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We introduce a new iterative algorithm for approximating a common element of the set of solutions formixed equilibriumproblems,
the set of solutions of a system of quasi-variational inclusion, and the set of fixed points of an infinite family of nonexpansive
mappings in a real Hilbert space. Strong convergence of the proposed iterative algorithm is obtained. Our results generalize, extend,
and improve the results of Peng and Yao, 2009, Qin et al. 2010 and many authors.

1. Introduction

Throughout this paper, we assume that 𝐻 is a real Hilbert
space with inner product and norm denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖,
respectively. Let 𝐶 be a nonempty closed convex subset of𝐻.
A mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤

‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶. They use 𝐹(𝑇) to denote the set of fixed
points of 𝑇; that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. It is assumed
throughout the paper that 𝑇 is a nonexpansive mapping such
that 𝐹(𝑇) ̸= 0. Recall that a self-mapping 𝑓 : 𝐶 → 𝐶 is
a contraction on 𝐶 if there exists a constant 𝛼 ∈ [0, 1), and
𝑥, 𝑦 ∈ 𝐶 such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝛼‖𝑥 − 𝑦‖.

Let 𝜑 : 𝐶 → R∪ {+∞} be a proper extended real-valued
function and let 𝐹 be a bifunction of 𝐶 × 𝐶 into R, where R
is the set of real numbers. Ceng and Yao [1] considered the
following mixed equilibrium problem for finding 𝑥 ∈ 𝐶 such
that

𝐹 (𝑥, 𝑦) + 𝜑 (𝑦) ≥ 𝜑 (𝑥) , ∀𝑦 ∈ 𝐶. (1)

The set of solutions of (1) is denoted by MEP(𝐹, 𝜑). We see
that 𝑥 is a solution of problem (1) which implies that 𝑥 ∈

dom𝜑 = {𝑥 ∈ 𝐶 | 𝜑(𝑥) < +∞}. If 𝜑 ≡ 0, then the mixed
equilibrium problem (1) becomes the following equilibrium
problem for finding 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (2)

The set of solutions of (2) is denoted by EP(𝐹). The mixed
equilibrium problems include fixed point problems, vari-
ational inequality problems, optimization problems, Nash
equilibrium problems, and the equilibrium problem as spe-
cial cases. Numerous problems in physics, optimization, and
economics reduce to find a solution of (2). Some methods
have been proposed to solve the equilibriumproblem (see [2–
14]).

Let 𝐵 : 𝐶 → 𝐻 be a mapping. The variational inequality
problem, denoted by VI(𝐶, 𝐵), is for finding 𝑥 ∈ 𝐶 such that

⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, (3)
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for all 𝑦 ∈ 𝐶. The variational inequality problem has been
extensively studied in the literature. See, for example, [15, 16]
and the references therein. A mapping 𝐵 of 𝐶 into𝐻 is called
monotone if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 0, (4)

for all 𝑥, 𝑦 ∈ 𝐶. 𝐵 is called 𝛽-inverse-strongly monotone if
there exists a positive real number 𝛽 > 0 such that for all
𝑥, 𝑦 ∈ 𝐶

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩

2

. (5)

We consider a system of quasi-variational inclusion for finding
(𝑥
∗
, 𝑦
∗
) ∈ 𝐻 × 𝐻 such that

𝜃 ∈ 𝑥
∗
− 𝑦
∗
+ 𝜌
1
(𝐵
1
𝑦
∗
+𝑀
1
𝑥
∗
) ,

𝜃 ∈ 𝑦
∗
− 𝑥
∗
+ 𝜌
2
(𝐵
2
𝑥
∗
+𝑀
2
𝑦
∗
) ,

(6)

where 𝐵
𝑖
: 𝐻 → 𝐻 and 𝑀

𝑖
: 𝐻 → 2

𝐻 are nonlinear
mappings for each 𝑖 = 1, 2. The set of solutions of problem
(6) is denoted by SQVI(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
). As special cases of

problem (6), we have the following.

(1) If 𝐵
1
= 𝐵
2
= 𝐵 and𝑀

1
= 𝑀
2
= 𝑀, then problem (6)

is reduced to (7) for finding (𝑥
∗
, 𝑦
∗
) ∈ 𝐻 × 𝐻 such

that

𝜃 ∈ 𝑥
∗
− 𝑦
∗
+ 𝜌
1
(𝐵𝑦
∗
+𝑀𝑥

∗
) ,

𝜃 ∈ 𝑦
∗
− 𝑥
∗
+ 𝜌
2
(𝐵𝑥
∗
+𝑀𝑦

∗
) .

(7)

(2) Further, if 𝑥∗ = 𝑦
∗, then problem (7) is reduced to (8)

for finding 𝑥∗ ∈ 𝐻 such that

𝜃 ∈ 𝐵𝑥
∗
+𝑀𝑥

∗
, (8)

where 𝜃 is the zero vector in 𝐻. The set of solutions
of problem (8) is denoted by 𝐼(𝐵,𝑀). A set-valued
mapping 𝑀 : 𝐻 → 2

𝐻 is called monotone if for
all 𝑥, 𝑦 ∈ 𝐻, 𝑓 ∈ 𝑀(𝑥) and 𝑔 ∈ 𝑀(𝑦) imply
⟨𝑥 − 𝑦, 𝑓 − 𝑔⟩ ≥ 0. A monotone mapping 𝑀 is
maximal if its graph 𝐺(𝑀) := {(𝑓, 𝑥) ∈ 𝐻 × 𝐻 : 𝑓 ∈

𝑀(𝑥)} of 𝑀 is not properly contained in the graph
of any other monotone mapping. It is known that a
monotone mapping 𝑀 is maximal if and only if for
(𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑥−𝑦, 𝑓−𝑔⟩ ≥ 0 for all (𝑦, 𝑔) ∈ 𝐺(𝑀)

imply 𝑓 ∈ 𝑀(𝑥). Let 𝐵 be a monotone mapping of 𝐶
into𝐻 and let𝑁

𝐶
𝑦 be the normal cone to 𝐶 at 𝑦 ∈ 𝐶;

that is,𝑁
𝐶
𝑦 = {𝑤 ∈ 𝐻 : ⟨𝑢 − 𝑦, 𝑤⟩ ≤ 0, ∀𝑢 ∈ 𝐶}, and

define

𝑀𝑦 = {
𝐵𝑦 + 𝑁

𝐶
𝑦, 𝑦 ∈ 𝐶;

0, 𝑦 ∉ 𝐶.
(9)

Then,𝑀 is themaximal monotone and 𝜃 ∈ 𝑀𝑦 if and
only if 𝑦 ∈ VI(𝐶, 𝐵); see [17].

Let 𝑀 : 𝐻 → 2
𝐻 be a set-valued maximal monotone

mapping; then, the single-valued mapping 𝐽
𝑀,𝜆

: 𝐻 → 𝐻

defined by

𝐽
𝑀,𝜆

𝑥
∗
= (𝐼 + 𝜆𝑀)

−1
𝑥
∗
, 𝑥
∗
∈ 𝐻 (10)

is called the resolvent operator associated with 𝑀, where 𝜆

is any positive number and 𝐼 is the identity mapping. The
following characterizes the resolvent operator.

(R1) The resolvent operator 𝐽
𝑀,𝜆

is single-valued and
nonexpansive for all 𝜆 > 0; that is,

󵄩󵄩󵄩󵄩𝐽𝑀,𝜆 (𝑥) − 𝐽
𝑀,𝜆

(𝑦)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻, ∀𝜆 > 0.

(11)

(R2) The resolvent operator 𝐽
𝑀,𝜆

is 1-inverse-strongly
monotone; see [18]; that is,

󵄩󵄩󵄩󵄩𝐽𝑀,𝜆 (𝑥) − 𝐽
𝑀,𝜆

(𝑦)
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥 − 𝑦, 𝐽
𝑀,𝜆

(𝑥) − 𝐽
𝑀,𝜆

(𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐻.

(12)

(R3) The solution of problem (8) is a fixed point of the
operator 𝐽

𝑀,𝜆
(𝐼 − 𝜆𝐵) for all 𝜆 > 0; see also [19]; that

is,

𝐼 (𝐵,𝑀) = 𝐹 (𝐽
𝑀,𝜆

(𝐼 − 𝜆𝐵)) , ∀𝜆 > 0. (13)

(R4) If 0 < 𝜆 ≤ 2𝛽, then the mapping 𝐽
𝑀,𝜆

(𝐼 − 𝜆𝐵) : 𝐻 →

𝐻 is nonexpansive.
(R5) 𝐼(𝐵,𝑀) is closed and convex.

Let 𝐴 be a strongly positive linear bounded operator on
𝐻; that is, there exists a constant 𝛾 > 0 with property

⟨𝐴𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (14)

A typical problem is to minimize a quadratic function over
the set of the fixed points of a nonexpansive mapping on a
real Hilbert space𝐻:

min
𝑥∈𝐹(𝑇)

1

2
⟨𝐴𝑥, 𝑥⟩ − ℎ (𝑥) , (15)

where 𝐴 is a strongly positive linear bounded operator and ℎ

is a potential function for 𝛾𝑓 (i.e., ℎ󸀠(𝑥) = 𝛾𝑓(𝑥) for 𝑥 ∈ 𝐻).
In 2007, Plubtieng and Punpaeng [20] proposed the

following iterative algorithm:

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐻,

𝑥
𝑛+1

= 𝜖
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜖

𝑛
𝐴)𝑇𝑢

𝑛
.

(16)

They proved that if the sequences {𝜖
𝑛
} and {𝑟

𝑛
} of parameters

satisfy appropriate conditions, then the sequences {𝑥
𝑛
} and

{𝑢
𝑛
} both converge to the unique solution 𝑧 of the variational

inequality

⟨(𝐴 − 𝛾𝑓) 𝑧, 𝑥 − 𝑧⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) ∩ EP (𝐹) , (17)
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which is the optimality condition for the minimization
problem

min
𝑥∈𝐹(𝑇)∩EP(𝐹)

1

2
⟨𝐴𝑥, 𝑥⟩ − ℎ (𝑥) , (18)

where ℎ is a potential function for 𝛾𝑓 (i.e., ℎ󸀠(𝑥) = 𝛾𝑓(𝑥) for
𝑥 ∈ 𝐻).

In 2009, Peng and Yao [21] introduced an iterative
algorithm based on extragradient method which solves the
problem for finding a common element of the set of solutions
of a mixed equilibrium problem, the set of fixed points of a
family of finitely nonexpansive mappings, and the set of the
variational inequality for a monotone, Lipschitz continuous
mapping in a real Hilbert space. The sequences generated by
V ∈ 𝐶 are

𝑥
1
= 𝑥 ∈ 𝐶,

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝛾
𝑛
𝐵𝑢
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
V + 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
− 𝛽
𝑛
)𝑊
𝑛
𝑃
𝐶
(𝑢
𝑛
− 𝜆
𝑛
𝐵𝑦
𝑛
) ,

(19)
for all 𝑛 ≥ 1, where𝑊

𝑛
is𝑊-mapping.They proved the strong

convergence theorems under some mild conditions.
In 2010, Qin et al. [22] introduced an iterative method for

finding solutions of a generalized equilibrium problem, the
set of fixed points of a family of nonexpansive mappings, and
the common variational inclusions. The sequences generated
by 𝑥
1
∈ 𝐶 and {𝑥

𝑛
} are a sequence generated by

𝐹 (𝑢
𝑛
, 𝑦) + ⟨𝐴

3
𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜆
𝑛
𝐴
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝑃
𝐶
(𝑧
𝑛
− 𝜂
𝑛
𝐴
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑊
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(20)
where𝑓 is a contraction and𝐴

𝑖
is inverse-stronglymonotone

mappings for 𝑖 = 1, 2, 3 and 𝑊
𝑛
is called a 𝑊-mapping gen-

erated by 𝑆
𝑛
, 𝑆
𝑛
1

, . . . , 𝑆
1
and 𝛾
𝑛
, 𝛾
𝑛−1

, . . . , 𝛾
1
. They proved the

strong convergence theorems under some mild conditions.
Liou [23] introduced an algorithm for finding a common
element of the set of solutions of a mixed equilibrium
problem and the set of variational inclusion in a real Hilbert
space. The sequences generated by 𝑥

0
∈ 𝐶 are

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
)

+
1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝑃
𝐶
[(1 − 𝛼

𝑛
𝐴) 𝐽
𝑀,𝜆

(𝑢
𝑛
− 𝜆𝐵𝑢

𝑛
)] ,

(21)

for all 𝑛 ≥ 1, where 𝐴 is a strongly positive bounded
linear operator and𝐵,𝑄 are inverse-stronglymonotone.They
proved the strong convergence theorems under some suitable
conditions.

Next, Petrot et al. [24] introduced the new following
iterative process for finding the set of solutions of quasi-
variational inclusion problem and the set of fixed point of a
nonexpansive mapping. The sequence is generated by

𝑥
0
∈ 𝐻, chosen arbitrary,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑆𝑧
𝑛
,

𝑧
𝑛
= 𝐽
𝑀,𝜆

(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀,𝜌

(𝑥
𝑛
− 𝜌𝐴𝑥

𝑛
) ,

(22)

for all 𝑛 ∈ N ∪ {0}, where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
} are three sequences

in [0, 1] and 𝜆 ∈ (0, 2𝛼]. They proved that {𝑥
𝑛
} generated by

(22) converges strongly to 𝑧
0
which is the unique solution in

𝐹(𝑆) ∩ 𝐼(𝐴,𝑀).
In 2011, Jitpeera and Kumam [25] introduced a shrinking

projection method for finding the common element of the
common fixed points of nonexpansive semigroups, the set of
common fixed point for an infinite family, the set of solutions
of a system of mixed equilibrium problems, and the set of
solution of the variational inclusion problem. Let {𝑥

𝑛
}, {𝑦
𝑛
},

{V
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by 𝑥

0
∈ 𝐶,𝐶

1
= 𝐶,

𝑥
1
= 𝑃
𝐶
1

𝑥
0
, 𝑢
𝑛
∈ 𝐶, and

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑢
𝑛
= 𝐾
𝐹
𝑁

𝑟
𝑁,𝑛

𝐾
𝐹
𝑁−1

𝑟
𝑁−1,𝑛

𝐾
𝐹
𝑁−2

𝑟
𝑁−2,𝑛

⋅ ⋅ ⋅ 𝐾
𝐹
2

𝑟
2,𝑛

𝐾
𝐹
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
𝑀
2
,𝛿
𝑛

(𝑢
𝑛
− 𝛿
𝑛
𝐵𝑢
𝑛
) ,

V
𝑛
= 𝐽
𝑀
1
,𝜆
𝑛

(𝑦
𝑛
− 𝜆
𝑛
𝐴𝑦
𝑛
) ,

𝑧
𝑛
= 𝛼
𝑛
V
𝑛
+ (1 − 𝛼

𝑛
)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑆 (𝑠)𝑊
𝑛
V
𝑛
𝑑𝑠,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V
𝑛
−

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑆 (𝑠)𝑊
𝑛
V
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, 𝑛 ∈ N,

(23)

where 𝐾𝐹𝑘
𝑟
𝑘

: 𝐶 → 𝐶, 𝑘 = 1, 2, . . . , 𝑁. We proved the strong
convergence theorem under certain appropriate conditions.

In this paper,motivated by the above results, we introduce
a new iterative method for finding a common element of
the set of solutions for mixed equilibrium problems, the set
of solutions of a system of quasi-variational inclusions, and
the set of fixed points of an infinite family of nonexpansive
mappings in a real Hilbert space. Then, we prove strong
convergence theorems which are connected with [5, 26–29].
Our results extend and improve the corresponding results of
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Jitpeera and Kumam [25], Liou [23], Plubtieng and Punpaeng
[20], Petrot et al. [24], Peng and Yao [21], Qin et al. [22], and
some authors.

2. Preliminaries

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖ and let 𝐶 be a nonempty closed convex subset of
𝐻. Then,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

= ‖𝑥‖
2
−
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥 − 𝑦, 𝑦⟩ ,

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆)

×
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐻, 𝜆 ∈ [0, 1] .

(24)

For every point 𝑥 ∈ 𝐻, there exists a unique nearest point in
𝐶, denoted by 𝑃

𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (25)

𝑃
𝐶
is called themetric projection of𝐻 onto𝐶. It is well known

that 𝑃
𝐶
is a nonexpansive mapping of𝐻 onto 𝐶 and satisfies

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑃
𝐶
𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐻. (26)

Moreover, 𝑃
𝐶
𝑥 is characterized by the following properties:

𝑃
𝐶
𝑥 ∈ 𝐶 and

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, (27)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩

2

, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶.

(28)

Let 𝐵 be a monotone mapping of 𝐶 into 𝐻. In the context
of the variational inequality problem, the characterization of
projection (27) implies the following:

𝑢 ∈ VI (𝐶, 𝐵) ⇐⇒ 𝑢 = 𝑃
𝐶
(𝑢 − 𝜆𝐵𝑢) , 𝜆 > 0. (29)

It is also known that𝐻 satisfies the Opial condition [30]; that
is, for any sequence {𝑥

𝑛
} ⊂ 𝐻 with 𝑥

𝑛
⇀ 𝑥, the inequality

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 (30)

holds for every 𝑦 ∈ 𝐻 with 𝑥 ̸= 𝑦.
For the infinite family of nonexpansive mappings of

𝑇
1
, 𝑇
2
, . . ., and sequence {𝜆

𝑖
}
∞

𝑖=1
in [0, 1), see [31]; we define

the mapping𝑊
𝑛
of 𝐶 into itself as follows:

𝑈
𝑛,0

= 𝐼,

𝑈
𝑛,1

= 𝜆
1
𝑇
1
𝑈
𝑛,0

+ (1 − 𝜆
1
) 𝑈
𝑛,0
,

𝑈
𝑛,2

= 𝜆
2
𝑇
2
𝑈
𝑛,1

+ (1 − 𝜆
2
) 𝑈
𝑛,1
,

...

𝑈
𝑛,𝑁−1

= 𝜆
𝑁−1

𝑇
𝑁−1

𝑈
𝑛,𝑁−2

+ (1 − 𝜆
𝑁−1

) 𝑈
𝑛,𝑁−2

,

𝑊
𝑛
= 𝑈
𝑛,𝑁

= 𝜆
𝑁
𝑇
𝑁
𝑈
𝑛,𝑁−1

+ (1 − 𝜆
𝑁
) 𝑈
𝑛,𝑁−1

.

(31)

Lemma 1 (Shimoji and Takahashi [32]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻. LetT = {𝑇

𝑖
}
𝑁

𝑖=1

be a family of infinitely nonexpanxive mappings with 𝐹(T) =

⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and let {𝜆

𝑖
} be a real sequence such that 0 <

𝜆
𝑖
≤ 𝑏 < 1 for every 𝑖 ≥ 1. Then

(1) 𝑊
𝑛
is nonexpansive and 𝐹(𝑊

𝑛
) = ⋂

𝑛

𝑖=1
𝐹(𝑇
𝑖
) for each

𝑛 ≥ 1;
(2) for each 𝑥 ∈ 𝐶 and for each positive integer 𝑘, the limit

lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists;

(3) the mapping 𝑊 : 𝐶 → 𝐶 defined by 𝑊𝑥 =

lim
𝑛→∞

𝑊
𝑛
𝑥 = lim

𝑛→∞
𝑈
𝑛,1
𝑥 is a nonexpansive

mapping satisfying 𝐹(𝑊) = 𝐹(T) and it is called the
𝑊-mapping generated by 𝑇

1
, 𝑇
2
, . . ., and 𝜆

1
, 𝜆
2
, . . .;

(4) if 𝐾 is any bounded subset of 𝐶, then
lim
𝑛→∞

sup
𝑥∈𝐾

‖𝑊𝑥 −𝑊
𝑛
𝑥‖ = 0.

For solving themixed equilibriumproblem, let us give the
following assumptions for a bifunction 𝐹 : 𝐶 × 𝐶 → R and
a proper extended real-valued function 𝜑 : 𝐶 → R ∪ {+∞}

satisfies the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim

𝑡→0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐹(𝑥, 𝑦);
(A4) for each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex and lower

semicontinuous;
(A5) for each 𝑦 ∈ 𝐶, 𝑥 󳨃→ 𝐹(𝑥, 𝑦) is weakly upper

semicontinuous;
(B1) for each𝑥 ∈ 𝐻 and 𝑟 > 0, there exist a bounded subset

𝐷
𝑥
⊆ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that for any 𝑧 ∈ 𝐶 \ 𝐷

𝑥
,

𝐹 (𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) +

1

𝑟
⟨𝑦
𝑥
− 𝑧, 𝑧 − 𝑥⟩ < 𝜑 (𝑧) ; (32)

(B2) 𝐶 is a bounded set.

We need the following lemmas for proving our main
results.

Lemma 2 (Peng and Yao [21]). Let 𝐶 be a nonempty closed
convex subset of 𝐻. Let 𝐹 : 𝐶 × 𝐶 → R be a bifunction that
satisfies (A1)–(A5) and let 𝜑 : 𝐶 → R ∪ {+∞} be a proper
lower semicontinuous and convex function. Assume that either
(B1) or (B2) holds. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping
𝑇
𝑟
: 𝐻 → 𝐶 as follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) + 𝜑 (𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 𝜑 (𝑧) , ∀𝑦 ∈ 𝐶} ,

(33)

for all 𝑥 ∈ 𝐻. Then, the following hold:

(1) for each 𝑥 ∈ 𝐻, 𝑇
𝑟
(𝑥) ̸= 0;

(2) 𝑇
𝑟
is single-valued;
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(3) 𝑇
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

‖𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2
≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩;

(4) 𝐹(𝑇
𝑟
) = 𝑀𝐸𝑃(𝐹, 𝜑);

(5) 𝑀𝐸𝑃(𝐹, 𝜑) is closed and convex.

Lemma 3 (Xu [33]). Assume {𝑎
𝑛
} is a sequence of nonnegative

real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, 𝑛 ≥ 0, (34)

where {𝛼
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence in R

such that

(1) ∑∞
𝑛=1

𝛼
𝑛
= ∞,

(2) lim sup
𝑛→∞

(𝛿
𝑛
/𝛼
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝛿
𝑛
| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 4 (Suzuki [34]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded

sequences in a Banach space 𝑋 and let {𝛽
𝑛
} be a sequence

in [0, 1] with 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1.
Suppose 𝑥

𝑛+1
= (1 − 𝛽

𝑛
)𝑦
𝑛
+ 𝛽
𝑛
𝑥
𝑛
for all integers 𝑛 ≥ 0

and lim sup
𝑛→∞

(‖𝑦
𝑛+1

− 𝑦
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then,

lim
𝑛→∞

‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 5 (Marino and Xu [35]). Assume 𝐴 is a strongly
positive linear bounded operator on a Hilbert space 𝐻 with
coefficient 𝛾 > 0 and 0 < 𝜌 ≤ ‖𝐴‖

−1. Then, ‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾.

Lemma 6. For given 𝑥
∗
, 𝑦
∗
∈ 𝐶 × 𝐶, (𝑥

∗
, 𝑦
∗
) is a solution of

problem (6) if and only if 𝑥∗ is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by

𝐺 (𝑥) = 𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥)] ,

∀𝑥 ∈ 𝐶,

(35)

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥), 𝜆, 𝜇 are positive constants, and

𝐸
1
, 𝐸
2
: 𝐶 → 𝐻 are two mappings.

Proof.

𝜃 ∈ 𝑥
∗
− 𝑦
∗
+ 𝜆 (𝐸

1
𝑦
∗
+𝑀
1
𝑥
∗
) ,

𝜃 ∈ 𝑦
∗
− 𝑥
∗
+ 𝜇 (𝐸

2
𝑥
∗
+𝑀
2
𝑦
∗
)

(36)

⇔

𝑥
∗
= 𝐽
𝑀
1
,𝜆
(𝑦
∗
− 𝜆𝐸
1
𝑦
∗
) ,

𝑦
∗
= 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
)

(37)

⇔

𝐺(𝑥
∗
) = 𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
)

−𝜆𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
)] = 𝑥

∗
.

(38)

This completes the proof.

Now, we prove the following lemmas which will be
applied in the main theorem.

Lemma 7. Let 𝐺 : 𝐶 → 𝐶 be defined as in Lemma 6. If
𝐸
1
, 𝐸
2
: 𝐶 → 𝐻 is 𝜂

1
, 𝜂
2
-inverse-strongly monotone and 𝜆 ∈

(0, 2𝜂
1
), and 𝜇 ∈ (0, 2𝜂

2
), respectively, then 𝐺 is nonexpansive.

Proof. For any 𝑥, 𝑦 ∈ 𝐶 and 𝜆 ∈ (0, 2𝜂
1
), 𝜇 ∈ (0, 2𝜂

2
), we

have
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥)]

−𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)]

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
[𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥)]

− [𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)]

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
[𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)]

−𝜆 [𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)]

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

− 2𝜆 ⟨𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦) ,

𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)⟩

+ 𝜆
2󵄩󵄩󵄩󵄩󵄩
𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

− 2𝜆𝜂
1

󵄩󵄩󵄩󵄩󵄩
𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
2󵄩󵄩󵄩󵄩󵄩
𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩󵄩
𝐸
1
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐸

1
𝐽
𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑥 − 𝜇𝐸

2
𝑥) − 𝐽

𝑀
2
,𝜇
(𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝑥 − 𝜇𝐸

2
𝑥) − (𝑦 − 𝜇𝐸

2
𝑦)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝜇 (𝐸

2
𝑥 − 𝐸
2
𝑦)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝜇 ⟨𝑥 − 𝑦, 𝐸
2
𝑥 − 𝐸
2
𝑦⟩ + 𝜇

2󵄩󵄩󵄩󵄩𝐸2𝑥 − 𝐸
2
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝜂
2
𝜇
󵄩󵄩󵄩󵄩𝐸2𝑥 − 𝐸

2
𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜇
2󵄩󵄩󵄩󵄩𝐸2𝑥 − 𝐸

2
𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝜇 (𝜇 − 2𝜂
2
)
󵄩󵄩󵄩󵄩𝐸2𝑥 − 𝐸

2
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(39)
This shows that 𝐺 is nonexpansive on 𝐶.
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3. Main Results

In this section, we show a strong convergence theorem for
finding a common element of the set of solutions for mixed
equilibrium problems, the set of solutions of a system of
quasi-variational inclusion, and the set of fixed points of a
infinite family of nonexpansive mappings in a real Hilbert
space.

Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶 into real
numbers R satisfying (A1)–(A5) and let 𝜑 : 𝐶 → R ∪ {+∞}

be a proper lower semicontinuos and convex function. Let 𝑇
𝑖
:

𝐶 → 𝐶 be nonexpansive mappings for all 𝑖 = 1, 2, 3, . . ., such
thatΘ := ∩

∞

𝑖=1
𝐹(𝑇
𝑖
)∩𝑆𝑄𝑉𝐼(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
)∩𝑀𝐸𝑃(𝐹, 𝜑) ̸= 0.

Let 𝑓 be a contraction of 𝐶 into itself with coefficient 𝛼 ∈

(0, 1) and let 𝑄, 𝐸
1
, 𝐸
2
be 𝛿, 𝜂

1
, 𝜂
2
-inverse-strongly monotone

mapping of 𝐶 into 𝐻. Let 𝐴 be a strongly positive bounded
linear self-adjoint on𝐻with coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝛼,
let 𝑀
1
,𝑀
2
: 𝐻 → 2

𝐻 be a maximal monotone mapping.
Assume that either𝐵

1
or𝐵
2
holds and let𝑊

𝑛
be the𝑊-mapping

defined by (31). Let {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences

generated by 𝑥
0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
)

+
1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
,

∀𝑛 ≥ 0,

(40)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝛾𝑓 +

𝐼−𝐴)(𝑥
∗
),𝑃
Θ
is themetric projection of𝐻 ontoΘ and (𝑥∗, 𝑦∗),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Let 𝑥∗ ∈ Θ; that is 𝑇
𝑟
(𝑥
∗
− 𝑟𝑄𝑥

∗
) = 𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑥
∗
−

𝜇𝐵
2
𝑥
∗
)−𝜆𝐵

1
𝐽
𝑀
2
,𝜇
(𝑥
∗
−𝜇𝐵
2
𝑥
∗
)] = 𝑇

𝑖
(𝑥
∗
) = 𝑥
∗, 𝑖 ≥ 1. Putting

𝑦
∗
= 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
), one can see that 𝑥∗ = 𝐽

𝑀
1
,𝜆
(𝑦
∗
−

𝜆𝐵
1
𝑦
∗
).

We divide our proofs into the following steps:

(1) sequences {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} are bounded;

(2) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(3) lim
𝑛→∞

‖𝑄𝑥
𝑛
−𝑄𝑥
∗
‖ = 0, lim

𝑛→∞
‖𝐸
1
𝑧
𝑛
−𝐸
1
𝑥
∗
‖ = 0

and lim
𝑛→∞

‖𝐸
2
𝑢
𝑛
− 𝐸
2
𝑥
∗
‖ = 0;

(4) lim
𝑛→∞

‖𝑥
𝑛
−𝑊𝑥
𝑛
‖ = 0;

(5) lim sup
𝑛→∞

⟨𝛾𝑓(𝑥
∗
) −𝐴𝑥

∗
, 𝑥
𝑛
−𝑥
∗
⟩ ≤ 0, where 𝑥∗ =

𝑃
Θ
(𝛾𝑓 + 𝐼 − 𝐴)𝑥

∗;

(6) lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
∗
‖ = 0.

Step 1. From conditions (C1) and (C2), we may assume that
𝛼
𝑛
≤ (1 − 𝛽

𝑛
)‖𝐴‖
−1. By the same argument as that in [9], we

can deduce that (1 − 𝛽
𝑛
)𝐼 − 𝛼

𝑛
𝐴 is positive and ‖(1 − 𝛽

𝑛
)𝐼 −

𝛼
𝑛
𝐴‖ ≤ 1−𝛽

𝑛
−𝛼
𝑛
𝛾. For all 𝑥, 𝑦 ∈ 𝐶 and 𝑟 ∈ (0, 2𝛿). since𝑄 is

a 𝛿-inverse-strongly monotone and 𝐵
1
, 𝐵
2
are 𝜂
1
, 𝜂
2
-inverse-

strongly monotone, we have

󵄩󵄩󵄩󵄩(𝐼 − 𝑟𝑄) 𝑥 − (𝐼 − 𝑟𝑄) 𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝑟 (𝑄𝑥 − 𝑄𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝑟 ⟨𝑥 − 𝑦,𝑄𝑥 − 𝑄𝑦⟩ + 𝑟
2󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝑟𝛿
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑟
2󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑟 (𝑟 − 2𝛿)
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(41)

It follows that ‖(𝐼−𝑟𝑄)𝑥− (𝐼−𝑟𝑄)𝑦‖ ≤ ‖𝑥−𝑦‖; hence 𝐼−𝑟𝑄
is nonexpansive.

In the same way, we conclude that ‖(𝐼 − 𝜆𝐸
1
)𝑥 − (𝐼 −

𝜆𝐸
1
)𝑦‖ ≤ ‖𝑥 − 𝑦‖ and ‖(𝐼 − 𝜇𝐸

2
)𝑥 − (𝐼 − 𝜇𝐸

2
)𝑦‖ ≤ ‖𝑥 − 𝑦‖;

hence 𝐼 − 𝜆𝐸
1
, 𝐼 − 𝜇𝐸

2
are nonexpansive. Let 𝑦

𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
−

𝜆𝐸
1
𝑧
𝑛
), 𝑛 ≥ 0. It follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) − 𝐽
𝑀
1
,𝜆
(𝑦
∗
− 𝜆𝐸
1
𝑦
∗
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑧𝑛 − 𝜆𝐸

1
𝑧
𝑛
) − (𝑦

∗
− 𝜆𝐸
1
𝑦
∗
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) − 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑢𝑛 − 𝜇𝐸

2
𝑢
𝑛
) − (𝑥

∗
− 𝜇𝐸
2
𝑥
∗
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(42)

By Lemma 2, we have 𝑢
𝑛
= 𝑇
𝑟
(𝑥
𝑛
−𝑟𝑄𝑥

𝑛
) for all 𝑛 ≥ 0,∀𝑥, 𝑦 ∈

𝐶. Then, for 𝑟 ∈ (0, 2𝛿), we obtain

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑟 (𝑥𝑛 − 𝑟𝑄𝑥

𝑛
) − 𝑇
𝑟
(𝑥
∗
− 𝑟𝑄𝑥

∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑟𝑄𝑥

𝑛
) − (𝑥

∗
− 𝑟𝑄𝑥

∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝑟 (𝑟 − 2𝛿)
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

.

(43)

Hence, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 . (44)
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From (40) and (44), we deduce that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗
) + 𝛽
𝑛
(𝑥
𝑛
− 𝑥
∗
)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

∗
)
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
∗
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛼

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
∗
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(𝛾 − 𝛾𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(𝛾 − 𝛾𝛼)

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
∗
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

(𝛾 − 𝛾𝛼)

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
∗
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

(𝛾 − 𝛾𝛼)
} .

(45)

It follows by mathematical induction that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
∗
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

(𝛾 − 𝛾𝛼)
} ,

𝑛 ≥ 0.

(46)

Hence, {𝑥
𝑛
} is bounded and also {𝑢

𝑛
}, {𝑧
𝑛
}, {𝑦
𝑛
}, {𝑊
𝑛
𝑦
𝑛
},

{𝐴𝑊
𝑛
𝑦
𝑛
}, and {𝑓𝑥

𝑛
} are all bounded.

Step 2. We show that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0.

Putting 𝑡
𝑛
= (𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛
)/(1 − 𝛽

𝑛
) = (𝛼

𝑛
𝛾𝑓(𝑥
𝑛
) + ((1 −

𝛽
𝑛
)𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
)/(1 − 𝛽

𝑛
), we get 𝑥

𝑛+1
= (1 − 𝛽

𝑛
)𝑡
𝑛
+ 𝛽
𝑛
𝑥
𝑛
,

𝑛 ≥ 1. We note that

𝑡
𝑛+1

− 𝑡
𝑛
=
𝛼
𝑛+1

𝛾𝑓 (𝑥
𝑛+1

) + ((1 − 𝛽
𝑛+1

) 𝐼 − 𝛼
𝑛+1

𝐴)𝑊
𝑛+1

𝑦
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝛽
𝑛+1

𝛾𝑓 (𝑥
𝑛+1

) −
𝛼
𝑛

1 − 𝛽
𝑛

𝛾𝑓 (𝑥
𝑛
)

+ 𝑊
𝑛+1

𝑦
𝑛+1

−𝑊
𝑛
𝑦
𝑛

−
𝛼
𝑛+1

1 − 𝛽
𝑛+1

𝐴𝑊
𝑛+1

𝑦
𝑛+1

+
𝛼
𝑛

1 − 𝛽
𝑛

𝐴𝑊
𝑛
𝑦
𝑛

=
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(𝛾𝑓 (𝑥
𝑛+1

) − 𝐴𝑊
𝑛+1

𝑦
𝑛+1

)

+
𝛼
𝑛

1 − 𝛽
𝑛

(𝐴𝑊
𝑛
𝑦
𝑛
− 𝛾𝑓 (𝑥

𝑛
))

+ 𝑊
𝑛+1

𝑦
𝑛+1

−𝑊
𝑛+1

𝑦
𝑛
+𝑊
𝑛+1

𝑦
𝑛
−𝑊
𝑛
𝑦
𝑛
.

(47)

It follows that

󵄩󵄩󵄩󵄩𝑡𝑛+1 − 𝑡
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛+1
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐴𝑊𝑛+1𝑦𝑛+1
󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝐴𝑊𝑛𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛
)
󵄩󵄩󵄩󵄩)

+
󵄩󵄩󵄩󵄩𝑊𝑛+1𝑦𝑛+1 −𝑊

𝑛+1
𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑊𝑛+1𝑦𝑛 −𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛+1
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐴𝑊𝑛+1𝑦𝑛+1
󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝐴𝑊𝑛𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛
)
󵄩󵄩󵄩󵄩)

+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛+1𝑦𝑛 −𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(48)

By the definition of𝑊
𝑛
,

󵄩󵄩󵄩󵄩𝑊𝑛+1𝑦𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁𝑇𝑁𝑈𝑛+1,𝑁−1𝑦𝑛 + (1 − 𝜆

𝑛+1,𝑁
) 𝑦
𝑛

−𝜆
𝑛,𝑁

𝑇
𝑁
𝑈
𝑛,𝑁−1

𝑦
𝑛
− (1 − 𝜆

𝑛,𝑁
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁 − 𝜆

𝑛,𝑁

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁𝑇𝑁𝑈𝑛+1,𝑁−1𝑦𝑛 − 𝜆

𝑛,𝑁
𝑇
𝑁
𝑈
𝑛,𝑁−1

𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁 − 𝜆

𝑛,𝑁

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁 (𝑇𝑁𝑈𝑛+1,𝑁−1𝑦𝑛 − 𝑇

𝑁
𝑈
𝑛,𝑁−1

𝑦
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁 − 𝜆

𝑛,𝑁

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑁𝑈𝑛,𝑁−1𝑦𝑛
󵄩󵄩󵄩󵄩

≤ 2𝑀
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁 − 𝜆

𝑛,𝑁

󵄨󵄨󵄨󵄨

+ 𝜆
𝑛+1,𝑁

󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑁−1𝑦𝑛 − 𝑈
𝑛,𝑁−1

𝑦
𝑛

󵄩󵄩󵄩󵄩 ,

(49)

where 𝑀 is an approximate constant such that 𝑀 ≥

max{sup
𝑛≥1

{‖𝑦
𝑛
‖}, sup

𝑛≥1
{‖𝑇
𝑚
𝑈
𝑛,𝑚−1

𝑦
𝑛
‖} | 𝑚 = 1, 2, . . . , 𝑁}.

Since 0 < 𝜆
𝑛
𝑖

≤ 1 for all 𝑛 ≥ 1 and 𝑖 = 1, 2, . . . , 𝑁, we compute

󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑁−1𝑦𝑛 − 𝑈
𝑛,𝑁−1

𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁−1𝑇𝑁−1𝑈𝑛+1,𝑁−2𝑦𝑛 + (1 − 𝜆

𝑛+1,𝑁−1
) 𝑦
𝑛

−𝜆
𝑛,𝑁−1

𝑇
𝑁−1

𝑈
𝑛,𝑁−2

𝑦
𝑛
− (1 − 𝜆

𝑛,𝑁−1
) 𝑦
𝑛

󵄩󵄩󵄩󵄩
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≤
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−1 − 𝜆

𝑛,𝑁−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁−1𝑇𝑁−1𝑈𝑛+1,𝑁−2𝑦𝑛 − 𝜆

𝑛,𝑁−1
𝑇
𝑁−1

𝑈
𝑛,𝑁−2

𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−1 − 𝜆

𝑛,𝑁−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝜆𝑛+1,𝑁−1 (𝑇𝑁−1𝑈𝑛+1,𝑁−2𝑦𝑛 − 𝑇

𝑁−1
𝑈
𝑛,𝑁−2

𝑦
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−1 − 𝜆

𝑛,𝑁−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑁−1𝑈𝑛,𝑁−2𝑦𝑛
󵄩󵄩󵄩󵄩

≤ 2𝑀
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−1 − 𝜆

𝑛,𝑁−1

󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑁−2𝑦𝑛 − 𝑈

𝑛,𝑁−2
𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(50)

It follows that

󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑁−1𝑦𝑛 − 𝑈
𝑛,𝑁−1

𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 2𝑀
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−1 − 𝜆

𝑛,𝑁−1

󵄨󵄨󵄨󵄨 + 2𝑀
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁−2 − 𝜆

𝑛,𝑁−2

󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑁−3𝑦𝑛 − 𝑈

𝑛,𝑁−3
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 2𝑀

𝑁−1

∑

𝑖=2

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩𝑈𝑛+1,1𝑦𝑛 − 𝑈

𝑛,1
𝑦
𝑛

󵄩󵄩󵄩󵄩

= 2𝑀

𝑁−1

∑

𝑖=2

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝜆𝑛+1,1𝑇1𝑦𝑛 + (1 − 𝜆

𝑛+1,1
) 𝑦
𝑛

−𝜆
𝑛,1
𝑇
1
𝑦
𝑛
− (1 − 𝜆

𝑛,1
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 2𝑀

𝑁−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨 .

(51)

Substituting (51) into (49),

󵄩󵄩󵄩󵄩𝑊𝑛+1𝑦𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 2𝑀
󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑁 − 𝜆

𝑛,𝑁

󵄨󵄨󵄨󵄨 + 2𝜆
𝑛+1,𝑁

𝑀

𝑁−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨

≤ 2𝑀

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨 .

(52)

We note that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
(𝑧
𝑛+1

− 𝜆𝐸
1
𝑧
𝑛+1

) − 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑧𝑛+1 − 𝜆𝐸

1
𝑧
𝑛+1

) − (𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑢
𝑛+1

− 𝜇𝐸
2
𝑢
𝑛+1

) − 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑢𝑛+1 − 𝜇𝐸

2
𝑢
𝑛+1

) − (𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑟 (𝑥𝑛+1 − 𝑟𝐷𝑥

𝑛+1
) − 𝑇
𝑟
(𝑥
𝑛
− 𝑟𝐷𝑥

𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑥𝑛+1 − 𝑟𝐷𝑥

𝑛+1
) − (𝑥

𝑛
− 𝑟𝐷𝑥

𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(53)

Applying (52) and (53) in (48), we get
󵄩󵄩󵄩󵄩𝑡𝑛+1 − 𝑡

𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛+1
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐴𝑊𝑛+1𝑦𝑛+1
󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝐴𝑊𝑛𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛
)
󵄩󵄩󵄩󵄩) +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

+ 2𝑀

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑛+1,𝑖 − 𝜆
𝑛,𝑖

󵄨󵄨󵄨󵄨 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(54)

By conditions (C1)–(C3), imply that

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑡𝑛+1 − 𝑡

𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (55)

Hence, by Lemma 4, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑡𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (56)

It follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑡𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 = 0. (57)

We obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (58)

Step 3. We can rewrite (40) as 𝑥
𝑛+1

= 𝛼
𝑛
(𝛾𝑓(𝑥

𝑛
) − 𝐴𝑊

𝑛
𝑦
𝑛
) +

𝛽
𝑛
(𝑥
𝑛
−𝑊
𝑛
𝑦
𝑛
) + 𝑊
𝑛
𝑦
𝑛
. We observe that

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 −𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 ;

(59)

it follows that
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 +
𝛼
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑊

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(60)

By conditions (C1), (C2), and (58), imply that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (61)
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From (42) and (43), we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) − 𝐽
𝑀
1
,𝜆
(𝑥
∗
− 𝜆𝐸
1
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝑧𝑛 − 𝜆𝐸

1
𝑧
𝑛
) − (𝑥

∗
− 𝜆𝐸
1
𝑥
∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) − 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝑢𝑛 − 𝜇𝐸

2
𝑢
𝑛
) − (𝑥

∗
− 𝜇𝐸
2
𝑥
∗
)
󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝜇 (𝜇 − 2𝜂
2
)
󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸

2
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝑟 (𝑟 − 2𝛿)
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝜇 (𝜇 − 2𝜂
2
)
󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸

2
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

.

(62)

By (40), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑥

∗
) + 𝛽
𝑛
(𝑥
𝑛
−𝑊
𝑛
𝑦
𝑛
)

+ (𝐼 − 𝛼
𝑛
𝐴) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛼

𝑛
𝐴) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
) + 𝛽
𝑛
(𝑥
𝑛
−𝑊
𝑛
𝑦
𝑛
)
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛼

𝑛
𝐴) (𝑦
𝑛
− 𝑥
∗
) + 𝛽
𝑛
(𝑥
𝑛
−𝑊
𝑛
𝑦
𝑛
)
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(63)

Substituting (62) into (63), imply that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝑟 (𝑟 − 2𝛿)
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝜇 (𝜇 − 2𝜂
2
)
󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸

2
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜆 (𝜆 − 2𝜂
1
)
󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(64)

Thus,

𝑟 (2𝛿 − 𝑟)
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝜇 (2𝜂
2
− 𝜇)

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜆 (2𝜂
1
− 𝜆)

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(65)

By conditions (C1), (C2), (58), and (61), we deduce immedi-
ately that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩 = 0.

(66)

Step 4. We show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑊𝑥

𝑛
‖ = 0. Since 𝑇

𝑟
is

firmly nonexpansive, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑟 (𝑥𝑛 − 𝑟𝑄𝑥

𝑛
) − 𝑇
𝑟
(𝑥
∗
− 𝑟𝑄𝑥

∗
)
󵄩󵄩󵄩󵄩

2

≤ ⟨(𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
) − (𝑥

∗
− 𝑟𝑄𝑥

∗
) , 𝑢
𝑛
− 𝑥
∗
⟩

=
1

2
{
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑟𝑄𝑥

𝑛
) − (𝑥

∗
− 𝑟𝑄𝑥

∗
)
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

}

−
1

2
{
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑟𝑄𝑥

𝑛
) − (𝑥

∗
− 𝑟𝑄𝑥

∗
) − (𝑢

𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

}

=
1

2
{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑢

𝑛
) − 𝑟 (𝑄𝑥

𝑛
− 𝑄𝑥
∗
)
󵄩󵄩󵄩󵄩

2

}
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=
1

2
{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 𝑟
2󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

−2𝑟 ⟨𝑥
𝑛
− 𝑢
𝑛
, 𝑄𝑥
𝑛
− 𝑄𝑥
∗
⟩)}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

−𝑟
2󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩} ,

(67)

which implies that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩 .

(68)

Since 𝐽
𝑀
1
,𝜆
is 1-inverse-strongly monotone, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) − 𝐽
𝑀
1
,𝜆
(𝑥
∗
− 𝜆𝐸
1
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) − (𝑥

∗
− 𝜆𝐸
1
𝑥
∗
) , 𝑦
𝑛
− 𝑥
∗
⟩

=
1

2
{
󵄩󵄩󵄩󵄩(𝑧𝑛 − 𝜆𝐸

1
𝑧
𝑛
) − (𝑥

∗
− 𝜆𝐸
1
𝑥
∗
)
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

}

−
1

2
{
󵄩󵄩󵄩󵄩(𝑧𝑛 − 𝜆𝐸

1
𝑧
𝑛
) − (𝑥

∗
− 𝜆𝐸
1
𝑥
∗
) − (𝑦

𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

}

=
1

2
{
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝑧𝑛 − 𝑦

𝑛
) − 𝜆 (𝐸

1
𝑧
𝑛
− 𝐸
1
𝑥
∗
)
󵄩󵄩󵄩󵄩

2

}

=
1

2
{
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜆
2󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

−2𝜆 ⟨𝑧
𝑛
− 𝑦
𝑛
, 𝐸
1
𝑧
𝑛
− 𝐸
1
𝑥
∗
⟩)}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2

−𝜆
2󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸

1
𝑥
∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩} ,

(69)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩 .

(70)

In the same way with (70), we can get

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩 .

(71)

Substituting (71) into (70), imply that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩 .

(72)

Again, substituting (68) into (72), we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩}

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩 .

(73)

Substituting (73) into (63), imply that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
𝛾)
2

{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩}

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(74)

Then, we derive

(1 − 𝛼
𝑛
𝛾)
2

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2

)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩 + 𝛽

2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
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≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

+ 2𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸2𝑢𝑛 − 𝐸
2
𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝜆
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸1𝑧𝑛 − 𝐸
1
𝑥
∗󵄩󵄩󵄩󵄩 + 𝛽

2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(75)

By conditions (C1), (C2), (58), (61), and (66), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0.

(76)

Observe that
󵄩󵄩󵄩󵄩𝑊𝑛𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑊𝑛𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(77)

By (61) and (76), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑊𝑛𝑦𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (78)

Note that
󵄩󵄩󵄩󵄩𝑊𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑊𝑦
𝑛
−𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 . (79)

From Lemma 1, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑊𝑦
𝑛
−𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (80)

By (78) and (80), we have lim
𝑛→∞

‖𝑊𝑦
𝑛
− 𝑦
𝑛
‖ = 0. It follows

that lim
𝑛→∞

‖𝑊𝑥
𝑛
− 𝑥
𝑛
‖ = 0.

Step 5. We show that lim sup
𝑛→∞

⟨(𝛾𝑓 − 𝐴)𝑧, 𝑥
𝑛
− 𝑧⟩ ≤ 0,

where 𝑧 = 𝑃
Θ
(𝛾𝑓+𝐼−𝐴)𝑧. It is easy to see that𝑃

Θ
(𝛾𝑓+(𝐼−𝐴))

is a contraction of𝐻 into itself. Indeed, since 0 < 𝛾 < 𝛾/𝛼, we
have

󵄩󵄩󵄩󵄩𝑃Θ (𝛾𝑓 + (𝐼 − 𝐴)) 𝑥 − 𝑃
Θ
(𝛾𝑓 + (𝐼 − 𝐴)) 𝑦

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝛾𝑓 + (𝐼 − 𝐴)) 𝑥 − (𝛾𝑓 + (𝐼 − 𝐴)) 𝑦

󵄩󵄩󵄩󵄩

≤ 𝛾
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩 + |𝐼 − 𝐴|
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ 𝛾𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝛾)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= (1 − 𝛾 + 𝛾𝛼)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(81)

Since 𝐻 is complete, there exists a unique fixed point 𝑧 ∈ 𝐻

such that 𝑧 = 𝑃
Θ
(𝛾𝑓 + 𝐼 −𝐴)(𝑧). Since {𝑥

𝑛
} is bounded, there

exists a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}, such that

lim
𝑖→∞

⟨(𝐴 − 𝛾𝑓) 𝑧, 𝑧 − 𝑥
𝑛
𝑖

⟩ = lim sup
𝑛→∞

⟨(𝐴 − 𝛾𝑓) 𝑧, 𝑧 − 𝑥
𝑛
⟩ .

(82)

Also, since {𝑥
𝑛
𝑖

} is bounded, there exists a subsequence {𝑥
𝑛
𝑖𝑗

}

of {𝑥
𝑛
𝑖

} which converges weakly to 𝑤 ∈ 𝐶. Without loss of

generality, we can assume that 𝑥
𝑛
𝑖

⇀ 𝑤. From ‖𝑊𝑥
𝑛
−𝑥
𝑛
‖ →

0, we obtain𝑊𝑥
𝑛
𝑖

⇀ 𝑤. Then, by the demiclosed principle of
nonexpansive mappings, we obtain 𝑤 ∈ ∩

∞

𝑖=1
𝐹(𝑇
𝑖
).

Next, we show that 𝑤 ∈ MEP(𝐹, 𝜑). Since 𝑢
𝑛
= 𝑇
𝑟
(𝑥
𝑛
−

𝑟𝑄𝑥
𝑛
), we obtain

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
)

+
1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(83)

From (A2), we also have

𝜑 (𝑦) − 𝜑 (𝑢
𝑛
) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 𝐹 (𝑦, 𝑢

𝑛
) ,

∀𝑦 ∈ 𝐶,

(84)

and hence,

𝜑 (𝑦) − 𝜑 (𝑢
𝑛
𝑖

) +⟨𝑦 − 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− (𝑥
𝑛
𝑖

− 𝑟𝑄𝑥
𝑛
𝑖

)

𝑟
⟩

≥ 𝐹 (𝑦, 𝑢
𝑛
𝑖

) , ∀𝑦 ∈ 𝐶.

(85)

For 𝑡 with 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐻, let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤. From

(85) we have

⟨𝑦
𝑡
− 𝑢
𝑛
𝑖

, 𝑄𝑦
𝑡
⟩ ≥ ⟨𝑦

𝑡
− 𝑢
𝑛
𝑖

, 𝑄𝑦
𝑡
⟩ − 𝜑 (𝑦

𝑡
) + 𝜑 (𝑢

𝑛
𝑖

)

− ⟨𝑦
𝑡
− 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− (𝑥
𝑛
𝑖

− 𝑟𝑄𝑥
𝑛
𝑖

)

𝑟
⟩

+ 𝐹 (𝑦
𝑡
, 𝑢
𝑛
𝑖

)

= ⟨𝑦
𝑡
− 𝑢
𝑛
𝑖

, 𝑄𝑦
𝑡
− 𝑄𝑢
𝑛
𝑖

⟩

+ ⟨𝑦
𝑡
− 𝑢
𝑛
𝑖

, 𝑄𝑢
𝑛
𝑖

− 𝑄𝑥
𝑛
𝑖

⟩

− 𝜑 (𝑦
𝑡
) + 𝜑 (𝑢

𝑛
𝑖

)

− ⟨𝑦
𝑡
− 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝑟
⟩ + 𝐹 (𝑦

𝑡
, 𝑢
𝑛
𝑖

) .

(86)

Since ‖𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

‖ → 0, we have ‖𝑄𝑢
𝑛
𝑖

−𝑄𝑥
𝑛
𝑖

‖ → 0. Further,
from an inverse-strongly monotonicity of 𝑄, we have ⟨𝑦

𝑡
−

𝑢
𝑛
𝑖

, 𝑄𝑦
𝑡
− 𝑄𝑢
𝑛
𝑖

⟩ ≥ 0. So, from (A4), (A5), and the weakly
lower semicontinuity of 𝜑, ⟨𝑢

𝑛
𝑖

− 𝑥
𝑛
𝑖

⟩/𝑟 → 0 and 𝑢
𝑛
𝑖

→ 𝑤

weakly, we have

⟨𝑦
𝑡
− 𝑤,𝑄𝑦

𝑡
⟩ ≥ −𝜑 (𝑦

𝑡
) + 𝜑 (𝑤) + 𝐹 (𝑦

𝑡
, 𝑤) . (87)
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From (A1), (A4), and (87), we also have

0 = 𝐹 (𝑦
𝑡
, 𝑦
𝑡
) + 𝜑 (𝑦

𝑡
) − 𝜑 (𝑦

𝑡
)

≤ 𝑡𝐹 (𝑦
𝑡
, 𝑦) + (1 − 𝑡) 𝐹 (𝑦

𝑡
, 𝑤) + 𝑡𝜑 (𝑦)

+ (1 − 𝑡) 𝜑 (𝑤) − 𝜑 (𝑦
𝑡
)

= 𝑡 (𝐹 (𝑦
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑦

𝑡
))

+ (1 − 𝑡) (𝐹 (𝑦
𝑡
, 𝑤) + 𝜑 (𝑤) − 𝜑 (𝑦

𝑡
))

≤ 𝑡 (𝐹 (𝑦
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑦

𝑡
)) + (1 − 𝑡) ⟨𝑦

𝑡
− 𝑤,𝑄𝑦

𝑡
⟩

= 𝑡 (𝐹 (𝑦
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑦

𝑡
)) + (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤,𝑄𝑦

𝑡
⟩ ,

(88)

and hence,

0 ≤ 𝐹 (𝑦
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑦

𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝑄𝑦

𝑡
⟩ . (89)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

𝐹 (𝑤, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑤) + ⟨𝑦 − 𝑤,𝑄𝑤⟩ ≥ 0. (90)

This implies that 𝑤 ∈ MEP(𝐹, 𝜑).
Lastly, we show that 𝑤 ∈ SQVI(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
). Since

‖𝑢
𝑛
− 𝑧
𝑛
‖ → 0 and ‖𝑧

𝑛
− 𝑦
𝑛
‖ → 0 as 𝑛 → ∞, we get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 , (91)

we conclude that ‖𝑢
𝑛
− 𝑦
𝑛
‖ → 0 as 𝑛 → ∞. Moreover, by

the nonexpansivity of 𝐺 in Lemma 6, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺 (𝑦
𝑛
)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀
1
,𝜆
[𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) − 𝜆𝐸

1
𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
)]

−𝐺 (𝑦
𝑛
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐺 (𝑢
𝑛
) − 𝐺 (𝑦

𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(92)

Thus, lim
𝑛→∞

‖𝑦
𝑛
− 𝐺(𝑦

𝑛
)‖ = 0. According to Lemma 7, we

obtain that 𝑤 ∈ SQVI(𝐵
1
,𝑀
1
, 𝐵
2
,𝑀
2
). Hence, 𝑤 ∈ Θ. Since

𝑧 = 𝑃
Θ
(𝐼 − 𝐴 + 𝛾𝑓)(𝑧), we have

lim sup
𝑛→∞

⟨(𝛾𝑓 − 𝐴) 𝑧, 𝑥
𝑛
− 𝑧⟩ = lim sup

𝑖→∞

⟨(𝛾𝑓 − 𝐴) 𝑧, 𝑥
𝑛
𝑖

− 𝑧⟩

= ⟨(𝛾𝑓 − 𝐴) 𝑧, 𝑤 − 𝑧⟩

≤ 0.

(93)

Step 6.We show that {𝑥
𝑛
} converges strongly to 𝑧; we compute

that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
− 𝑧

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧) + 𝛽

𝑛
(𝑥
𝑛
− 𝑧)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝑊

𝑛
𝑦
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

2

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑧) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝑊

𝑛
𝑦
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝛽
𝑛
(𝑥
𝑛
− 𝑧) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)

× (𝑊
𝑛
𝑦
𝑛
− 𝑧) , 𝛼

𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧)⟩

≤ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+ {𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩}
2

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧⟩

≤ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+ {𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩}
2

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑥

𝑛
) − 𝛾𝑓 (𝑧)⟩

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑥

𝑛
) − 𝛾𝑓 (𝑧)⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

≤ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛽
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) 𝛾

󵄩󵄩󵄩󵄩𝑊𝑛𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

≤ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛽
𝑛
𝛾𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) 𝛾𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2
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+ (1 − 2𝛼
𝑛
𝛾 + 𝛼
2

𝑛
𝛾
2
+ 2𝛼
𝑛
𝛾𝛼 − 2𝛼

2

𝑛
𝛾𝛾𝛼)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

≤ {1 − 𝛼
𝑛
(2𝛾 − 𝛼

𝑛
𝛾
2
− 2𝛾𝛼 + 2𝛼

𝑛
𝛾𝛾𝛼)}

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾) ⟨𝑊

𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓 (𝑧) − 𝐴𝑧⟩

≤ {1 − 𝛼
𝑛
(2𝛾 − 𝛼

𝑛
𝛾
2
− 2𝛾𝛼 + 2𝛼

𝑛
𝛾𝛾𝛼)}

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜎
𝑛
,

(94)

where 𝜎
𝑛
= 𝛼
𝑛
‖𝛾𝑓(𝑥

𝑛
) − 𝐴𝑧‖

2
+ 2𝛽
𝑛
⟨𝑥
𝑛
− 𝑧, 𝛾𝑓(𝑧) − 𝐴𝑧⟩ +

2(1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)⟨𝑊
𝑛
𝑦
𝑛
− 𝑧, 𝛾𝑓(𝑧) − 𝐴𝑧⟩. It is easy to see that

lim sup
𝑛→∞

𝜎
𝑛
≤ 0. Applying Lemma 3 to (94), we conclude

that 𝑥
𝑛
→ 𝑧. This completes the proof.

Next, the following example shows that all conditions of
Theorem 8 are satisfied.

Example 9. For instance, let 𝛼
𝑛

= 1/2(𝑛 + 1), let 𝛽
𝑛

=

(2𝑛 + 2)/2(2𝑛), let 𝜆
𝑛
= 𝑛/(𝑛 + 1). Then, we will show that

the sequences {𝛼
𝑛
} satisfy condition (C1). Indeed, we take

𝛼
𝑛
= 1/2(𝑛 + 1); then, we have

∞

∑

𝑛=1

𝛼
𝑛
=

∞

∑

𝑛=1

1

2 (𝑛 + 1)
= ∞,

lim
𝑛→∞

𝛼
𝑛
= lim
𝑛→∞

1

2 (𝑛 + 1)
= 0.

(95)

We will show that the sequences {𝛽
𝑛
} satisfy condition

(C2). Indeed, we set 𝛽
𝑛
= (2𝑛 + 2)/2(2𝑛) = (1/2) + (1/2𝑛).

It is easy to see that 0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup

𝑛→∞
𝛽
𝑛
< 1.

Next, we will show the condition (C3) is satisfied.We take
𝜆
𝑛
= 𝑛/(𝑛 + 1); then we compute

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨 = lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

𝑛 + 1
−

𝑛 − 1

(𝑛 − 1) + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛 (𝑛) − (𝑛 − 1) (𝑛 + 1)

(𝑛 + 1) 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛
2
− 𝑛
2
+ 1

(𝑛 + 1) 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛 (𝑛 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(96)

Then, we have lim
𝑛→∞

|𝜆
𝑛+1

− 𝜆
𝑛
| = 0. The sequence {𝜆

𝑛
}

satisfies condition (C3).

UsingTheorem 8, we obtain the following corollaries.

Corollary 10. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶 into real
numbers R satisfying (A1)–(A5) and let 𝜑 : 𝐶 → R ∪ {+∞}

be a proper lower semicontinuos and convex function. Let 𝑇
𝑖
:

𝐶 → 𝐶 be nonexpansive mappings for all 𝑖 = 1, 2, 3, . . ., such
that Θ := ∩

∞

𝑖=1
𝐹(𝑇
𝑖
) ∩ 𝑆𝑄𝑉𝐼(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝑀𝐸𝑃(𝐹, 𝜑) ̸=

0. Let 𝑓 be a contraction of 𝐶 into itself with coefficient 𝛼 ∈

(0, 1) and let 𝑄, 𝐸
1
, 𝐸
2
be 𝛿, 𝜂

1
, 𝜂
2
-inverse-strongly monotone

mapping of 𝐶 into 𝐻. Let 𝑀
1
,𝑀
2
: 𝐻 → 2

𝐻 be a maximal
monotone mapping. Assume that either 𝐵

1
or 𝐵
2
holds and let

𝑊
𝑛
be the𝑊-mapping defined by (31). Let {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and

{𝑢
𝑛
} be sequences generated by 𝑥

0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
)

+
1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
− 𝛼
𝑛
)𝑊
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(97)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝑓 +

𝐼)(𝑥
∗
), 𝑃
Θ
is the metric projection of 𝐻 onto Θ and (𝑥

∗
, 𝑦
∗
),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Taking 𝛾 ≡ 1 and𝐴 ≡ 𝐼 inTheorem 8,we can conclude
the desired conclusion easily.

Corollary 11. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶 into real
numbers R satisfying (A1)–(A5) and let 𝜑 : 𝐶 → R ∪ {+∞}

be a proper lower semicontinuos and convex function. Let 𝑇
𝑖
:

𝐶 → 𝐶 be a nonexpansivemappings for all 𝑖 = 1, 2, 3, . . ., such
thatΘ := ∩

∞

𝑖=1
𝐹(𝑇
𝑖
)∩𝑆𝑄𝑉𝐼(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
)∩𝑀𝐸𝑃(𝐹, 𝜑) ̸= 0.

Let 𝑓 be a contraction of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1)

and let 𝐸
1
, 𝐸
2
be 𝜂
1
, 𝜂
2
-inverse-strongly monotone mapping

of 𝐶 into 𝐻. Let 𝐴 be strongly positive bounded linear self-
adjoint on 𝐻 with coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝛼, let
𝑀
1
,𝑀
2
: 𝐻 → 2

𝐻 be amaximalmonotonemapping. Assume
that either𝐵

1
or𝐵
2
holds and let𝑊

𝑛
be the𝑊-mapping defined
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by (31). Let {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by

𝑥
0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
,

∀𝑛 ≥ 0,

(98)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0,∞) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝛾𝑓 +

𝐼−𝐴)(𝑥
∗
),𝑃
Θ
is themetric projection of𝐻 ontoΘ and (𝑥∗, 𝑦∗),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Taking 𝑄 ≡ 0 in Theorem 8, we can conclude the
desired conclusion easily.

Corollary 12. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶 into real
numbers R satisfying (A1)–(A5) and let 𝜑 : 𝐶 → R ∪ {+∞}

be a proper lower semicontinuos and convex function such that
Θ := 𝑆𝑄𝑉𝐼(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝑀𝐸𝑃(𝐹, 𝜑) ̸= 0. Let 𝑓 be a

contraction of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1) and let
𝑄, 𝐸
1
, 𝐸
2
be 𝛿, 𝜂

1
, 𝜂
2
-inverse-strongly monotone mapping of 𝐶

into𝐻. Let 𝐴 be a strongly positive bounded linear self-adjoint
on 𝐻 with coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝛼, let 𝑀

1
,𝑀
2
:

𝐻 → 2
𝐻 be a maximal monotone mapping. Assume that

either 𝐵
1
or 𝐵
2
holds, let {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences

generated by 𝑥
0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
)

+
1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑦
𝑛
, ∀𝑛 ≥ 0,

(99)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝛾𝑓 +

𝐼−𝐴)(𝑥
∗
),𝑃
Θ
is themetric projection of𝐻 ontoΘ and (𝑥∗, 𝑦∗),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (7),

which is the unique solution of the variational inequality

⟨(𝛾𝑓 − 𝐴) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Θ, (100)

Proof. Taking 𝑊
𝑛

≡ 𝐼 in Theorem 8, we can conclude the
desired conclusion easily.

Corollary 13. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶 into
real numbers R satisfying (A1)–(A5). Let 𝑇

𝑖
: 𝐶 → 𝐶 be

nonexpansive mappings for all 𝑖 = 1, 2, 3, . . ., such that Θ :=

∩
∞

𝑖=1
𝐹(𝑇
𝑖
) ∩ 𝑆𝑄𝑉𝐼(𝐵

1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝐸𝑃(𝐹) ̸= 0. Let 𝑓 be

a contraction of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1) and
let𝑄, 𝐸

1
, 𝐸
2
be 𝛿, 𝜂

1
, 𝜂
2
-inverse-strongly monotone mapping of

𝐶 into 𝐻. Let 𝐴 be a strongly positive bounded linear self-
adjoint on 𝐻 with coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝛼, let
𝑀
1
,𝑀
2
: 𝐻 → 2

𝐻 be amaximalmonotonemapping. Assume
that either𝐵

1
or𝐵
2
holds and let𝑊

𝑛
be the𝑊-mapping defined

by (31). Let {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by

𝑥
0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
,

∀𝑛 ≥ 0,

(101)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝛾𝑓 +

𝐼−𝐴)(𝑥
∗
),𝑃
Θ
is themetric projection of𝐻 ontoΘ and (𝑥∗, 𝑦∗),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Taking 𝜑 ≡ 0 in Theorem 8, we can conclude the
desired conclusion easily.

Corollary 14. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶

into real numbers R satisfying (A1)–(A5) such that Θ :=

𝑆𝑄𝑉𝐼(𝐵
1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝐸𝑃(𝐹) ̸= 0. Let 𝑓 be a contraction

of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1) and let 𝑄, 𝐸
1
, 𝐸
2
be

𝛿, 𝜂
1
, 𝜂
2
-inverse-strongly monotone mapping of 𝐶 into 𝐻. Let

𝐴 be a strongly positive bounded linear self-adjoint on𝐻 with
coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝛼, let 𝑀

1
,𝑀
2
: 𝐻 → 2

𝐻

be a maximal monotone mapping. Assume that either 𝐵
1
or 𝐵
2
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holds, let {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by

𝑥
0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑦
𝑛
,

∀𝑛 ≥ 0,

(102)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝛾𝑓 +

𝐼−𝐴)(𝑥
∗
),𝑃
Θ
is themetric projection of𝐻 ontoΘ and (𝑥∗, 𝑦∗),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Taking 𝜑 ≡ 0 and 𝑊
𝑛

≡ 𝐼 in Theorem 8, we can
conclude the desired conclusion easily.

Corollary 15. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶

into real numbers R satisfying (A1)–(A5) such that Θ :=

𝑆𝑄𝑉𝐼(𝐵
1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝐸𝑃(𝐹) ̸= 0. Let 𝑓 be a contraction

of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1) and let 𝑄, 𝐸
1
, 𝐸
2
be

𝛿, 𝜂
1
, 𝜂
2
-inverse-strongly monotone mapping of 𝐶 into 𝐻. Let

𝑀
1
,𝑀
2
: 𝐻 → 2

𝐻 be a maximal monotone mapping. Let
{𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by 𝑥

0
∈ 𝐶,

𝑢
𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸
2
𝑢
𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸
1
𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
− 𝛼
𝑛
) 𝑦
𝑛
,

∀𝑛 ≥ 0,

(103)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂

1
), 𝜇 ∈ (0, 2𝜂

2
), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝑓 +

𝐼)(𝑥
∗
), 𝑃
Θ
is the metric projection of 𝐻 onto Θ and (𝑥

∗
, 𝑦
∗
),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸
2
𝑥
∗
) is solution to the problem (6).

Proof. Taking 𝛾 ≡ 1, 𝐴 ≡ 𝐼, 𝜑 ≡ 0, and𝑊
𝑛
≡ 𝐼 in Theorem 8,

we can conclude the desired conclusion easily.

Corollary 16. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert Space 𝐻. Let 𝐹 be a bifunction of 𝐶 × 𝐶

into real numbers R satisfying (A1)–(A5) such that Θ :=

𝑆𝑄𝑉𝐼(𝐵
1
,𝑀
1
, 𝐵
2
,𝑀
2
) ∩ 𝐸𝑃(𝐹) ̸= 0. Let 𝑓 be a contraction

of 𝐶 into itself with coefficient 𝛼 ∈ (0, 1) and let 𝑄, 𝐸 be 𝛿, 𝜂-
inverse-strongly monotone mapping of 𝐶 into𝐻. Let𝑀

1
,𝑀
2
:

𝐻 → 2
𝐻 be a maximal monotone mapping. Let {𝑥

𝑛
}, {𝑦
𝑛
},

{𝑧
𝑛
}, and {𝑢

𝑛
} be sequences generated by 𝑥

0
∈ 𝐶, 𝑢

𝑛
∈ 𝐶, and

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟𝑄𝑥

𝑛
)⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑀
2
,𝜇
(𝑢
𝑛
− 𝜇𝐸𝑢

𝑛
) ,

𝑦
𝑛
= 𝐽
𝑀
1
,𝜆
(𝑧
𝑛
− 𝜆𝐸𝑧

𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
− 𝛼
𝑛
) 𝑦
𝑛
,

∀𝑛 ≥ 0,

(104)

where {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ (0, 1), 𝜆 ∈ (0, 2𝜂), 𝜇 ∈ (0, 2𝜂), and

𝑟 ∈ (0, 2𝛿) satisfy the following conditions:

(C1) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and lim

𝑛→∞
𝛼
𝑛
= 0,

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

(C3) lim
𝑛→∞

|𝜆
𝑛,𝑖
− 𝜆
𝑛−1,𝑖

| = 0, ∀𝑖 = 1, 2, . . . , 𝑁.

Then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Θ, where 𝑥∗ = 𝑃

Θ
(𝑓 +

𝐼)(𝑥
∗
), 𝑃
Θ
is the metric projection of 𝐻 onto Θ and (𝑥

∗
, 𝑦
∗
),

where 𝑦∗ = 𝐽
𝑀
2
,𝜇
(𝑥
∗
− 𝜇𝐸𝑥

∗
) is solution to the problem (6).

Proof. Taking 𝐸
1
= 𝐸
2
= 𝐸 in Corollary 15, we can conclude

the desired conclusion easily.
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