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A class of nonlinear sum operator equations with a parameter on order Banach spaces were considered. The existence and
uniqueness of positive solutions for this kind of operator equations and the dependence of solutions on the parameter have been
obtained by using the properties of cone and nonlinear analysis methods.The critical value of the parameter was estimated. Further,
the application to some nonlinear three-point boundary value problems was given to show the significance of the discussion.

1. Introduction and Preliminaries

The aim of this paper is to investigate the existence and
uniqueness of positive solution for the following operator
equations:

𝐿 (𝜆, 𝑥) = 𝑥, (1)

where 𝐿(𝜆, 𝑥) = 𝐴𝑥+𝜆𝐵𝑥, 𝐴 is an operator with concavity, 𝐵
is a pseudo subhomogeneous operator, and 𝜆 is a parameter.
In addition, by applying our results to the second-order three-
point boundary value problem (BVP),

−𝑥


(𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝜏𝑥


(0) , 𝑥 (1) − 𝜎𝑥 (𝜉) = ∫

1

0

ℎ (𝑥 (𝑠)) 𝑑𝑠,

(2)

where 𝑓 ∈ 𝐶([0, 1] × 𝑅), 𝑔 ∈ 𝐶[0, 1], ℎ ∈ 𝐶(𝑅), 𝜏 ≥

0, 0 < 𝜉 < 1, and 0 < 𝜎 ≤ 1; we obtain that there exists
a 𝜆∗ > 0, such that BVP(2) has a unique positive solution
and no positive solution for 0 < 𝜆 < 𝜆

∗ and 𝜆 ≥ 𝜆
∗,

respectively. In particular, such a positive solution 𝑥
𝜆
(𝑡) of

BVP(2) is increasing and continuous in 𝜆 for 𝜆 ∈ [0, 𝜆∗) and
lim
𝜆→𝜆

∗
−0
‖𝑥
𝜆
‖
𝑐
= +∞. Further, we estimate the critical value

𝜆
∗.

In recent years,many authors focus onmultipoint bound-
ary value problems for differential equations, since these
problems arise in a variety of different areas of applied math-
ematics and physics (see [1]). For example, by using degree-
theoretic arguments, Gupta [2] obtained the existence and
uniqueness theorems for the following three-point boundary
value problem:

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) − 𝑒 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (𝜉) = 𝑥 (1) .

(3)

Since then, the existence of solutions for nonlinearmultipoint
boundary value problems has been studied by many authors
(see [3–8] and their references). The cases with special
boundary value conditions in BVP(2) were discussed by [2–
7], where 𝜏 = 0 and ℎ(𝑥) = 0 or 𝜏 = 0, 𝜎 = 1 and ℎ(𝑥) =
0. However, to the best of our knowledge, little has been
done for the multipoint boundary value problem (2) with
parameter, perturbed loading force, and nonlinear boundary
conditions, especially on the existence and uniqueness of
positive solution and the dependence of solutions on the
parameter 𝜆.

It is well known that fixed point theory is an effective tool
in the treatment of existence results of boundary value prob-
lems for nonlinear differential equations. Many researchers
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were concerned with the existence and uniqueness of fixed
point for concave operators and sum operators. For example,
[9–15] investigated eigenvalue problems of concave operators,
the existence and uniqueness of positive fixed point for
concave operators, and the existence and uniqueness of
positive fixed point for sum operator, respectively. However,
to our knowledge, few of the results in literature can be
applied to BVP(2) successfully. The above reasons stimulate
us to do this work.

First, we consider the existence and property of positive
solutions for nonlinear operator equations (1) on order
Banach space 𝐸.

To be clear, some definitions, notations, and lemmas are
presented as follows.

Let 𝐸 be a real Banach space which is partially ordered
by a cone 𝑃 of 𝐸, that is, 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃,
and let 𝜃 be the zero element of 𝐸. If 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, then
we denote 𝑥 < 𝑦 or 𝑦 > 𝑥. A nonempty closed convex set
𝑃 ⊂ 𝐸 is a cone if it satisfies (i) 𝑥 ∈ 𝑃, 𝑟 ≥ 0 ⇒ 𝑟𝑥 ∈ 𝑃; (ii)
𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃. A cone 𝑃 is said to be normal if there
exists a positive number𝑁, called the normal constant of 𝑃,
such that, for all 𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖.

Let 𝐷 ⊆ 𝐸. An operator 𝑇 : 𝐷 → 𝐸 is said to be
increasing if, for 𝑥

1
, 𝑥
2
∈ 𝐷, 𝑥

1
≤ 𝑥
2
⇒ 𝑇𝑥

1
≤ 𝑇𝑥
2
. An

element 𝑥∗ ∈ 𝐷 is called a fixed point of 𝑇 if 𝑇𝑥∗ = 𝑥
∗. For

details on cone theory, see [16, 17].
Given 𝑒 > 𝜃, let

𝑃
𝑒
= {𝑥 ∈ 𝐸 | there exist 𝑙 = 𝑙 (𝑥) > 0 such that 0 ≤ 𝑥 ≤ 𝑙𝑒} ,

(4)

𝑃
𝑒
= {𝑥 ∈ 𝐸 | there exist 𝑙

1
= 𝑙
1
(𝑥) > 0,

𝑙
2
= 𝑙
2
(𝑥) > 0 such that 𝑙

1
𝑒 ≤ 𝑥 ≤ 𝑙

2
𝑒} .

(5)

Then 𝑃
𝑒
⊂ 𝑃
𝑒
⊂ 𝑃 and

∀𝑥, 𝑦 ∈ 𝑃
𝑒
, ∃0 < 𝜇

0
< 1 < 𝑙

0
< +∞

such that 𝜇
0
𝑦 ≤ 𝑥 ≤ 𝑙

0
𝑦.

(6)

Lemma 1. Let 𝑃 be a normal cone in 𝐸 and 𝑇 : 𝑃 → 𝑃 an
increasing operator. Suppose that

(H1) 𝑇(𝑃
𝑒
) ⊂ 𝑃
𝑒
;

(H2) for any 𝑟 ∈ (0, 1) and [𝑦, 𝑧] ⊂ 𝑃
𝑒
there exists 𝜂(𝑟, 𝑦,

𝑧) > 0 such that

𝑇 (𝑟𝑥) ≥ 𝑟 (1 + 𝜂 (𝑟, 𝑦, 𝑧)) 𝑇𝑥, ∀𝑥 ∈ [𝑦, 𝑧] , 𝑟 ∈ (0, 1) .

(7)

Then 𝑇 has a unique fixed point 𝑥∗ in 𝑃
𝑒
if and only if there

exist 𝑢, V ∈ 𝑃
𝑒
such that 𝑢 ≤ 𝑇𝑢 ≤ 𝑇V ≤ V. Moreover, for any

initial value 𝑢
0
∈ 𝑃
𝑒
and a sequence 𝑢

𝑛
= 𝑇𝑢
𝑛−1

(𝑛 = 1, 2, . . .),
one has lim

𝑛→+∞
‖𝑢
𝑛
− 𝑥
∗
‖ = 0.

The proof of Lemma 1 is standard; we omit it here.

Definition 2 (see [14]). An operator 𝑇 : 𝑃 → 𝑃 is said to
be generalized 𝛼-concave if it satisfies (H1) and the following
condition:

(H3) there exists an 𝛼 : (0, 1) → (0, 1) such that

𝑇 (𝑟𝑥) ≥ 𝑟
𝛼(𝑟)

𝑇𝑥, ∀𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1) . (8)

FromLemma 1 it is easy to show that the following lemma
holds.

Lemma 3 (see [15]). Let 𝑃 be a normal cone of 𝐸 and 𝑇 : 𝑃 →

𝑃 increasing generalized 𝛼-concave. Then 𝑇 has a unique fixed
point 𝑥∗ in 𝑃

𝑒
. Moreover, for any initial value 𝑢

0
∈ 𝑃
𝑒
and a

sequence 𝑢
𝑛
= 𝑇𝑢
𝑛−1

(𝑛 = 1, 2, . . .), one has lim
𝑛→+∞

‖𝑢
𝑛
−

𝑥
∗
‖ = 0.

In what follows, we introduce definitions of pseudo sub-
homogeneous operator and pseudo generalized 𝛼-concave
operator.

Definition 4. An operator 𝑇 : 𝑃 → 𝑃 is said to be pseudo
subhomogeneous if it satisfies

(H4) 𝑇(𝑃
𝑒
) ⊂ 𝑃
𝑒
;

(H5) 𝑇(𝑟𝑥) ≥ 𝑟𝑇𝑥, ∀𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1).

Definition 5. An operator 𝑇 : 𝑃 → 𝑃 is said to be pseudo
generalized 𝛼-concave if it satisfies (H3) and (H4).

Remark 6. An increasing pseudo subhomogeneous operator
and an increasing pseudo generalized 𝛼-concave operator
may have no fixed point in 𝑃

𝑒
. For example, Let 𝐸 =

𝐶[0, 1], 𝑃 = {𝑥 ∈ 𝐸 | 𝑥(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}, 𝑒(𝑡) ≡ 1, and
𝑇
1
𝑥(𝑡) = (1 − 𝑡)𝑥(𝑡)/(1 + 𝑥(𝑡)). Obviously, 𝑇

1
: 𝑃 → 𝑃

is increasing pseudo subhomogeneous, but 𝑇
1
has no fixed

point in 𝑃
𝑒
. Let

𝑇
2
𝑥 (𝑡) = ∫

1

0

𝑡 (1 − 𝑠) 𝑥
𝛼

(𝑠) 𝑑𝑠, 𝑥 ∈ 𝑃, (9)

0 < 𝛼 < 1. Clearly, 𝑇
2
: 𝑃 → 𝑃 is increasing pseudo

generalized 𝛼-concave. Since 𝑇
2
𝑥(0) = 0 for 𝑥 ∈ 𝑃

𝑒
, then

𝑇
2
𝑥 ∉ 𝑃

𝑒
for all 𝑥 ∈ 𝑃

𝑒
. Therefore, 𝑇

2
is not generalized 𝛼-

concave and 𝑇
2
has no fixed point in 𝑃

𝑒
.

Remark 7. From Definitions 4 and 5, it is clear that a pseudo
generalized 𝛼-concave operator is a pseudo subhomogeneous
operator.

Remark 8. It is easy to show that (8) is equivalent to

𝑇 (𝑠𝑥) ≤ 𝑠
𝛼(1/𝑠)

𝑇𝑥, 𝑥 ∈ 𝑃
𝑒
, 𝑠 > 1, (10)

and (H5) is equivalent to

𝑇 (𝑠𝑥) ≤ 𝑠𝑇𝑥, 𝑥 ∈ 𝑃
𝑒
, 𝑠 > 1. (11)

2. Positive Solutions of Operator Equation

In this section, we assume that 𝐸 is a real Banach space, 𝑃 is
a normal cone in 𝐸 with the normal constant 𝑁, 𝑒 > 𝜃, and
𝐴, 𝐵 : 𝑃 → 𝑃 are increasing operators.
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Theorem 9. Assume that 𝐴 is a generalized 𝛼-concave oper-
ator and 𝐵 is a pseudo subhomogeneous operator. Then the
following four results are true.

(i) There exists a𝜆∗ > 0 such that (1) has a unique solution
𝑥
𝜆
in 𝑃
𝑒
for 𝜆 ∈ [0, 𝜆

∗
). For any initial value 𝑢

0
∈ 𝑃
𝑒
,

set 𝑢
𝑛
= 𝐿(𝜆, 𝑢

𝑛−1
) (𝑛 = 1, 2, . . .); then lim

𝑛→+∞
‖𝑢
𝑛
−

𝑥
𝜆
‖ = 0.

(ii) Equation (1) has no solution in 𝑃
𝑒
for 𝜆 ≥ 𝜆∗.

(iii) 𝑥
𝜆
is increasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗).

(iv) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆∗).

Proof. By Lemma 3, 𝐴 has a unique fixed point 𝑥
0
∈ 𝑃
𝑒
and

𝐿 (𝜆, 𝑥
0
) = 𝐴𝑥

0
+ 𝜆𝐵𝑥

0
≥ 𝐴𝑥
0
= 𝑥
0
, 𝜆 ≥ 0. (12)

If 𝐵|
𝑃
𝑒

≡ 𝜃, 𝐿(𝜆, ⋅)|
𝑃
𝑒

= 𝐴 for any 𝜆 ≥ 0. Set 𝜆∗ = +∞; it
is obvious that conclusions (i)–(iv) hold.

If 𝐵|
𝑃
𝑒

̸≡ 𝜃, there exists 𝑥 ∈ 𝑃
𝑒
such that 𝐵𝑥 > 𝜃. By (6),

for any 𝑥 ∈ 𝑃
𝑒
, there exists 𝜇

0
∈ (0, 1) such that 𝜇

0
𝑥 ≤ 𝑥.

Moreover, Definition 4 shows that there exists 𝑙
0
∈ (1, +∞)

such that

𝜃 < 𝜇
0
𝐵𝑥 ≤ 𝐵𝑥 ≤ 𝑙

0
𝑥
0
, 𝑥 ∈ 𝑃

𝑒
. (13)

The facts that 𝐴(𝑃
𝑒
) ⊂ 𝑃
𝑒
and 𝐵(𝑃

𝑒
) ⊂ 𝑃
𝑒
imply that

𝐿 (𝜆, 𝑃
𝑒
) ⊂ 𝑃
𝑒
, 𝜆 ≥ 0. (14)

Next, we prove all statements by five steps.

Step 1. Existence of the critical value 𝜆∗. Set

Λ = {𝜆 ≥ 0 | there exists𝑦
𝜆
∈ 𝑃
𝑒

such that 𝑥
0
≤ 𝑦
𝜆
, 𝐿 (𝜆, 𝑦

𝜆
) ≤ 𝑦
𝜆
} ,

(15)

and 𝜆∗ = supΛ. Now we show that Λ = [0, 𝜆
∗
).

Define a mapping 𝜌 : 𝑃
𝑒
→ [0, +∞) by

𝜌 (𝑥) = inf {𝜏 > 0 | 𝐵𝑥 ≤ 𝜏𝑥
0
} , 𝑥 ∈ 𝑃

𝑒
. (16)

By (13) it is obvious that 0 < 𝜌(𝑥) < +∞. In addition, for any
𝑥
1
, 𝑥
2
∈ 𝑃
𝑒
, 𝑥
1
≤ 𝑥
2
, we have 𝐵𝑥

1
≤ 𝐵𝑥
2
≤ 𝜌(𝑥

2
)𝑥
0
, which

implies that 𝜌(𝑥
1
) ≤ 𝜌(𝑥

2
). That is, 𝜌(𝑥) is increasing in 𝑥 for

𝑥 ∈ 𝑃
𝑒
.

For a given 𝑠
0
> 1, set 𝑦

0
= 𝑠
0
𝑥
0
. Then 𝑦

0
∈ 𝑃
𝑒
and 𝑥

0
≤

𝑦
0
. It follows from Remark 8 that

𝐿 (𝜆, 𝑦
0
) ≤ 𝑠
0
(𝑠
𝛼(1/𝑠
0
)−1

0
+ 𝜆𝜌 (𝑥

0
)) 𝑥
0
≤ 𝑦
0
,

𝜆 ∈ [0,
1

𝜌 (𝑥
0
)
(1 − 𝑠

𝛼(1/𝑠
0
)−1

0
)] .

(17)

This means that

[0,
1

𝜌 (𝑥
0
)
(1 − 𝑠

𝛼(1/𝑠
0
)−1

0
)] ⊂ Λ,

𝜆
∗
≥

1

𝜌 (𝑥
0
)
(1 − 𝑠

𝛼(1/𝑠
0
)−1

0
) > 0.

(18)

We assert that 𝜆∗ ∉ Λ. If 𝜆∗ = +∞, from (15) it is obvious that
𝜆
∗
∉ Λ. Suppose that 𝜆∗ < +∞ and 𝜆∗ ∈ Λ. Then again by

(15) there exists 𝑦
𝜆
∗ ∈ 𝑃
𝑒
with 𝑥

0
≤ 𝑦
𝜆
∗ such that 𝐿(𝜆∗, 𝑦

𝜆
∗) ≤

𝑦
𝜆
∗ . Set V

0
= 𝑠
1
𝑦
𝜆
∗ for a given 𝑠

1
> 1. Then V

0
∈ 𝑃
𝑒
and

𝑥
0
≤ V
0
. Note that (1/𝜌(𝑦

𝜆
∗))(1 − 𝑠

𝛼(1/𝑠
1
)−1

1
) > 0; we can take

a number 𝛿 > 0 sufficiently small such that

𝛿 <
1

𝜌 (𝑦
𝜆
∗)
(1 − 𝑠

𝛼(1/𝑠
1
)−1

1
) . (19)

From (16)–(19) and the fact that 𝑥
0
= 𝐴𝑥
0
≤ 𝐴𝑦
𝜆
∗ , we obtain

𝐿 (𝜆
∗
+ 𝛿, V
0
) = 𝐴 (𝑠

1
𝑦
𝜆
∗) + (𝜆

∗
+ 𝛿) 𝐵 (𝑠

1
𝑦
𝜆
∗)

≤ 𝑠
1
(𝐴𝑦
𝜆
∗ + 𝜆
∗
𝐵𝑦
𝜆
∗) + (𝑠

𝛼(1/𝑠
1
)

1
− 𝑠
1
)𝐴𝑦
𝜆
∗

+ 𝛿𝑠
1
𝐵𝑦
𝜆
∗

≤ 𝑠
1
𝐿 (𝜆
∗
, 𝑦
𝜆
∗) − (𝑠

1
− 𝑠
𝛼(1/𝑠
1
)

1
)𝐴𝑥
0

+ 𝛿𝑠
1
𝜌 (𝑦
𝜆
∗) 𝑥
0

≤ 𝑠
1
𝑦
𝜆
∗ + (𝛿𝑠

1
𝜌 (𝑦
𝜆
∗) − (𝑠

1
− 𝑠
𝛼(1/𝑠
1
)

1
)) 𝑥
0

≤ 𝑠
1
𝑦
𝜆
∗ = V
0
,

(20)

which means that 𝜆∗ + 𝛿 ∈ Λ. This contradicts the definition
of 𝜆∗. Therefore, we conclude that

Λ = [0, 𝜆
∗
) . (21)

Step 2. Conclusion (i) holds. For given 𝜆 ∈ [0, 𝜆
∗
), consider

(1). Since 𝐴 and 𝐵 are increasing, 𝐿(𝜆, 𝑥) is increasing in 𝑥.
Moreover, combining (12) and (15) gives

𝑥
0
≤ 𝐿 (𝜆, 𝑥

0
) ≤ 𝐿 (𝜆, 𝑦

𝜆
) ≤ 𝑦
𝜆
. (22)

Besides, by (H2) and (H4) we obtain

𝐿 (𝜆, 𝑟𝑥) ≥ 𝑟
𝛼(𝑟)

𝐴𝑥 + 𝜆𝑟𝐵𝑥

≥ 𝑟𝐿 (𝜆, 𝑥) + (𝑟
𝛼(𝑟)

− 𝑟)𝐴𝑥

≥ 𝑟(1 +
𝑟
𝛼(𝑟)

− 𝑟

𝑟
𝜑 (𝑥, 𝜆)) 𝐿 (𝜆, 𝑥) ,

𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1) ,

(23)

where

𝜑 (𝜆, 𝑥) = sup {𝜏 > 0 | 𝐴𝑥 ≥ 𝜏𝐿 (𝜆, 𝑥)} , 𝑥 ∈ 𝑃
𝑒
. (24)

For any 𝑢, V ∈ 𝑃
𝑒
with 𝑢 ≤ V, (H1) implies that 𝐴𝑢,𝐴V ∈ 𝑃

𝑒
.

Further, there exists 0 < 𝜖 ≤ 1 such that 𝜖𝐴V ≤ 𝐴𝑢. Hence,
𝐴𝑥 ≥ 𝐴𝑢 ≥ 𝜖𝐴V ≥ 𝜖𝜑 (𝜆, V) 𝐿 (𝜆, V)

≥ 𝜖𝜑 (𝜆, V) 𝐿 (𝜆, 𝑥) , 𝑥 ∈ [𝑢, V] .
(25)
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Evidently,

𝜑 (𝜆, 𝑥) ≥ 𝜖𝜑 (𝜆, V) > 0, ∀𝑥 ∈ [𝑢, V] . (26)

Therefore, let 𝜂(𝑟, 𝑢, V) = (𝜖(𝑟𝛼(𝑟)−𝑟)/𝑟)𝜑(𝜆, V); then it follows
from (23) and (26) that

𝐿 (𝜆, 𝑟𝑥) ≥ 𝑟 (1 + 𝜂 (𝑟, 𝑢, V)) 𝐿 (𝜆, 𝑥) , 𝑥 ∈ [𝑢, V] , 𝑟 ∈ (0, 1).
(27)

The application of Lemma 1 concludes the proof of (i).

Step 3. Conclusion (ii) holds. Suppose that there exists 𝜆 ≥
𝜆
∗ such that 𝐿(𝜆, 𝑥) = 𝑥 has a solution 𝑥

𝜆
 in 𝑃

𝑒
. Since

𝑥
0
, 𝑥
𝜆
 ∈ 𝑃
𝑒
, by (6) there exists 𝑠 > 1 such that 𝑥

0
≤ 𝑠

𝑥
𝜆
 . Set

𝑦
𝜆
 = 𝑠

𝑥
𝜆
 . Then

𝐿 (𝜆

, 𝑦
𝜆
) = 𝐴 (𝑠


𝑥
𝜆
) + 𝜆


𝐵 (𝑠

𝑥
𝜆
)

≤ 𝑠

((𝑠

)
𝛼(1/𝑠


)−1

𝐴𝑥
𝜆
 + 𝜆

𝐵𝑥
𝜆
) ≤ 𝑠


𝑥
𝜆
 = 𝑦
𝜆
 ,

(28)

which means that 𝜆 ∈ Λ. Equation (21) implies that 𝜆 < 𝜆∗,
which is a contradiction to the hypothesis 𝜆 ≥ 𝜆∗.

Step 4. Conclusion (iii) holds. Let 𝜆
1
, 𝜆
2
∈ [0, 𝜆

∗
) with 𝜆

1
≤

𝜆
2
. Then 𝐿(𝜆

1
, 𝑥
𝜆
2

) ≤ 𝐿(𝜆
2
, 𝑥
𝜆
2

) = 𝑥
𝜆
2

, and, further, 𝑥
0
≤

𝐿(𝜆
1
, 𝑥
0
) ≤ 𝐿(𝜆

1
, 𝑥
𝜆
2

) ≤ 𝑥
𝜆
2

. By the proof of conclusion (i),
𝑥 = 𝐿(𝜆

1
, 𝑥)has a unique solution𝑥∗

𝜆
1

∈ [𝑥
0
, 𝑥
𝜆
2

] in𝑃
𝑒
, which

implies that 𝑥
𝜆
1

= 𝑥
∗

𝜆
1

. Thus, 𝑥
𝜆
1

≤ 𝑥
𝜆
2

.

Step 5. Conclusion (iv) holds. Let 𝜆
0
∈ (0, 𝜆

∗
). By conclusion

(iii) we have

𝑥
𝜆
≤ 𝑥
𝜆
0

, ∀0 < 𝜆 < 𝜆
0
. (29)

Let

𝜏
𝜆
= sup {𝜏 > 0𝑥

𝜆
≥ 𝜏𝑥
𝜆
0

} , 0 < 𝜆 < 𝜆
0
. (30)

Then 𝜏
𝜆
is nondecreasing in 𝜆 for 𝜆 ∈ [0, 𝜆

0
), and

0 < 𝜏
𝜆
≤ 1, 𝑥

𝜆
≥ 𝜏
𝜆
𝑥
𝜆
0

, 0 < 𝜆 < 𝜆
0
. (31)

We assert that

lim
𝜆→𝜆

−

0

𝜏
𝜆
= 1, (32)

if, otherwise, there exists a sequence {𝜆
𝑛
}

0 < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝜆

0
, lim
𝑛→+∞

𝜆
𝑛
= 𝜆
0 (33)

such that

lim
𝑛→+∞

𝜏
𝜆
𝑛

= 𝜏
0
, 𝜏
𝜆
𝑛

≤ 𝜏
0
< 1. (34)

By (23), (24), and (30), we obtain

𝑥
𝜆
𝑛

= 𝐿 (𝜆
𝑛
, 𝑥
𝜆
𝑛

) ≥ 𝐿 (𝜆
𝑛
, 𝜏
𝜆
𝑛

𝑥
𝜆
0

)

= 𝐿(𝜆
𝑛
,

𝜏
𝜆
𝑛

𝜏
0

𝜏
0
𝑥
𝜆
0

) ≥

𝜏
𝜆
𝑛

𝜏
0

𝐿 (𝜆
𝑛
, 𝜏
0
𝑥
𝜆
0

)

≥
𝜆
𝑛

𝜆
0

𝜏
𝜆
𝑛

𝜏
0

𝐿 (𝜆
0
, 𝜏
0
𝑥
𝜆
0

)

≥
𝜆
𝑛

𝜆
0

𝜏
𝜆
𝑛

(1 +
𝜏
𝛼(𝜏
0
)

0
− 𝜏
0

𝜏
0

𝜑 (𝑥
𝜆
0

, 𝜆
0
))𝑥
𝜆
0

.

(35)

Therefore,

𝜏
𝜆
𝑛

≥
𝜆
𝑛

𝜆
0

𝜏
𝜆
𝑛

(1 +
𝜏
𝛼(𝜏
0
)

0
− 𝜏
0

𝜏
0

𝜑 (𝑥
𝜆
0

, 𝜆
0
)) . (36)

That is,

𝜆
𝑛

𝜆
0

(1 +
𝜏
𝛼(𝜏
0
)

0
− 𝜏
0

𝜏
0

𝜑 (𝑥
𝜆
0

, 𝜆
0
)) ≤ 1. (37)

Taking the limit 𝑛 → +∞, we get

1 +
𝜏
𝛼(𝜏
0
)

0
− 𝜏
0

𝜏
0

𝜑 (𝑥
𝜆
0

, 𝜆
0
) ≤ 1, (38)

which is a contradiction. So, (32) holds.
From (29), (31), and (32), we have

𝑥
𝜆
0

− 𝑥
𝜆


≤ 𝑁 (1 − 𝜏

𝜆
)

𝑥
𝜆
0


, 0 < 𝜆 < 𝜆

0
, (39)

which implies that ‖𝑥
𝜆
0

− 𝑥
𝜆
‖ → 0 as 𝜆 → 𝜆

−

0
.

A similar argument shows that, for any𝜆
0
∈ [0, 𝜆

∗
), ‖𝑥
𝜆
−

𝑥
𝜆
0

‖ → 0 as 𝜆 → 𝜆
+

0
. Thus, conclusion (iv) holds.The proof

of Theorem 9 is complete.

Noting (18) and (21), we can easily obtain the following
result.

Theorem 10. Assume that the hypotheses in Theorem 9 hold.
If lim
𝑟→0
+𝑟
1−𝛼(𝑟)

= 0, then 𝜆∗ in Theorem 9 satisfies

𝜆
∗
≥

1

𝜌 (𝑥
0
)
, (40)

where 𝜌(𝑥
0
) are defined by (16).

Corollary 11. Assume that 𝐴 is a generalized 𝛼
1
-concave

operator and 𝐵 is a pseudo generalized 𝛼
2
-concave operator.

Then

(i) (1) has a unique solution 𝑥
𝜆
∈ 𝑃
𝑒
for 𝜆 ∈ [0, +∞).

Moreover, for any 𝑢
0
∈ 𝑃
𝑒
, set 𝑢

𝑛
= 𝐿(𝜆, 𝑢

𝑛−1
) (𝑛 =

1, 2, . . .); then lim
𝑛→+∞

‖𝑢
𝑛
− 𝑥
𝜆
‖ = 0;

(ii) 𝑥
𝜆
is increasing in 𝜆 for 𝜆 ∈ [0, +∞);

(iii) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ [0, +∞);
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(iv) either 𝑥
𝜆
= 𝑥
0
(the unique fixed point of 𝐴 in 𝑃

𝑒
) or

lim
𝜆→+∞

‖𝑥
𝜆
‖ = +∞.

Proof. From Definitions 2 and 4, it is clear that 𝐿(𝜆, 𝑃
𝑒
) ⊂ 𝑃
𝑒
.

Since𝐴 and𝐵 are increasing, 𝐿(𝜆, 𝑥) is increasing in 𝑥 for any
𝜆 ≥ 0. Let 𝛼(𝑟) = max{𝛼

1
(𝑟), 𝛼
2
(𝑟)}; then

𝐿 (𝜆, 𝑟𝑥) = 𝐴 (𝑟𝑥) + 𝜆𝐵 (𝑟𝑥)

≥ 𝑟
𝛼
1
(𝑟)
𝐴𝑥 + 𝜆𝑟

𝛼
2
(𝑟)
𝐵𝑥

≥ 𝑟
𝛼(𝑟)

𝐿 (𝜆, 𝑥) , 𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1) .

(41)

Thus, conclusion (i) follows from Lemma 3. Similar to the
proofs of Theorem 9, the proofs of (ii) and (iii) can be
completed.

Note that

𝑥
𝜆
= 𝐴𝑥
𝜆
= 𝑥
0
, if 𝐵|

𝑃
𝑒

≡ 𝜃,

𝑥
𝜆
= 𝐴𝑥
𝜆
+ 𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

0
, if 𝐵|

𝑃
𝑒

̸≡ 𝜃,

(42)

and, therefore, normality of 𝑃 implies that conclusion (iv)
holds. This ends the proof.

Theorem 12. Assume that 𝐴 is a pseudo generalized 𝛼
1
-

concave operator and 𝐵 is a generalized 𝛼
2
-concave operator.

Then,

(i) (1) has a unique solution 𝑥
𝜆
∈ 𝑃
𝑒
for 𝜆 ∈ (0, +∞).

Moreover, for any 𝑢
0
∈ 𝑃
𝑒
, set 𝑢

𝑛
= 𝐿(𝜆, 𝑢

𝑛−1
) (𝑛 =

1, 2, . . .); then lim
𝑛→+∞

‖𝑢
𝑛
− 𝑥
𝜆
‖ = 0;

(ii) 𝑥
𝜆
is increasing with respect to 𝜆 for 𝜆 ∈ (0, +∞);

(iii) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ (0, +∞);

(iv) lim
𝜆→0

‖𝑥
𝜆
− 𝐴𝑥
𝜆
‖ = 0; lim

𝜆→+∞
‖𝑥
𝜆
‖ = +∞.

Proof. Similar to the proof of Corollary 11, the proofs of (i),
(ii), and (iii) can be completed. To prove (iv), let 𝑥

1
∈ 𝑃
𝑒
be

the unique solution of (1) with 𝜆 = 1. From conclusion (ii) of
this theorem, we obtain

𝜃 < 𝑥
𝜆
− 𝐴𝑥
𝜆
= 𝜆𝐵𝑥

𝜆
≤ 𝜆𝐵𝑥

1
, 0 < 𝜆 < 1,

𝑥
𝜆
= 𝐴𝑥
𝜆
+ 𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

1
> 𝜃, 𝜆 > 1.

(43)

Therefore,
𝑥𝜆 − 𝐴𝑥𝜆

 ≤ 𝑁𝜆
𝐵𝑥1

 , 0 < 𝜆 < 1,

𝑥𝜆
 ≥

𝜆

𝑁

𝐵𝑥1
 , 𝜆 > 1,

(44)

which implies that lim
𝜆→0

‖𝑥
𝜆
−𝐴𝑥
𝜆
‖ = 0 and lim

𝜆→+∞
‖𝑥
𝜆
‖

= +∞. This ends the proof.

Next, we discuss the case of (1) with 𝐿(𝜆, 𝑥) = 𝑥
0
+

𝜆𝐵𝑥, 𝑥
0
∈ 𝐸; that is,

𝑥
0
+ 𝜆𝐵𝑥 = 𝑥 (45)

which can be widely applied to various problems for differen-
tial equations.

Theorem 13. Assume that 𝑥
0

∈ 𝑃
𝑒
and 𝐵 is a pseudo

subhomogeneous operator. Then

(i) there exists a 𝜆∗ ≥ (1/𝜌
0
) > 0 such that (45) has a

unique solution 𝑥
𝜆
∈ 𝑃
𝑒
for 𝜆 ∈ [0, 𝜆

∗
). Moreover, for

any 𝑢
0
∈ 𝑃
𝑒
and a sequence 𝑢

𝑛
= 𝑥
0
+ 𝜆𝐵𝑢

𝑛−1
(𝑛 =

1, 2, . . .), one has lim
𝑛→+∞

‖𝑢
𝑛
− 𝑥
𝜆
‖ = 0;

(ii) (45) has no solution in 𝑃
𝑒
for 𝜆 ≥ 𝜆∗;

(iii) 𝑥
𝜆
is increasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iv) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆

∗
);

moreover, lim
𝜆→0

‖𝑥
𝜆
− 𝑥
0
‖ = 0;

(v) further, if 𝐵𝑥 ∈ 𝑃
𝑒
for 𝑥 ≥ 𝑥

0
and 𝐵 is completely

continuous, then lim
𝜆→𝜆

∗
−0
‖𝑥
𝜆
‖ = +∞.

Here 𝜌
0
= inf{𝜏 > 0 | 𝐵𝑥

0
≤ 𝜏𝑥
0
}.

Proof. Define an operator 𝐴 by 𝐴𝑥 = 𝑥
0
for 𝑥 ∈ 𝑃. Then

𝐴 : 𝑃 → 𝑃
𝑒
is increasing and 𝑥

0
is the unique fixed point of

𝐴 in 𝑃
𝑒
.

Conclusions (i)–(iv) can be proved similarly to the proof
of Theorem 9. We only prove conclusion (v) by considering
the following two cases.

Case 1 (𝜆∗ = +∞). Note that 𝑥
𝜆
= 𝑥
0
+𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

𝜆
≥ 𝜆𝐵𝑥

0

for 𝜆 ∈ [0, +∞); it is clear that lim
𝜆→𝜆

∗
−0
‖𝑥
𝜆
‖ = +∞.

Case 2 (𝜆∗ < +∞). In this case, suppose, to the contrary,
that lim

𝜆→𝜆
∗
−0
‖𝑥
𝜆
‖ ̸= +∞.Then, there exists a nondecreasing

sequence {𝜆
𝑛
} ⊂ [0, 𝜆

∗
) and a constant 𝑀 > 0 such that

lim
𝑛→+∞

𝜆
𝑛
= 𝜆
∗ and ‖𝑥

𝜆
𝑛

‖ ≤ 𝑀.
Since 𝐵 is completely continuous, there exist 𝑥∗ ∈ 𝑃 and

subsequence {𝜆
𝑛
𝑖

} ⊂ {𝜆
𝑛
} such that lim

𝑖→+∞
𝐵𝑥
𝜆
𝑛
𝑖

= 𝑥
∗.

Taking the limitation 𝑖 → +∞ to both sides of

𝑥
𝜆
𝑛
𝑖

= 𝑥
0
+ 𝜆
𝑛
𝑖

𝐵𝑥
𝜆
𝑛
𝑖

, (46)

we have lim
𝑖→+∞

𝑥
𝜆
𝑛
𝑖

= 𝑥
0
+𝜆
∗
𝑥
∗. Equation (46) implies that

𝑥
0
+ 𝜆
∗
𝑥
∗
= 𝑥
0
+ 𝜆
∗
𝐵 (𝑥
0
+ 𝜆
∗
𝑥
∗
) . (47)

The relation 𝑥
0
+ 𝜆
∗
𝑥
∗
> 𝑥
0
shows that 𝐵(𝑥

0
+ 𝜆
∗
𝑥
∗
) ∈ 𝑃
𝑒
.

Further,𝑥
0
+𝜆
∗
𝐵(𝑥
0
+𝜆
∗
𝑥
∗
) ∈ 𝑃
𝑒
.Thismeans that𝑥

0
+𝜆
∗
𝑥
∗
∈

𝑃
𝑒
.Therefore, (47) gives rise to the contradiction 𝜆∗ ∈ [0, 𝜆∗).

This finishes the proof.

Corollary 14. Assume that 𝑥
0
∈ 𝑃
𝑒
and 𝐵 is pseudo general-

ized 𝛼-concave. Then,

(i) (45) has a unique solution 𝑥
𝜆
∈ 𝑃
𝑒
for 𝜆 ∈ [0, +∞).

Moreover, for any 𝑢
0
∈ 𝑃
𝑒
, set 𝑢

𝑛
= 𝑥
0
+ 𝜆𝐵𝑢

𝑛−1
(𝑛 =

1, 2, . . .); then lim
𝑛→+∞

‖𝑢
𝑛
− 𝑥
𝜆
‖ = 0;

(ii) 𝑥
𝜆
is increasing with respect to 𝜆 for 𝜆 ∈ [0, +∞);

(iii) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ [0, +∞);

(iv) either 𝑥
𝜆
= 𝑥
0
, 𝜆 ≥ 0 or lim

𝜆→+∞
‖𝑥
𝜆
‖ = +∞.
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Proof. It is obvious that 𝐿(𝜆, 𝑥) = 𝑥
0
+ 𝜆𝐵𝑥 is increasing in 𝑥

and 𝐿(𝜆, 𝑃
𝑒
) ⊂ 𝑃
𝑒
for any 𝜆 ≥ 0. In addition,

𝐿 (𝜆, 𝑟𝑥) = 𝑥
0
+ 𝜆𝐵 (𝑟𝑥) ≥ 𝑥

0

+ 𝜆𝑟
𝛼(𝑟)

𝐵𝑥 ≥ 𝑟
𝛼(𝑟)

𝐿 (𝜆, 𝑥) , 𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1) .

(48)

This means that 𝐿(𝜆, ⋅) is generalized 𝛼-concave. Thus, con-
clusion (i) follows from Lemma 3. Similarly to the proof of
Corollary 11, the proofs of (ii), (iii), and (iv) can be com-
pleted.

From the proofs of Theorem 12, Theorem 13, and
Corollary 14, we easily prove the following results.

Theorem 15. Assume that 𝑥
0
∈ 𝑃
𝑒
and 𝐵 is a generalized 𝛼-

concave operator. Then,

(i) (45) has a unique solution 𝑥
𝜆
∈ 𝑃
𝑒
for 𝜆 ∈ (0, +∞).

Moreover, for any 𝑢
0
∈ 𝑃
𝑒
, set 𝑢

𝑛
= 𝑥
0
+ 𝜆𝐵𝑢

𝑛−1
(𝑛 =

1, 2, . . .); then lim
𝑛→+∞

‖𝑢
𝑛
− 𝑥
𝜆
‖ = 0;

(ii) 𝑥
𝜆
is increasing in 𝜆 and 𝑥

𝜆
≥ 𝑥
0
for 𝜆 ∈ (0, +∞);

(iii) 𝑥
𝜆
is continuous with respect to 𝜆 for 𝜆 ∈ (0, +∞);

(iv) lim
𝜆→0

‖𝑥
𝜆
− 𝑥
0
‖ = 0 and lim

𝜆→+∞
‖𝑥
𝜆
‖ = +∞.

Remark 16. Different fromTheorem 9 and Corollary 11, even
if (1) satisfies the conditions in Theorem 12, (1) may not have
a fixed point in 𝑃

𝑒
when 𝜆 = 0.

3. Three-Point Nonlinear Boundary
Value Problem

In this section, based on the discussion of the previous
section, we study the existence and uniqueness of positive
solutions for the three-point BVP(2) and the dependence of
solutions on the parameter 𝜆.

In what follows, set 𝐸 = 𝐶[0, 1], the Banach space
of continuous functions on [0, 1] with the norm ‖𝑥‖ =

max
𝑡∈[0,1]

|𝑥(𝑡)|. Consider that 𝑃 = {𝑥 ∈ 𝐶[0, 1]|𝑥(𝑡) ≥ 0, 𝑡 ∈

[0, 1]}. It is clear that 𝑃 is a normal cone with the normality
constant 1; 𝑃

𝑒
is given as in (5) with 𝑒(𝑡) = 𝜏 + 𝑡. Let

𝐺 (𝑡, 𝑠)

=
1

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)

×

{{{{

{{{{

{

(1 − 𝜎𝜉 − (1 − 𝜎) 𝑡) (𝜏 + 𝑠) , 0 ≤ 𝑠 ≤ min {𝜉, 𝑡} ,
(1 − 𝑡) (𝜏 + 𝑠) + 𝜎 (𝜉 + 𝜏) (𝑡 − 𝑠) , 𝜉 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝜏 + 𝑡) (1 − 𝑠 − 𝜎 (𝜉 − 𝑠)) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜉,

(𝜏 + 𝑡) (1 − 𝑠) , max {𝜉, 𝑡} ≤ 𝑠 ≤ 1.
(49)

It is easy to prove that

0 ≤ 𝐺 (𝑡, 𝑠)

≤
1 + 𝜎

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
(𝜏 + 𝑡) (1 − 𝑠) , 𝑡, 𝑠 ∈ [0, 1] .

(50)

Define two operators 𝐴 : 𝑃 → 𝐶[0, 1] and 𝐵 : 𝑃 → 𝐶[0, 1]

by

𝐴𝑥 (𝑡) =
𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
∫

1

0

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠.

(51)

𝐵𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (52)

It is clear that a positive solution of BVP(2) is equivalent to
nontrivial solution of (1) in 𝑃.

The following lemma can be proved easily by the Ascoli-
Arzela theorem.

Lemma 17. 𝐵 : 𝑃 → 𝐶[0, 1] is completely continuous.

The following hypotheses are needed in this section.

(L1) 𝑓 : [0, 1] × [0, +∞) → [0, +∞) is continuous.
(L2) 𝑓(𝑡, 𝑥) is increasing in 𝑥 ∈ [0, +∞) for fixed 𝑡 ∈ [0, 1]

and

𝑓 (𝑡, 𝑟𝑥) ≥ 𝑟𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ [0, 1] ,

𝑟 ∈ (0, 1) , 𝑥 ∈ [0, +∞) .

(53)

(L3) ℎ : [0, +∞) → [0, +∞) is continuous and ℎ(𝑥) ̸≡ 0.
(L4) ℎ(𝑥) is increasing in 𝑥 ∈ [0, +∞) and there exists a

function 𝛼(𝑟) ∈ (0, 1) such that

ℎ (𝑟𝑥) ≥ 𝑟
𝛼(𝑟)

ℎ (𝑥) , ∀𝑟 ∈ (0, 1) , 𝑥 ∈ (0, +∞) . (54)

(L5) 𝑔 : [0, 1] → [0, +∞) is continuous.

(L6) ∫1
0
(𝜏 + 𝑠)(1 − 𝑠)𝑔(𝑠)𝑑𝑠 > 0.

Lemma 18. Suppose that (L1) and (L2) hold.Then 𝐵 : 𝑃 → 𝑃

is increasing and satisfies

(i) 𝐵(𝑃 \ {𝜃}) ⊂ 𝑃
𝑒
;

(ii) 𝐵(𝑟𝑥) ≥ 𝑟𝐵𝑥, 𝑥 ∈ 𝑃
𝑒
, 𝑟 ∈ (0, 1).

Proof. From (50), (52), and (L1), it is clear that 𝐵(𝑃) ⊂ 𝑃. By
(L2) we obtain that 𝐵 is an increasing operator and, for any
𝑥 ∈ 𝑃 \ {𝜃},

𝐵𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≤

(1 + 𝜎) ∫
1

0
(1 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
(𝜏 + 𝑡)

≤

(1 + 𝜎) ∫
1

0
(1 − 𝑠) 𝑓 (𝑠, ‖𝑥‖) 𝑑𝑠

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
𝑒 (𝑡)

≤ 𝑙 (𝑥) 𝑒 (𝑡) ,

(55)
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where 𝑙(𝑥) ≥ max{((1+𝜎) ∫1
0
(1− 𝑠)𝑓(𝑠, ‖𝑥‖)𝑑𝑠)/(1+𝜏−𝜎(𝜉+

𝜏)), 1}, and

𝐵 (𝑟𝑥) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑟𝑥 (𝑠)) 𝑑𝑠

≥ 𝑟∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 = 𝑟𝐵𝑥 (𝑡) , 𝑟 ∈ (0, 1) .

(56)

The proof is complete.

Theorem 19. Suppose that (L1)–(L5) hold. Then there exists
𝜆
∗
> 0 such that BVP(2) has a unique positive solution 𝑥

𝜆
(𝑡)

in 𝑃
𝑒
for 𝜆 ∈ [0, 𝜆

∗
) and has no solution in 𝑃

𝑒
for 𝜆 ≥

𝜆
∗. Furthermore such a solution 𝑥

𝜆
(𝑡) satisfies the following

properties:
(i) for any 𝑢

0
∈ 𝑃
𝑒
, set

𝑢
𝑛
(𝑡) =

𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
∫

1

0

ℎ (𝑢
𝑛−1

(𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠

+ 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑛−1

(𝑠)) 𝑑𝑠,

(57)

and then 𝑢
𝑛
(𝑡) uniformly converges to 𝑥

𝜆
(𝑡) on [0, 1];

(ii) 𝑥
𝜆
(𝑡) is nondecreasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iii) 𝑥
𝜆
(𝑡) is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆∗).

Proof. Consider 𝐴 and 𝐵 defined by (51) and (52). By (L3)–
(L5), 𝐴 : 𝑃 → 𝑃 is increasing. For any 𝑥 ∈ 𝑃

𝑒
, from (50) we

have

∫
1

0
ℎ (𝑥 (𝑠)) 𝑑𝑠

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
(𝜏 + 𝑡)

≤ 𝐴𝑥 (𝑡)

≤

∫
1

0
ℎ (𝑥 (𝑠)) 𝑑𝑠 + (1 + 𝜎) ∫

1

0
(1 − 𝑠) 𝑔 (𝑠) 𝑑𝑠

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
(𝜏 + 𝑡) ,

(58)

which means that 𝐴(𝑃
𝑒
) ⊂ 𝑃
𝑒
. In addition, for any 𝑟 ∈ (0, 1)

and 𝑥 ∈ 𝑃
𝑒
, by (L4) we obtain

𝐴 (𝑟𝑥) (𝑡) =
𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)

× ∫

1

0

ℎ (𝑟𝑥 (𝑠)) 𝑑𝑠 + ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠

≥ 𝑟
𝛼(𝑟)

(
𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
∫

1

0

ℎ (𝑥 (𝑠)) 𝑑𝑠

+𝑟
−𝛼(𝑟)

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠)

≥ 𝑟
𝛼(𝑟)

𝐴𝑥 (𝑡) .

(59)

So, the operator 𝐴 is generalized 𝛼-concave. Lemma 18
implies that 𝐵 is pseudo subhomogeneous. The conclusion
follows fromTheorem 9. The proof is complete.

In the following, we consider three special cases of
BVP(2).

Case 1. BVP(2) has no perturbation; that is, 𝑔(𝑡) ≡ 0.
From the proof of Theorem 19, we have the following

result.

Theorem 20. Suppose that (L1)–(L4) hold. Then there exists
𝜆
∗
> 0 such that

−𝑥


(𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝜏𝑥


(0) , 𝑥 (1) − 𝜎𝑥 (𝜉) = ∫

1

0

ℎ (𝑥 (𝑠)) 𝑑𝑠

(60)

have a unique positive solution 𝑥
𝜆
(𝑡) ∈ 𝑃

𝑒
for 𝜆 ∈ [0, 𝜆∗) and

no solution in 𝑃
𝑒
for 𝜆 ≥ 𝜆∗. Furthermore such a solution 𝑥

𝜆
(𝑡)

satisfies the following properties:

(i) for any 𝑢
0
∈ 𝑃
𝑒
, set

𝑢
𝑛
(𝑡) =

𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
∫

1

0

ℎ (𝑢
𝑛−1

(𝑠)) 𝑑𝑠

+ 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑛−1

(𝑠)) 𝑑𝑠,

(61)

and then 𝑢
𝑛
(𝑡) uniformly converges to 𝑥

𝜆
(𝑡) on [0, 1];

(ii) 𝑥
𝜆
(𝑡) is nondecreasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iii) 𝑥
𝜆
(𝑡) is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆∗).

Case 2. The nonlinear boundary value control function ℎ(𝑥)
in BVP(2) reduces to the linear one ℎ

0
(> 0).

Theorem 21. Suppose that (L1), (L2), and (L5) hold. Then,
there exists 𝜆∗ > 0 such that

−𝑥


(𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝜏𝑥


(0) , 𝑥 (1) − 𝜎𝑥 (𝜉) = ℎ
0

(62)

have a unique positive solution 𝑥
𝜆
(𝑡) ∈ 𝑃

𝑒
for 𝜆 ∈ [0, 𝜆

∗
) and

no solution in 𝑃
𝑒
for 𝜆 ≥ 𝜆∗; furthermore such a solution 𝑥

𝜆
(𝑡)

satisfies the following properties:

(i) for any 𝑢
0
∈ 𝑃
𝑒
, set

𝑢
𝑛
(𝑡) =

𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
ℎ
0
+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠

+ 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑛−1

(𝑠)) 𝑑𝑠,

(63)

and then 𝑢
𝑛
(𝑡) uniformly converges to 𝑥

𝜆
(𝑡) on [0, 1];

(ii) 𝑥
𝜆
(𝑡) is nondecreasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iii) 𝑥
𝜆
(𝑡) is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iv) lim
𝜆→𝜆

∗
−0
‖𝑥
𝜆
‖ = +∞.
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Proof. Define operator 𝐵 as (52) and let

𝑥
0
(𝑡) =

𝜏 + 𝑡

1 + 𝜏 − 𝜎 (𝜉 + 𝜏)
ℎ
0
+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠. (64)

Then 𝑥
0
∈ 𝑃
𝑒
. By Lemmas 17 and 18, 𝐵 : 𝑃 → 𝑃 is completely

continuous and 𝐵 is pseudo subhomogeneous, and 𝐵𝑥 ∈ 𝑃
𝑒

for 𝑥 ≥ 𝑥
0
. The application of Theorem 13 completes the

proof.

Case 3. The nonlinear boundary value control function ℎ(𝑥)
in BVP(2) vanishes; that is, ℎ(𝑥) ≡ 0 for 𝑡 ∈ [0, 1].

Theorem 22. Suppose that (L1), (L2), (L5), and (L6) hold.
Then there exists 𝜆∗ > 0 such that

−𝑥


(𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝜏𝑥


(0) , 𝑥 (1) − 𝜎𝑥 (𝜉) = 0

(65)

have a unique positive solution 𝑥
𝜆
(𝑡) ∈ 𝑃

𝑒
for 𝜆 ∈ [0, 𝜆

∗
) and

no solution in 𝑃
𝑒
for 𝜆 ≥ 𝜆∗; furthermore such a solution 𝑥

𝜆
(𝑡)

satisfies the following properties:

(i) for any 𝑢
0
∈ 𝑃
𝑒
, set

𝑢
𝑛
(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠 + 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑛−1

(𝑠)) 𝑑𝑠,

(66)

and then 𝑢
𝑛
(𝑡) uniformly converges to 𝑥

𝜆
(𝑡) on [0, 1];

(ii) 𝑥
𝜆
(𝑡) is nondecreasing in 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iii) 𝑥
𝜆
(𝑡) is continuous with respect to 𝜆 for 𝜆 ∈ [0, 𝜆∗);

(iv) lim
𝜆→𝜆

∗
−0
‖𝑥
𝜆
‖ = +∞.

Proof. Define operator 𝐵 as (52) and let

𝑥
0
(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠. (67)

Note the monotonicity of 𝐺(𝑡, 𝑠) in 𝑡; it follows that

𝐺 (𝑡, 𝑠) ≥
𝜎 (1 − 𝜉) (𝜏 + 𝜉)

(1 + 𝜏 − 𝜎 (𝜉 + 𝜏)) (𝜏 + 1)
2

× (𝜏 + 𝑠) (1 − 𝑠) (𝜏 + 𝑡) , 𝑡, 𝑠 ∈ [0, 1] ,

(68)

which together with (50), (L5), and (L6) leads to 𝑥
0
∈ 𝑃
𝑒
.

By Lemma 18, 𝐵 : 𝑃 → 𝑃 is pseudo subhomogeneous and
𝐵𝑥 ∈ 𝑃

𝑒
for 𝑥 ≥ 𝑥

0
. The application of Theorem 13 finishes

the proof.
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