Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 265865, 11 pages
http://dx.doi.org/10.1155/2014/265865

Research Article

Generalized Common Fixed Point Results via Greatest Lower

Bound Property

Marwan Amin Kutbi,' Jamshaid Ahmad,> Akbar Azam,” and Ahmed Saleh Al-Rawashdeh?®

! Department of Mathematics, King Abdul Aziz University, PO. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 44000, Pakistan
? Department of Mathematical Sciences, UAEU, PO. Box 15551, Al Ain, UAE

Correspondence should be addressed to Jamshaid Ahmad; jamshaid_jasim@yahoo.com

Received 26 March 2014; Accepted 16 June 2014; Published 10 July 2014

Academic Editor: Filomena Cianciaruso

Copyright © 2014 Marwan Amin Kutbi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

The aim of this paper is to unify the concept of greatest lower bound (g.1.b) property and establish some generalized common fixed

results. We support our results by a nontrivial example.

1. Introduction and Preliminaries

The Banach fixed point theorem is used to establish the exis-
tence of a unique solution for a nonlinear integral equation
[1]. Moreover this theorem plays an important role in several
branches of mathematics. For instance, it has been used to
show the existence of solutions of nonlinear Volterr inte-
gral equations and nonlinear integrodifferential equations in
Banach spaces and to show the convergence of algorithms in
computational mathematics. Because of its importance and
usefulness for mathematical theory, it has become a very
popular tool of mathematical analysis in many directions.
Nadler [2] introduced the concept of multivalued contraction
mappings and obtained the fixed points results for multival-
ued mappings. Huang and Zhang [3] introduced the notion
of cone metric space which is a generalization of metric37
space. They extended Banach contraction principle to cone
metric spaces. Since then, Arshad et al. [4], Azam and Arshad
[5], Cho and Bae [6], and many others obtained fixed point
theorems in cone metric spaces.

Azam et al. in [7] introduced the notion of complex-
valued metric space and obtained some common fixed points
of a pair of mappings satisfying rational expressions contrac-
tive condition. Although complex-valued metric spaces form
a special class of cone metric space, yet this idea is intended
to define rational expressions which are not meaningful in

cone metric spaces. Subsequently, Rouzkard and Imdad [8]
and Abbas et al. [9, 10] established some common fixed point
theorems satisfying certain rational expressions in complex-
valued metric spaces which generalize, unify, and comple-
ment the results of Azam et al. [7]. Sintunavarat et al. [11, 12]
obtained common fixed point results by replacing constant of
contractive condition with control functions. Klin-eam and
Suanoom [13] established a common fixed point result for
two single valued mappings in complex-valued metric spaces.
Abbas et al. [14] introduced complex-valued generalized met-
ric space and obtained common fixed point results in this
space. For more details in fixed point theory, we refer the
reader to [15-23]. Very recently, Ahmad et al. [24] introduced
the notion of greatest lower bound (g.l.b.) property of the
multivalued mappings and obtained some common fixed
point results in the context of complex-valued metric spaces.
Then Azam et al. [25] extend the concept of greatest lower
bound (g.1.b.) property and proved some new common fixed
point theorems in the setting of complex-valued metric
spaces. In this paper, we present some new common fixed
results and generalized the results of [24, 25].

Let C denote the set of complex numbers. Let z;, z, € C.
Define a partial order < on C as follows:

iff Re(z,) <Re(z,), Im (z,) < Im(z,).

@

z; 3 2,
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It follows that
z, % 2, (2)
if one of the following conditions is satisfied:
(i) Re(z;) = Re(z,), Im(z;) < Im(z,),
(ii) Re(z;) < Re(z,), Im(z;) = Im (z,),
(iii) Re(z;) < Re(z,), Im(z;) < Im(z,),
(iv) Re(z;) = Re(z,), Im(z;) = Im(z,).

In particular, we will write z, 5z, if z; # z, and one of (i), (ii),
and (iii) is satisfied and we will write z; < z, if only (iii) is
satisfied. Note that

022,32, = |zy| < |z,
(3)
2,225, 2, <23 = z; < Z3.
Definition 1. Let X be a nonempty set. Suppose that a
mapping d, : X x X — C satisfies the following:

(1) 0 xd.(ln),forall{,n € X and d.({,n) = 0if and
only if { = n;

(2) d(¢,n) =d.(n,¢) forall {, 5 € X;
(3) d.(C,n) =2d.(C,6) +d.(s,m), forall {, 7,6 € X.

Then d, is called a complex-valued metric on X, and (X,
d,) is called a complex-valued metric space. A point { € X
is called interior point of a set A € X whenever there exists
0 < r € C such that

B(,r)={neX:d.({,n) <r} c A (4)

A point { € X is called a limit point of A whenever for
every0 <r eC

B(,r)n(A\{C}H) #¢. ©)

A is called open set whenever each element of A is an
interior point of A and a subset B € X is called closed set
whenever each limit point of B belongs to B. The family

F={B((,r):{eX,0<1} (6)

is a subbase for a Hausdorff topology 7 on X. Let {{,,} be a
sequence in X and { € X. If for every ¢ € C with 0 < c there
is ny € N such that for all n > ny, d({,,{) < ¢, then {(,} is
said to be convergent, {{,} converges to {, and { is the limit
point of {(,,}. We denote this by lim,,_, . ,{,, = {,or{,, — (as
n — oo.Ifforeveryc € Cwith0 < cthereis#n, € Nsuch that
forall n > ny, d.((,,{,.,.) < ¢ then {{,} is called a Cauchy
sequence in (X, d_). If every Cauchy sequence is convergent
in (X,d,), then (X,d,) is called a complete complex-valued
metric space. We require the following lemmas.

Lemma 2 (see [7]). Let (X,d,) be a complex-valued metric
space and let {(,} be a sequence in X. Then {(,} converges to
Cifand only if |d.({,,{)] — Oasn — oco.

Lemma 3 (see [7]). Let (X,d,) be a complex-valued metric
space and let {(,} be a sequence in X. Then {{,} is a Cauchy
sequence if and only if |d.((,,,{,,)| — 0asn,m — oo.
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2. Main Result

Let (X, d.) be a complex-valued metric space. In the sequel of
[24], we denote nonempty, closed, and bounded subsets of X
by CB(X), respectively.

Throughout this paper, we denote s(z,) = {z, € C: z; <
z,} for z; € C and s(a, B) = Upeps(d.(a,b)) = Upeplz € C:
d.(a,b) < z} fora € X and B € CB(X).

For A, B € CB(X) we denote

S(A,B) = (algAs (a, B)) n (JQBS (b,A)). @)

Remark 4. Let (X,d_.) be a complex-valued metric space.
If C = R, then (X,d) is a metric space. Moreover for A,
B € C(X), H(A,B) = inf s(A, B) is the Hausdorff distance
induced by d...

Let (X, d,) be a complex-valued metric space and CB(X)
be a collection of nonempty closed subsets of X. Let S : X —
CB(X) be a multivalued map. For { € X and A € CB(X),
define

W; (A) =1{d. (C,a) : a € A}. (8)
Thus for {,y € X,
Wy (51) = {d. () s € ). ©

Definition 5 (see [24]). Let (X, d,) be a complex-valued met-
ric space. A nonempty subset A of X is called bounded from
below if there exists some z € C, such thatz < aforalla € A.

Definition 6 (see [24]). Let (X,d,.) be a complex-valued
metric space. A multivalued mapping F : X — 2° is called
bounded from below if for { € X there exists z; € C such that

Zr u, (10)
forall u € FC.

Definition 7 (see [24]). Let (X,d.) be a complex-valued
metric space. The multivalued mapping S : X — CB(X) is
said to have lower bound property (L.b. property) on (X, d.), if

forany { € X the multivalued mapping F; : X — 2€ defined
by

Fy (Sn) = W (Sn) (1)

is bounded from below. That is, for {,77 € X there exists an
element [;(S#) € C such that

I: (Sn) 2 u, (12)

for all u € W(Sn), where [,(Sy) is called lower bound of S
associated with (, 7).

Definition 8 (see [24]). Let (X,d.) be a complex-valued met-
ric space. The multivalued mapping S : X — CB(X) is said
to have greatest lower bound property (g.Lb. property) on
(X, d,), if greatest lower bound of W(S#) exists in C for all
{,n € X. We denote d_((, Sn) by the g.1.b. of W;(S#). That is

d.(¢,Sn) = inf{d, ({,u) : u € Sny}. (13)
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Theorem 9. Let (X, d,) be a complete complex-valued metric
space and let S,F : X — CB(X) be multivalued mappings
with g.1.b. property such that

d.(¢.80)d. (n,Fn) _d. (1,8¢)d. ({,Fn)
Ade o)+ B2 ) L+ d, (Gn)
% 6.8 d. (¢,Fn) _d.(1,80)d, (1, Fn)
1+d,({n) 1+d.(¢n)
€s(S¢,Fn),
(14)

forall{,n € X, where A, B, C, D, and E are nonnegative real
numbers with A + B+ C + 2D + 2E < 1. Then S, F have a
common fixed point.

Proof. Let {, be an arbitrary point in X and {; € S{;. From
(14), we have

dc (CO’SCO) dc (CI’FCI)
1+d.(8,0)

dc ((178(0) dc ((O’F{I)
I+ dc (CO’ Cl)

dc (CO’S(O) dc (<O’Fcl)
1+d. (8, ¢1)

Edc (cl’sco) dc (CI’FCI)
1+d. (8, 0,)

Adc (CO’ (1) + B

(15)

€ s(S¢,, F(y) .
This implies that

dc (CO’ SCO) dc (Cl’ FCI)
1+d. (8, 0,)

dc ({1’ S(O) dc ({O’ Fcl)
1+d, (8, ¢1)

dc (CI’SCO) dc (CI’FZI)
T ) €<

Ad, (§,¢,) +B

dc ((078(0) dc ((O’F(I)
I+ dc (CO’ Cl)

(Er;(os (c, F(I )> ’

dc (CO’ SCO) dc (Cl’ F(I)
1+d. (8, 0,)

dc (Cl’ SC()) dc (CO’ FCI)
e 1+d. (8, 0,) '

Edc (cl’ SCO) dc (cl’ FC])
L+ dc (CO’CI)

Ad, (80, 6,) +B

Ddc (CO’S(O) dc (CO’FCI)
1+d.(8,01)

€s(C,F¢y),
(16)
for all { € SC,,. Since {; € S{,, we have

d.(4,,8¢,)d. (¢, F
Adc (60361) +B 4 (C(l) +<;l))((0(§1) Cl)
+ Cdc (Cl’ SCO) dc (c()’ FC]) Ddc (CO’S(O) dc (CO’FCI)
1+d, ({,0)) 1+d, (6,41)

3

dc (Cl’ S(O) dc (Cl’ Fcl)

tE 1+d.(8.¢) €sn ),
d. (¢y,S¢y) d.. (¢y, F¢,
Adc (CO’CI) +B - (C(l) +€;))((0:(§1) C )

dc (CI’SCO) dc (CO’FCI) dc (CO’SCO) dc (CO’FCI)
He 1+d. (80, ¢1) P 1+d. (6. ¢1)

dc (Cl’ S(O) dc (Cl’ Fcl)
H TR AR (@ 6.0

17)

So there exists some {, € F(;, such that

dc (CO’ SCO) dc (Cl’ Fcl)

Adc(co’(l)'i'B 1+d ((O’CI)
+ Cdc ((I’SCO) dc ({O’Fcl) Ddc (CO’SCO) dc (CO’FCI)
1+d. (80, ¢1) 1+d. (6. ¢1)
dc (Cl’ S(O) dc (Cl’ Fcl)
+E 1+dc ((O’Cl) GS(dC ({DCZ))'
(18)
That is
dc ((O’S(O) dc ((I’P(I)
dc (CI’CZ)ﬁAdc ((O’(l)-’—B 1+d ((() («1)
dc ((1’ SCO) dc ((O’F(I)
ve 1+d. (8,0y)
(19)
dc (CO’ SCO) dc (CO’ FCl)
1+d, (80,61)
Edc ((1’5(0) dc ((I’F(I)
I+ dc (CO’ Cl) .

By the greatest lower bound property (g.1.b. property) of Sand
F, we get
d (G ¢1) 4. (§1,55)

1+d, (Co’ (1)

dc (CD (1) dc ({O’CZ)
1+ dc (CO’ Cl)

(CO’(I) dc (CO’CZ)
1+d. (8, ¢1)

dc ({1’ Cl) dc (CI’CZ)
1+d. (8, 8y)

dc (c()’ {1) dc ((1’62)
I+ dc (CO’ Cl)

dc (c()’ (l) dc ((O’CZ)
‘ 1+ dc ({O>Cl) ,

d.((,0,) < Ad. (8, ¢,) + B

+C

d,
+D

(20)
+E

= Ad, ({,,¢,) +B

+d




4

which implies that

|dc ((0’{1)| ldc (Cl’ (2)'
ll + dc (CO’C1)|

|4 (8o, Sl ldc (80- 8)I
|1 +d, ((0’(1)|

ld. (§1,6)| < Ald. (6. ¢,)| + B

+D

dc (CO’ Z:1)
1+d. (8, ¢1)

d >
+Dld, (0 0y)| %

|d. (68) < Ald, (8, ¢1)| + Bld, (8158,)] + Dd. (8,8 -
(21)

= Ald, ({0, ¢)| + Bld. (6,5

Then

(60 s 7o

a-B-D) |d. (5, ¢)] - (22)

Similarly, we get

d.(¢,,F¢;)d, ((,,S
Adc ((1) CZ) +B . (cl + Z )(Cl’(ézz) CZ)
dc ({2’ Fcl) dc ((1’ SCZ) dc ((Z’F{I) dc (CZ’ 852)
He 1+d.(81,05) P 1+d.(81,0,)
dc (CI’FZI) dc ((1’5(2)
E v d (G0 € s(F{,SG,) .
(23)
This implies that
d.(C;,F¢y)d, ((5,SC,
Adc (C])Cz) +B c(cl +(d)(<1’(§22) c )
dc (C2’ FCI) dc (Cl’ SCZ) dc (CZ’FCI) dc ({2’ SC2)
1 +dc ((1:52) 1 +dc (CI’CZ)
dc (CI’FCI) dc ((1’5(2)
Ao © <<er;cos (C’S(2)>’
dc (Cl’ Fcl) dc ((2’5(2)
Adc ((p(z)"’B 1+dc ((17C2)
+Cdc (CZ’FCl)dc (CI’SCZ) dc (CZ>FCI)dc (CZ’SCZ)
1 +dc ((1’52) 1+dc (Cl’(Z)
dc (CI’FCI) dc ((1’8(2)
G O
(24)
for all { € F{,. Since {, € F{,, we have
d_((,FG)d. (4 S
Adc (Cp(z) +B 4 (Ci +ZI)(C1 (222) CZ)
+ Cdc (CZ’ FC]) dc (cl) SCZ) Ddc (CZ’FCI) dc (CZ) SCZ)
1+d, (C0.0,) 1+d. (6,4)
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BRI o)
{1, FGy)d, (85, 80,)
1+d.(¢,0,)

d. (¢, F¢y) d. (3, 56,)
1+d, (¢1,65)
R, (6, 5%)

1+d.((1,4,)
(d. (£2:0)).

d
Adc (cl’ CZ) +B < (

Ddc (CZ’FCI) dc (62’ SCZ)
L+ dc (CD (2)

€5((,,8¢,)

+C

Uus
{€F¢,
(25)
So there exists some {5 € SC,, such that
d. (¢, F¢)d. ({5, S
Adc (cl’cz) +B c (Ci +ZI)(( (gzz) CZ)
dc ((2>FCI) dc (Cl’ SCZ)
R TR (A R
dc (Cl’ Fcl) dc (Cl’ SCZ)
A G

Ddc (KZ’F(I) dc (CZ’ S(Z)
1+ dc ((1’ (2)

€s(de (62:5))-

(26)

That is,
d. (¢, F¢y)d. (¢, 8
(€ 5) 5 4, (1) + p 20T ()
dc (CZ’FCI) dc (Cl’ SCZ)
1+ dc ((1’ CZ)
Ddc (CZ’FCI) dc ((:2’ SCZ)
1+d.(8,0)
dc (CP FCI) dc ((1’ SCZ)
TGS
By the greatest lower bound property (g.1.b. property) of Sand

F, we get
d.(¢,,¢,)d. (¢,
) % 4d, (1) + pE L)
Cdc((Z’CZ)dc(cl’CS)

1+d.(81,8,)

dc (<2’CZ) dc (CZ’ {3)
1+dc(C1’C2)
dC(Cl’CZ)dc((l’C?))

MR (RAN

(27)

(28)

+D

which implies that
ld: (62,83)] < Ald. (1,8,)| + Bld. (6, 85))]

d. (1,
+E|dC(C1’<3)| #@iz})

<A |dc ((p(z)l +B |dc ((Z’C3)| +E |dc (51’C3)| .
(29)

dc (cl’CZ)
1+d.(81,8,)
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Then

A+E

|d. (82, 85)] < T-B-D

B [ @o)l 6o

Putting A = max{((A + D)/(1 - B — D)),((A + E)/(1 -
B - E))}, we obtain a sequence {{,} in { such that for n =
0,1,2,..., 041 €S0y and G,y € FOyp

ldc (Cn’cnﬂ)l <A ldc (Cnfl’cn)l

< /\2 |dc (Cn—Z’cn—l)l e A |dc (Co,(l)l .
(31

Now for m > n, we get
|dc (Cn’ (m)| < |dc ({n’ (n+1)l + |dc (Cn+1’ Cn+2)|
Tt |dc (Cm—bcm)l
<V A () Y

IN

|5 1@,

and so
A’n
|dc (Cn’ cm)l < m |dc (CO,C1)| — 0 asm,n — 00.
(33)
This implies that {{,} is a Cauchy sequence in {. As X is
complete space, there exists u € X such that {, — wu as

n — 00. We now show that u € Fu and u € Su. From (14),
we have

dc (Czk’ SCZk) dc (M, Fu)
I+ dc (Czk’ u)

dc (Lt, SCZk) dc (Czk’ Fu)
1+d. (Cyout)

d. ({2k> S(Zk) d. (Czk’ F”)
L+ dc (CZk’ u)
d. (u,SCy) d. (u, Fu)
1+ dc ((Zk’ u)

Adc (CZk’ u) +B

+C

(34)
+D

+E € 5(SCy. Fu).

This implies that

dc (CZk’ SCZk) dc (u’ Fu)
I+ dc (CZk’ u)

dc (u> SCZk) dc (C2k’ Fu)

Adc ((2](’ u) + B

T G

d. ((210 SCzk) d. (Czlo F”)
HP I+ dc ((Zk’u)

d. (u,Sy) d. (u, Fu) < )
tE 1+d, ($you) € (eg(st (& Fu) ),

dc (Czk’ Sczk) dc (u’ F”)
I+ dc (CZk’ u)

dc (u’ S(Zk) dc (CZk’ Fu)
I+ dc (CZk’ u)

d; (Corr SCoie) d. (G Fut)
I+ dc ((Zk’ u)
dc (u’ S(Zk) dc (u’ Fu)
I+ dc ((2k’ u)

Adc (CZk’ u) +B

+C

+D

€ s((,Fu),

for all ¢ € SC,. Since ;1 € Sy, we have

dc (czk’ Sczk) dc (Ll, F”)
I+ dc (CZk’ u)

d (4, 85) d. ($or Fu)
I+ dc (Czk’ u)

d. ($orr SCoie) A (G Fut)
I+ dc ((210 u)
d. (u,SCy) d. (u, Fu)
I+ dc (Czk’ u)

Adc (CZk’ u) +B

+D

€ 5 (Copr> Fut) .

By definition

dc (CZk> SCzk) dc (u’ Fu)
1+ dc (CZk> u)

dc (u’ Sczk) dc ((Zk’ Fu)
1+ dc (CZk’ u)

de (o> SCoie) de (G Fur)
I+ dc (CZk’ u)
dc (u’ S{Zk) dc (u’ Fu)
1+ dc ((Zk’ u)

- U sl ().

u' €Fu

Adc (CZk’ Lt) +B

+C

+D

+E € s (Cyer1- Fu)

There exists some u;, € Fu such that

dc (CZk’ SCZk) dc (u’ Fu)
I+ dc (CZk’ u)

dc (u> SCZk) dc (C2k’ Fu)
1+ dc ((Zk’ Ll)

((210 Sczk) d. (Czk’ F”)
I+ dc (cZk’ I/l)
d. (u,Sy) d. (u, Fu)

1+ dc (IZk’ u)

Adc ((2](’ u) + B

+C

d
+D-=<

+E € s(d, (Coprrr )5

(35)

(36)

(37)

(38)



that is,

d. ((zk’ S(zk) d. (u, Fu)

d , < Ad , B
e (Coperoy) < Ad ($ypout) + 1+d. ($ypou)

dc (u’ SCZk) dc ((Zk’ FM)

+C
1+ dc (c2k> u)

d. ($o SCk) de (Gopr Fu)

+D
1+ dc (CZk’ u)

Edc (u,SCy) d.. (u, Fu)
1+d. (o tt)

(39)

By the greatest lower bound property (g.1.b. property) of Sand
F, we have

d. ({zk’ o) de (”) ”k)
I+ dc (CZk’ u)

d. (”’ Czk+1) d. ((2k’ “k)
I+ dc ((Zk’ u)

d; ($o Copnr) 4, ((2k’ )
1+ dc (CZk’ I/l)

d; (Coprr> i) < Ad, ($you) + B

+C

+D

dc (M, C2k+1) dc (u’ uk)

+E
1+ dc ((Zk’ M)

(40)
Since
d. () < d, (,0yy) + e (Cppsrs ) » (41)
we get
d. (u,u) < d, (1, $yper) + Ad (G 1h)

Bdc (o> Cornn) de (w1
I+ dc ((Zk’ l/l)

d. (”» C2k+1) d. ((2k) ”k)
1+d,. ({you) (42)

d. (czk’ (2k+1) d. ((210 ”k)
1+ dc ((Zk’ u)

dc (u’ (2k+1) dc (u’ uk)
I+ dc (CZk’ u)

+C

+D

>

which implies that
|dc (u’ uk)l < |dc (u’ CZk+1)| +A |dc (u) (2k+1)|

|dc (% (2k+1)| |dc (u, uk)|

" [1+d, ($oo 1)
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d. (u, C2k+1)| |dc (Copo ”k)|
ll + dc (CZk’u)|

D |dc (% C2k+1)| |dc (o “k)|
|1 +d; (Copr u)|

|dc (M, (2k+1)| |dc (u’ le)|
ll + dc (CZk’u)|

+C|

+ E

(43)

Taking the limit as k — oo, we get |d (1, )| — Oask —
00. By lemma 1 [7], we have u;, — uask — oo. Since Fu is
closed, u € Fu. Similarly, it follows that u € Su. Hence S and
F have a common fixed point and our theorem follows. [

Consequently, we have the following corollaries.

By setting S = F in Theorem 9, we get the following
corollary.

Corollary10. Let (X, d,) be a complete complex-valued metric
space and let F : X — CB(X) be multivalued mapping with
g.1.b. property such that

d. (¢, F{) d. (1, Fy)

Ad.({,n)+B v d (Gn)
Cdc(n,FC)dc(C,Fn) D G FO d. (G, Fr)
1+d.(¢n) 1+d.({n)
d. (1, F¢)d. (1, Fn)
1+d.(n) €s(F¢.Fn).

(44)

forall{,n € X, where A, B, C, D, and E are nonnegative real
numbers with A+ B+ C + 2D + 2E < 1. Then F has a fixed
point.

By choosing E = 0 in Theorem 9, we get the following
corollary.

Corollary11. Let (X, d,) be a complete complex-valued metric
space and let S,F : X — CB(X) be multivalued mappings
with g.1.b. property such that

d (¢, 80)d. (n, Fn)

Ad. (,n)+B v d (G
Cdc(ﬂ,SC)dc(C,Fn) % @S0 d. (¢, Fr)
1+d.({n) 1+d.(¢n)
€s(S¢,Fn),

(45)

for all {,n € X, where A, B, C, and D are nonnegative real

numbers with A+ B+ C + 2D < 1. Then S, F have a common

fixed point.



Journal of Applied Mathematics

By setting S = F in Corollary 11, we get the following
corollary.

Corollary12. Let (X, d,) be a complete complex-valued metric
space and let F : X — CB(X) be multivalued mapping with
g.Lb. property such that

d. (¢, F¢)d, (n, Fn)

Ad,(¢,n)+B

1 + dc ((’ ’1)
e (. FO)dc (8 Fn) - d. G FO)d. (¢, Fn)
1+d.(Cn) 1+d.(¢n)
€s(F(,Fn),

(46)

forall {,n € X, where A, B, C, and D are nonnegative real
numbers with A+ B+ C + 2D < 1. Then F has a fixed point.

By choosing D = 0 in Theorem 9, we get the following
corollary.

Corollary13. Let (X, d,) be a complete complex-valued metric
space and let S,F : X — CB(X) be multivalued mappings
with g.1.b. property such that

d. (¢, 80) d. (n, Fr)

d.(n,8¢)d, ({,Fn) d.(1,8¢)d, (1, Fn)
1+d.({n) 1+d.(8n)
€s(S¢,Fn),

(47)

forall {,n € X, where A, B, C, and E are nonnegative real
numbers with A+ B+ C + 2E < 1. Then S, F have a common
fixed point.

By setting S = F in Corollary 13, we get the following
corollary.

Corollary14. Let (X, d,) be a complete complex-valued metric
space and let F : X — CB(X) be multivalued mapping with
g.1.b. property such that

d, (¢,F¢)d, (n, Fn)

Adc (C)rl) +B 1+d ((’}7)
% FO)d. (& Fn) o d (. FS) d, (n. Fn)
1+d.(¢n) 1+d,.({n)
€ s(F(,Fn),
(48)

for all {,n € X, where A, B, C, and E are nonnegative real
numbers with A + B+ C + 2E < 1. Then F has a fixed
point.

By choosing D = E =
following corollary.

0 in Theorem 9, we get the

Corollary 15 (see [24]). Let (X,d,) be a complete complex-
valued metric space and let S, F : X — CB(X) be multivalued
mappings with g.L.b. property such that

d. (¢, S¢)d, (n,Fn)
1+d.(¢n)

d, (1,8¢)d. ({, Fn)
1+d.(¢n)

for all {,n € X, where A, B, and C are nonnegative real
numbers with A + B + C < 1. Then S, F have a common fixed
point.

Ad, (¢,n)+B

(49)

€s(S¢,Fn),

By setting S = F in Corollary 15, we get the following
corollary.

Corollary 16 (see [24]). Let (X,d,) be a complete complex-
valued metric space and let F : X — CB(X) be multivalued
mapping with g1.b. property such that

dc ((: FC) dc (’1’ Fi/l)
1+d({n)

d. (1, F¢)d, ({, Fn)
1+d.(n)

for all {,n € X, where A, B, and C are nonnegative real
numbers with A + B+ C < 1. Then F has a fixed point.

Ad, ({,n)+B
(50)
+C

€s(F(,Fn),

By choosing C = D = E = 0 in Theorem 9, we get the
following corollary.

Corollary 17 (see [24]). Let (X,d,) be a complete complex-
valued metric space and let S, F : X — CB(X) be multivalued
mappings with g.1.b. property such that

d. (¢, S¢) d. (1, Fn)
1 + dc (C’ 77)

forall{,n € X, where A, B are nonnegative real numbers with
A+ B < 1. Then S, F have a common fixed point.

Ad, (¢n)+B €s(S¢,Fn), (5D

By setting S = F in Corollary 17, we get the following
corollary.

Corollary18. Let (X, d,) be a complete complex-valued metric
space and let F : X — CB(X) be multivalued mapping with
g.Lb. property such that

d. (¢, F¢)d, (n, Fn)
1+d. (&)

forall{,n € X, where A, B are nonnegative real numbers with
A + B < 1. Then F has a fixed point.

Ad.(¢,n)+B (52)




By Remark 4, we get the following corollaries.

Corollary 19. Let (X,d) be a complete metric space and let

S,T: X — CB(X) be multivalued mappings such that

d(x,Sx)d (y,Ty)

H (Sx,Ty) < Ad (x, y) + B
(Sx,Ty) < Ad (x, ) + T+ d ()

d(y,8x)d (x, Ty)

d(x,Sx)d (x,Ty)
D
1+d(x,y)

1+d(x )

+C

d bl b
g4 0nSx)d(y Ty))
1+d(xy)

(53)

forall x,y € X and A, B, C, D, and E are nonnegative real
numbers with A + B+ C + 2D + 2E < 1. Then S, T have a
common fixed point.

Corollary 20. Let (X,d) be a complete metric space and let
T : X — CB(X) be multivalued mappings such that

d(x,Tx)d (y,Ty)

H(Tx,Ty) < Ad (x,y) + B
(Tx,Ty) < Ad (x, y) + T d(ny)

Cd (y,Tx)d (x,Ty) . Dd (x,Tx)d (x,Ty)

1+d(x,y) 1+d(x,y)
d(y.Tx)d (y,Ty)
1+d(x,y)
(54)

forall x,y € X and A, B, C, D, and E are nonnegative real
numbers with A+ B+ C + 2D + 2E < 1. Then T has a fixed
point.

Remark 21. By equating A, B, C, D, and E to 0 in all
possible combinations, one can derive a host of corollaries
which include Banach fixed point theorem for multivalued
mappings in complete metric space.

Theorem 22. Let (X, d.) be a complete complex-valued metric
space and let S,F : X — CB(X) be multivalued mappings
with g.1.b. property such that

d. (¢, 8¢)d. (n, Fn)
d. (¢, Fn) +d. (1, S¢) +d. (n)

d. (1,8¢)d. ({, Fn)
L+, ) +d G < T ’7)(’ |
55

Ad,(¢,n)+B

+C

for all {,n € X, where A, B, and C are nonnegative real

numbers with A+ B+ C < 1. Then S, F have a common fixed
point.
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Proof. Let {, be an arbitrary point in X and {; € S{,. From

(55), we have

dc (CO’ SCO) dc (Cl’ Fcl)
d. (8o, FC,) +d. (815880) + 4. (80, C1)

+C dc (CI’SCO) dc (<0> F(l)
dc ((O’FCI) + dc (Cp Sco) + dC (CO,(l)

€ 5(8¢,, F(,).

Ad. ({,,(,)+B

(56)
This implies that

Adc ((O)C]) + B dc (CO’ SCO) dc (C]; FC])

d. (§o, FGy) +d. (§,88) +d. (8o, 1)

dc (CI’SCO) dc (CO’Fcl)
d. (8o FC) +d. (815:88) + 4. (80, C1)

¢(ns@r).

Adc (CO’CI) +B

+C

dc (C()’ SCO) dc ((1’ FCI)
d, (§o, FG,) +d. (5 88) +d. (8o, ¢1)

dc (cl’ScO) dc (CO’FCI)
d. (8o, FC,) +d. (815:88) + 4. (80, ¢1)

€ S(C,FQ),

+C

(57)
for all { € S¢,,. Since {; € S{,, we have

dc (C()’ S(O) dc (Cl’ Fcl)
d. (G ¢
4 C(CO ¢ ) +Bdc (Co» FC1) + A, (§1,88,) +d. (8o, ¢1)

dc (CI’SCO) dc (CO’FCI)

' Cdc (Co» FGy) +d, (1, S8p) +de (80 Cy)

€s(8, FGy),

dc (C()’ S(O) dc ({1’ FCI)
d. (§o, FG,) +d. (5 88) +d. (8o, ¢1)

dc (CPSCO) dc (CO’FCI)
d. (G FC,) +d. (81588) +d. (80, ¢1)

(4. (8:0)).

Adc (CO’(I) +B

+C

€ U's
(eFg,
(58)
So there exists some {, € F{;, such that

dc (CO’ S(O) dc (Cl’ Fcl)
d, (8o, F¢y) +d, (¢1,88y) +4d. (8, ¢y)

C dc ((PS(O) dc ((O>FC1)
d, (§o, FG,) +d. (1, 88) +d. (8o, ¢1)

€s(de (81,%))-

Adc (CO’{I) + B

(59)
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That is,
dc (zl’(Z)
dc ((O’S(O) dc (CI’FCI)
< A (oo 8+ B R + 4, (6050) + . (G 6
dc ({1’850) dc ({O’Fcl)

LG + 4. (6 5) + d. G0 )
(60)

By using the greatest lower bound property (g.Lb. property)
of S and F, we get

dc (CO’ Cl) dc (CI’ CZ)

d. (¢1,6,) < Ad d. (¢, ) +4d. (0, Ch)°

- (60:C)+B (61)

which implies that

|dc ({O>Cl)| |dc ((17C2)|

|dc (Co-G2) + 4, (CO’CI)I.
(62)

| (8, 6)] < Ald, (6,80 + B

As earlier, by the triangular inequality

ld. (¢.8,)] < |d. (€5¢0) +d. (60 8)| s (63)

we get

|d. (81,8 < (A+B)|d, (80,1 - (64)

Similarly we can prove that

e (6 G)] < (A+B)|d, (61, 6)] - (65)

By putting A + B = [ < 1 and continuing in a similar way
to the proof of Theorem 9, we obtain that {{,} is a Cauchy
sequence in X and {, — uasn — 0o0. We now show that
u € Fuand u € Su. From (55), we have

dc ((Zk’ S(Zk) dc (u’ F”)
dc (czk’ Fu) + dc (u’ SCZk) + dc (CZk’ I/l)

Adc ({Zk’ u) + B

dc (I/l, SCZk) dc (CZk’ Fu)

L o F) + d, (1,50) + d. o)

€ 5(SCy., Fu).
(66)

This implies that

Ad, (Lo u) + d. ($or SCk) de (u, Fu)

d (Cor Fua) +d, (1, 8Cpp) + . ($ir )

dc (u’ S(2k) dc (CZk’ Fu)

O G Fn) + . (10 S0y + . (o)

e< n s((, Fu))

{eSEy
(67)
d. (Czk S(zk)d (u, Fu)
d (Cor Fua) +d, (u, 8Cpp) + . ($ir )
c (“) S(zk) d. (Qk’ F”)
dc ((Zk’ Fu) + dc (u’ S(Zk) + dc (CZk’ u)
€ s((,Fu),

Adc ((Zk’ u)

+C

(68)
for all { € SC,. Since {yp,q € SCy, we have

d. ($or SCok) . (u, Fu)
d, (Cors Fu) +d, (1, SC) + A, (G 1)

d, (u SC) d (Coro Fu)
dc (CZk’ Pu) + dc (u’ quk) + dc (CZk’ u)

€ 5 (Coxsr» Fu).

Adc ((Zk’ u) +B

+C

(69)
By definition

de (S SCoi) A (u, Fu)
d, (Cos Fu) +d, (1, SC) +d, (G 1)
d (u,80y) d. ($oy, Fu)
d; (G Fu) +d (1, SC5) + e (oo 1)

€ 5 (Coar, Fu) = u,gFuS (dc ((2k+1,u')).

Ad, ({y.u) + B

+C

(70)
There exists some u;, € Fu such that

d. ((2k S(zk)d (u, Fu)
d, (Cos Fu) +d, (1, S ) + A, ($ypo 1)

c (u’ S(Zk) dc (czk> F”)
dc (CZk’ FM) + dc (Li, SCZk) + dc (CZk’ M)

€ 5(d; (Coar> i) s

Adc ((Zk’ u) +B

+C

(71)
that is,

d. (czk+1) ”k)

dc (CZk’ SCZk) dc (u’ Fu)
< A t) BT )+ d, (0 5) + 4, G 9)
dc (u’ SCZk) dc (CZk’ Fl/l)

dc (cZk’ Fu) + dc (u’ SCZk) + dc (CZk’ u) .

+C

(72)
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By the greatest lower bound property (g.1.b. property) of Sand
F, we have

d; (Cosrs ) < Ad, (oo 1t)

d. (C2k>czk+1) d. (u, Fu)
dc (CZk’ Fu) + dc (U, SCZk) + dc (CZk’ u)

+ B

d. (”) C2k+1) d. (Czk) F”)

+C .
dc ((Zk’ Fu) + dc (u’ Sczk) + dc ((Zk’ u)
(73)
Since
de () 2 de (1, Coper) + de (Corr> i) » (74)
we get

dc (I/l, uk) = dc (Ll, (2k+1) + Adc (CZk’ M)

d. (Czkiczkﬂ) d. (u, Fu)

G Fu) + 4, (1,S0y) + d, (o)

dc (I/l, C2k+1) dc (Czk’ Fu)

dc (<2k’ Fu) + dc (Ll, Sczk) + dc (CZk’ M) ,
(75)

+C

which implies that

|dc (u> uk)l = ldc (u’ c2k+1)| +A |dc (CZk’ u)l

ldc ((2k)52k+1)| |dc (u, F”)l
|dc ((Zk’Fu) + dc (u’ S{Zk) + dc (Czk’ u)'

|dc (”> (2k+1)| |dc (Czk’ F”)|

|dc (czk’ Fu) + dc (u’ SCZk) + dc ((Zk’ u)l .
(76)

+ B

+C

Taking the limit as k. — oo, we get |d (u,u)] — Oask —
00. By lemma 1 [7], we have u;, — uask — oo. Since Fu is
closed, so u € Fu. Similarly, it follows that u € Su. Hence S
and F have a common fixed point and our theorem follows.

O

Corollary 23. Let (X, d) be a complete complex-valued metric
space and let T : X — CB(X) be multivalued mapping with
gLb. property such that

d(x,Tx)d (y,Ty)
d(x,Ty)+d(y,Tx) +d(x, y)

Ad(x,y)+B

d(y,Tx)d (x,Ty)

C
* d(x,Ty)+d(y,Tx) +d(x, y)

€s(Tx,Ty),
(77)

for all x,y € X, where A, B, and C are nonnegative real
numbers with A+ B+ C < 1. Then T has fixed point.

Journal of Applied Mathematics

Now, let us consider the following example.
Example 24. Let X = [0,1]; defined,. : X x X — Cby

1
R ’ . (78)

Then (X, d,) is a complex-valued metric space. Let S, F : X —
CB(X) be the mappings defined by

d. (&) = |C - f’]| ¢® H=tan’!

1 1
S=[0,—], F=[0,—]. 79
¢=[o]. m=[o¢ 79)
The contractive condition of main theorem is trivial for the
case when { = 5 = 0. Suppose without any loss of generality
that all {, # are nonzero and { < #. Then
g

d, (&) = In-¢| €, dACSO=‘(—§

i6
e,

i ¢
dxmﬂﬂ=h—f%eﬂ d&m¥)=%—g

i6
e,

i0>
e .

It is clear that, for any value of B, C, D, E, and A = 1/6,
we have

. (0.Fn) = o~ L

{

s(S¢, Fn) =s( T

(80)

¢ 7 1
‘6 12 = 6 |’7 C|' (8D
Thus

d (¢, 8¢)d. (1 Fn)
1+ dc (C’ ’7)

d. (n,8¢)d. ({, Fn)
1+d.({n)

d, (1,8¢)d. (1, Fn)
1+d.(¢n)

Ad,(¢,n)+B

d, (¢,80)d. (¢, Fn)
1+d.(¢n)

€ s(S¢,Fn).
(82)

Hence all the conditions of our main Theorem 9 are satisfied
and 0 is a common fixed point of § and F.
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