissemination
of context data through context channels. SCondi is based
on two major components: channel selector and context
channel. The channel selector sends each raw context data
to each of the context channels that requires the contextual
data, using the MQTT messaging facility which has been
adopted by OASIS as a standard messaging facility for the
IoT. The context channel provides a filter chain mechanism
that supports effective extraction, tailoring, authentication,

TAaBLE 3: Example of delivered message comparison with practical

data.
Common conditions
t, = 100000, £, = 80000, £, = 5000, 11,4 = 3
MQTT broker case SCondi case
Let Let
M,y = 200 t, = 2000, m,, = 4,m,, = 50
Sc =tk My * mcp
S, :ta*mup*mpd +tc*mcp*mpd
= 5000 * 200 * 3 = 5000 * 4 * 50
= 3000000 + 2000 * 50 * 3
= 1300000
Tpa =1, xmyfty fop =t * mgft,
= 80000 * 3/100000 = 2000 * 50/80000
=24 =1.25
Tap =to % map/tp Toe =t, xmy.[t,
= 5000 * 200/80000 = 5000 * 4/2000
=125 =10
Myy > Ty % rcp/(rup - rcp)
> 10 * 1.25/(12.5 — 1.25)
> 1.11
x10°
8 —_
7 -
5 o
g
2 5
S
o
5 41
E
Z 3
2
1 -
0 T T T T T T 1
1 2 3 4 5 6 7
mpd

— 8+ total messages through MQTT broker
-—- §,: total messages through SCondi

FIGURE 5: m,, effect on total amount of messages.

and security of information through various types of filters.
Based on the MQTT messaging facility again, when receiving
the collection of the associated contextual data, the context
channel delivers the collection of data to each subscriber
of the channel after processing the collection of data with
the filter chain. In addition, SCondi supports three types of

context channel according to the purpose of the application:
open, access-limited, and group channel. We also showed that
SCondi is very useful and effective both in quality and quan-
tity of delivered messages. We believe that the novel concept
of context channel and the presented framework can be very
useful for context distribution in the IoT environment.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (no.
2013R1A1A4A01004459).

References

[1] B. N. Schilit, N. I. Adams, and R. Want, “Context-aware
computing applications,” in Proceedings of the Workshop on
Mobile Computing Systems and Applications, pp. 85-90, IEEE

Computer Society, Santa Cruz, Calif, USA, December 1994.

[2] J. Park, H. Lee, and M. Lee, “JCOOLS: a toolkit for generating
context-aware applications with JCAF and DROOLS,” Journal
of Systems Architecture, vol. 59, no. 9, pp. 759-766, 2013.

D. Gallego and G. Huecas, “An empirical case of a context-aware
mobile recommender system in a banking environment,” in
Proceedings of the 3rd FTRA International Conference on Mobile,
Ubiquitous, and Intelligent Computing (MUSIC ’12), pp. 13-20,
IEEE, Vancouver, Canada, June 2012.

[4] S. Oh, “Using an adaptive search tree to predict user location,”
Journal of Information Processing Systems, vol. 8, no. 3, pp. 437-
444, 2012.

[5] “M2M, machine-to-machine,” http://www.m2m.com/.

[6] ABI Research, More Than 30 Billion Devices Will Wirelessly
Connect to the Internet of Everything in 2020, ABI Research,
London, UK, 2013.

[7] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Context aware computing for the internet of things: a survey,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp.
414-454, 2014.

[8] N. Ahmed Surobhi and A. Jamalipour, “A context-aware M2M-

based middleware for service selection in mobile ad-hoc net-

works,” IEEE Transactions on Parallel and Distributed Systems,

2014.

V. Cristea, C. Dobre, and E. Pop, “Context-aware environments

for the internet of things, in Internet of Things and Inter-

cooperative Computational Technologies for Collective Intelli-

gence, vol. 460 of Studies in Computational Intelligence, pp. 25—

49, Springer, Berlin, Germany, 2013.

“Internet of Things Strategic Research Roadmap,” CERP- IoT,

April 2011.

[11] REST, http://tools.ietf.org/html/rfc2616.

[12] MQTT, http://mqtt.org/.

[13] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrah-
manyam, and R. Xiang, Building Smarter Planet Solutions with

[3

&

[10

(20]

Journal of Applied Mathematics

MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks,
New York, NY, USA, Ist edition, 2012.

XMPP, http://xmpp.org/.

CoAP, https://datatracker.ietf.org/doc/draft-ietf-core-coap/.

T. Teraoka, “Organization and exploration of heterogeneous
personal data collected in daily life;” Human-Centric Computing
and Information Sciences, vol. 2, no. 1, pp. 1-15, 2012.

Mosquitto, http://mosquitto.org/.

MQTT Servers/Brokers, http://mqtt.org/wiki/doku.php/bro-
kers.

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context
and context-awareness,” in Proceedings of the Ist international
symposium on Handheld and Ubiquitous Computing (HUC *99),
vol. 1707 of Lecture Notes in Computer Science, 1999, pp. 304
307.

P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey of
context data distribution for mobile ubiquitous systems,” ACM
Computing Surveys, vol. 44, no. 4, article 24, 2012.

