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A wavelet iterative method based on a numerical integration by using the Coiflets orthogonal wavelets for a nonlinear fractional
differential equation is proposed. With the help of Laplace transform, the fractional differential equation was converted into
equivalent integral equation of convolution type. By using the wavelet approximate scheme of a function, the undesired jump or
wiggle phenomenon near the boundary points was avoided and the expansion constants in the approximation of arbitrary nonlinear
termof the unknown function can be explicitly expressed in finite terms of the expansion ones of the approximation of the unknown
function. Then a numerical integration method for the convolution is presented. As an example, an iterative method which can
solve the singular nonlinear fractional Riccati equations is proposed. Numerical results are performed to show the efficiency of the
method proposed.

1. Introduction

In the recent years, fractional differential equations have been
found to be effective to describe some physical phenomena
such as rheology, damping laws, fractional random walk,
and fluid flow [1–6]; the analytical asymptotic techniques
of solutions to various fractional differential equations have
been studied and many new numerical techniques have been
widely applied to the nonlinear problems. In this paper,
we present numerical solutions for the fractional Riccati
differential equation

𝐷
𝛼

𝑦 (𝑡) = 𝐴 (𝑡) + 𝐵𝑦 (𝑡) + 𝐶[𝑦 (𝑡)]
2

,

𝑡 > 0, 𝑤 − 1 < 𝛼
𝑚

≤ 𝑤

(1)

with initial conditions

𝐷
𝜆

𝑡
𝑦 (0) = 𝑦

𝜆
, 𝜆 = 0, 1, . . . , 𝑤 − 1, (2)

where 𝐴(𝑡) is a known function, 𝐵, 𝐶, 𝑦
𝜆
, 𝜆 = 0, 1, . . . , 𝑤 −

1, are arbitrary constants, and 𝛼 is a parameter describing
the order of the fractional derivative. The general response
expression contains a parameter describing the order of

the fractional derivative that can be varied to obtain various
responses. For the case of 𝛼 = 1, the fractional equation
reduces the classical Riccati differential equation.

In this paper, we will introduce a modified fractional dif-
ferential operator 𝐷

𝛼 proposed by Caputo and Mainardi [3].
We mention the important example: the Riccati equations,
which play a significant role inmany fields of engineering and
applied science [1, 5], and the analytical solution for Riccati
equation in an explicit form seems to be unlikely except for
certain special situations. Therefore, the numerical solutions
for the Riccati differential equations are important for engi-
neers and scientists. For example, Mohammadi and Hosseini
[5] and Momani and Shawagfeh [7] solved nonlinear partial
differential equations of fractional order by the Adomian
decomposition method (ADM), which is based on applying
the inverse of the fractional operator and has complicated
algorithms in calculating much Adomian polynomials for
nonlinear problems, and theHe’s variational iterationmethod
(VIM) [8], the piecewise variational iteration method (VIM)
[9], which does not need the so-called Adomian polynomials
but depends on variational theory with the proper selection
of the initial approximation 𝑢

0
(𝑡), and they both need a large

number of iterative calculations.The homotopy perturbation
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(HPM) [10, 11] provides an effective procedure for explicit
and numerical solutions of differential equations; however,
the rate of convergence of the series solution depends on the
auxiliary parameter ℎ and an initial guess 𝑢

0
(𝑡).

Despite the progresses outlined above, the literatures on
high accuracy and easy to implement numerical techniques
are suitable for solving nonlinear Riccati differential equa-
tions. The wavelet method, which is a general analytical
method and has been widely used by many mathemati-
cians and engineers to solve various functional equations,
was applied to signal decompositions and reconstructions,
Laplace inversions [12], differential equation solutions [13–
15], and active vibration control of piezoelectric smart struc-
tures [16, 17]. However, it is somewhat surprising that only
very few studies have focused on the solution of fractional
differential equations by using wavelet methods [18, 19].

In this paper, we introduce a Coiflets-based wavelet
Laplace method (CWLM) that can efficiently solve Riccati
differential equation. This method depends on an explicit
wavelet approximation scheme for the nonlinear terms of
unknown function in the equation, in which series coeffi-
cients are just the function samplings at corresponding nodal
points, and also by using Laplace transform, the equation
with singular integral kernel was converted into equivalent
nonsingular integral equation. At last, numerical simulations
are performed to show the efficiency of themethod proposed.

2. Preliminaries

2.1. Fractional Derivative Operator. Here we give some nec-
essary definitions and mathematical preliminaries of the
fractional calculus which are used in this paper. The two
most commonly used definitions are the Riemann-Liouville
and Caputo. The difference between the two definitions is
in the order of evaluation. The Riemann-Liouville fractional
derivative operator of order 𝛼 > 0 is defined as [2]

𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0. (3)

Since the Riemann-Liouville fractional derivative has some
disadvantages when trying to model real-world phenomena
with initial and boundary conditions of fractional differential
equations, in this paper, we will introduce a modified frac-
tional differential operator which is proposed by Caputo and
Mainardi [3].

For 𝑛 to be the smallest integer that exceeds 𝛼, the Caputo
time-fractional derivative operator of order 𝛼 > 0 is defined
as [3]

𝐷
𝛼

𝑡
𝑓 (𝑡) =

{{

{{

{

𝑓
(𝑛)

(𝑡) , 𝛼 = 𝑛 ∈ 𝑁

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝛼+1−𝑛

𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,

(4)

where 𝑓
(𝑛)

(𝑡) is 𝑛-order derivative of the function 𝑓(𝑡) and
Γ(𝑛 − 𝛼) is the Gamma function.

The Laplace transform of Caputo fractional derivative
operator 𝐷𝛼

𝑡
𝑓(𝑡) is [3]

𝐿 [𝐷
𝛼

𝑡
𝑓 (𝑡)] = 𝑠

𝛼

𝐿 [𝑓 (𝑡)] −

𝑛−1

∑

𝑚=0

𝑠
𝛼−1−𝑚

𝑓
(𝑚)

(0
+

) ,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁.

(5)

For more details on fractional calculus see [2, 3].

2.2. Coiflets OrthogonalityWavelet. Function 𝜙(𝑥) ∈ 𝐿
2

(R) is
called orthogonal scaling function, if 𝜙(𝑥) has the following
properties.

(1) There is a sequence set {𝑝
𝑘
, 𝑘 ∈ Z}, and it satisfies

𝜙 (𝑥) = ∑

𝑘

𝑝
𝑘
𝜙 (2𝑥 − 𝑘) . (6)

(2) Set {𝜙
𝑛,𝑘

(𝑥) = 2
𝑛/2

𝜙(2
𝑛

𝑥 − 𝑘), 𝑘 ∈ Z}. Satisfy the
orthogonality conditions; that is,

∫

∞

−∞

𝜙
𝑛,𝑘

(𝑥) 𝜙
𝑛,𝑙

(𝑥) 𝑑𝑥 = 𝛿
𝑘,𝑙
, (7)

where

𝛿
𝑘,𝑙

= {
0, 𝑘 ̸= 𝑙

1, 𝑘 = 𝑙
(8)

is Kronecker-Delta function.
(3) For all 𝑓 ∈ 𝐿

2

(R), note

P
𝑛
𝑓 (𝑥) ≡ ∑

𝑘∈Z
𝑐
𝑛,𝑘

𝜙
𝑛,𝑘

(𝑥) , (9)

where

𝑐
𝑛,𝑘

≡ ∫
R
𝑓 (𝑥) 𝜙

𝑛,𝑘
(𝑥) 𝑑𝑥. (10)

Function space is

𝑉
𝑛
≡ clos2

𝐿
(R) {𝜙

𝑛,𝑘
} , 𝑘 ∈ 𝑍 >, 𝑛 ∈ 𝑍. (11)

Satisfy the following relations:

(i) {0} ⋅ ⋅ ⋅ ⊂ 𝑉
−2

⊂ 𝑉
−1

⊂ 𝑉
0
⊂ 𝑉
1
⊂ ⋅ ⋅ ⋅ ⊂ 𝐿

2

(R);
(ii) P
𝑛
𝑓(𝑥) ∈ 𝑉

𝑛
↔ P
𝑛
𝑓(2𝑥) ∈ 𝑉

𝑛+1
;

(iii) P
𝑛
𝑓(𝑥) ∈ 𝑉

𝑛
↔ P
𝑛
𝑓(𝑥 + 2

−𝑛

) ∈ 𝑉
𝑛
;

(iv) lim
𝑛→∞

𝑉
𝑛
= ∪
𝑛

𝑉
𝑛
, is dense in 𝐿

2

(R);

(v) lim
𝑛→∞

∩
𝑛

𝑉
𝑛
= {0};

(vi) setting {𝜙(𝑥 − 𝑘)} forming a Riese base of 𝑉
0
; that is,

there exist constants 𝐴 and 𝐵 (0 < 𝐴 ≤ 𝐵 < ∞),
satisfy

𝐴∑

𝑘∈Z

𝑐𝑘


2

≤



∑

𝑘∈Z
𝑐
𝑘
𝜙(𝑥 − 𝑘)



2

2

≤ 𝐵∑

𝑘∈Z

𝑐𝑘


2

. (12)
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For the square sum of sequence space 𝑙
2
, arbitrary sequence

{𝑐
𝑘
} ∈ 𝑙
2
. Where coefficient 𝑝

𝑘
is low-pass filter coefficient, it

usually only has a finite number of nonzero value.
For any function 𝑓(𝑥) ∈ 𝐿

2
(R), we have the following

approximation:

𝑓 (𝑥) ≈ P
𝑛
𝑓 (𝑥) =

∞

∑

𝑘=−∞

𝑐
𝑛,𝑘

𝜙
𝑛,𝑘

(𝑥) , (13)

where the coefficient

𝑐
𝑛,𝑘

= ∫

∞

−∞

𝑓 (𝑥) 𝜙
𝑛,𝑘

(𝑥) 𝑑𝑥. (14)

For the Coiflets wavelet scaling function, Zhou and Wang
[20] have proposed the generalizedGaussian integralmethod
of wavelet, then we have

𝑐
𝑛,𝑘

= ∫

∞

−∞

𝑓 (𝑥) 𝜙
𝑛,𝑘

(𝑥) 𝑑𝑥 ≈ 2
−𝑛/2

𝑓(
𝑀
1
+ 𝑘

2𝑛
) , (15)

where 𝑀
1

= ∫
+∞

−∞

𝑥𝜙(𝑥)𝑑𝑥 is the first-order moment of
scaling function, which can be obtained accurately by filter
coefficients in the two-scale equations. The approximation
accuracy of (13) depends on the corresponding wavelet func-
tion vanishing moments, when the corresponding scaling
function 𝜙

𝑛,𝑘
(𝑥) has the order of vanishing moment 𝛾, and

𝑓(𝑥) ∈ 𝐶
𝛾, and we have [20]

𝑓 (𝑥) − P
𝑛
𝑓 (𝑥)

 = 𝑂 (2
−𝑛𝛾

) . (16)

It means that the error of (13) becomes smaller while the scale
and the maximum order of vanishing moments of scaling
function approximation increase. Substitute (15) into (13)

𝑓 (𝑥) ≈

∞

∑

𝑘=−∞

𝑓(
𝑀
1
+ 𝑘

2𝑛
)𝜙 (2

𝑛

𝑥 − 𝑘) . (17)

The form equation (17) of the function of single-point
reconstruction formula has the following characteristics [20].

(1) For the composite function of the function 𝑓(𝑥) or
the functional operationsΠ[𝑓(𝑥)], its reconstruction
(or approximation) formula is

Π𝑓 (𝑥) ≈ 2
−𝑛/2

∞

∑

𝑘=−∞

Π𝑓(
𝑀
1
+ 𝑘

2𝑛
)𝜙
𝑛,𝑘

(𝑥) , (18)

where 𝜙
𝑛,𝑘

(𝑥) = 2
𝑛/2

𝜙(2
𝑛

𝑥 − 𝑘); the establishment of
(18) is obvious, because (18) is for the establishment
of an arbitrary function form, of course, including
its complex functional form.Therefore, simply square
integrable complex functions Π[𝑓(⋅)] can be treated
as 𝑓(⋅) in (18). In this way, furthermore, the impor-
tance of (18) is, for an arbitrary function𝑓(𝑥) over the
function operatorΠ (which may be nonlinear opera-
tor) transformation, the computing of its right-hand
side is equivalent to a linear operator computing.That
is, the coefficient of the scaling function Π[𝑓(𝑥)] can
be obtained by put operator Π on the role of the
coefficients 𝑓(⋅).

(2) For the integral operator or the derivative operatorD
on the function 𝑓(𝑥), we have

D [𝑓 (𝑥)] ≈ 2
−𝑛/2

∞

∑

𝑘=−∞

𝑓(
𝑀
1
+ 𝑘

2𝑛
)D [𝜙

𝑛,𝑘
(𝑥)] . (19)

That is, we just need to put the role of operator D on
𝜙
𝑛,𝑘

(𝑥) in (17).

As we know, wavelet series approximation is a square
integrable function defined in the infinite interval, when the
approximating function is defined only in a finite interval,
and we need to truncate the wavelet series, which may intro-
duce the boundary effect significantly, and the corresponding
numerical method of calculation led to decreased accuracy.
Traditionally, general treatment of boundary conditions is by
using the zero-extension, symmetric, or periodic extension
and so on. To some extent, these approaches can effectively
inhibit the jitter of the border when it is a special form
of approximation function, but not universal, and does
not consider the wavelet expansion to meet the boundary
conditions. Different from the past expansion of function, in
this paper, based on Taylor series expansion of the boundary
extension which is applied on the function defined on a
finite interval [14, 15], then the function needs to satisfy the
corresponding boundary conditions which is embedded in
the corresponding Taylor series.

First, we assume that the function 𝑔(𝑥) ∈ 𝐿
2

[0, 𝑏], using
Taylor series expansion on the borders, forms as follows:

𝑔 (𝑥) =

{{{{{{{

{{{{{{{

{

𝑀

∑

𝑖=0

1

𝑖!

𝑑
𝑖

𝑔 (0)

𝑑𝑥𝑖
𝑥
𝑖

𝑥 ∈ (−∞, 0)

𝑔 (𝑥) 𝑥 ∈ [0, 𝑏]

𝑀

∑

𝑖=0

1

𝑖!

𝑑
𝑖

𝑔 (𝑏)

𝑑𝑥𝑖
(𝑥 − 𝑏)

𝑖

𝑥 ∈ (𝑏,∞) ,

(20)

where 𝛿 > 0 and (𝑑
𝑖

𝑔(0)/𝑑𝑥
𝑖

) = ∑
𝛼

𝑘=0
𝑝
0,𝑖,𝑘

𝑔(𝑘/2
𝑛

),
(𝑑
𝑖

𝑔(𝑏)/𝑑𝑥
𝑖

) = ∑
𝛼

𝑘=0
𝑝
𝑏,𝑖,𝑘

𝑔(𝑏 − (𝑘/2
𝑛

)), 𝑖 = 0, 1, 2, . . ., are
expressed by the numerical difference from the interior point,
and 𝑝

0,𝑖,𝑘
, 𝑝
𝑏,𝑖,𝑘

are the numerical difference coefficients.
When 𝑚 = 3, 𝑀 = 3, according to four-point-Malkoff
numerical difference formulas [14, 15], we know

A
0
= (

1 0 0 0

−
11

6
3 −

3

2

1

3
2 −5 4 −1

−1 3 −3 1

) ,

A
1
= (

1 0 0 0

11

6
−3

3

2
−
1

3
2 −5 4 −1

1 −3 3 −1

) ,

(21)

where 𝐴
0
= {2
−𝑖𝑛

𝑝
0,𝑖,𝑘

} and 𝐴
1
= {2
−𝑖𝑛

𝑝
𝑏,𝑖,𝑘

} (𝑖, 𝑘 = 0, 1, 2, 3).
For the specific boundary conditions, once the boundary
conditions are given in (21), certain elements of the matrix
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values will be adjusted. For example, for boundary conditions
𝑥 = 0, (𝑑𝑖𝑔(0)/𝑑𝑥𝑖) = 0, we just need to make 𝑝

0,𝑖,𝑘
= 0,

(𝑘 = 0, 1, 2, 3), and other 𝑝
0,𝑗,𝑘

(𝑗 ̸= 𝑖) take the values given in
(21) without change.

Then, (18) can be expressed as

𝑔 (𝑥) =

{{{{{{{

{{{{{{{

{

3

∑

𝑘=0

𝑔(
𝑘

2𝑛
)𝑇
0,𝑘

(𝑥) , 𝑥 ∈ (−∞, 0)

𝑔 (𝑥) , 𝑥 ∈ [0, 𝑏]

3

∑

𝑘=0

𝑔(𝑏 −
𝑘

2𝑛
)𝑇
𝑏,𝑘

(𝑥) , 𝑥 ∈ (𝑏,∞) ,

(22)

where 𝑇
0,𝑘

(𝑥) = ∑
𝑀

𝑖=0
(𝑝
0,𝑖,𝑘

/𝑖!)𝑥
𝑖, 𝑇
𝑏,𝑘

= ∑
𝑀

𝑖=0
(𝑝
𝑏,𝑖,𝑘

/𝑖!)(𝑥 − 𝑏)
𝑖,

and 2
𝑛

≥ 𝑚.
Consider Coiflets scaling function 𝜙(𝑥) with the support

set [0,𝑁 − 1], 𝑁 = 3𝛾, applying the scaling function series
approximation equation (17), and 𝑀

1
is an integral; for the

function 𝑔(𝑥) ∈ 𝐿
2

[0, 𝑏], we have the following form:

𝑔 (𝑥) ≈

𝑏2
𝑛

+𝑀
1
−1

∑

𝑘=2−3𝑁+𝑀
1

𝑔(
𝑘

2𝑛
)𝜙 (2

𝑛

𝑥 + 𝑀
1
− 𝑘) . (23)

Substituting (22) into (23), then (23) can be rewritten as

𝑔 (𝑥) ≈

𝑏2
𝑛

∑

𝑘=0

𝑔
𝑘
Φ
𝑏,𝑛,𝑘

(𝑥) , (24)

where 𝑔
𝑘
= 𝑔(𝑘/2

𝑛

), and we denote

Φ
𝑏,𝑛,𝑘

(𝑥)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝜙 (2
𝑛

𝑥 + 𝑀
1
− 𝑘)

+

−1

∑

𝑗=2−3𝑁+𝑀
1

𝑇
0,𝑘

(
𝑗

2𝑛
)

×𝜙 (2
𝑛

𝑥 + 𝑀
1
− 𝑗) , 0 ≤ 𝑘 ≤ 3

𝜙 (2
𝑛

𝑥 + 𝑀
1
− 𝑘) , 4 ≤ 𝑘 ≤ 𝑏2

𝑛

− 4

𝜙 (2
𝑛

𝑥 + 𝑀
1
− 𝑘)

+

𝑏2
𝑛

+𝑀
1
−1

∑

𝑗=1+𝑏2
𝑛

𝑇
𝑏,𝑏2
𝑛
−𝑘

(
𝑗

2𝑛
)

×𝜙 (2
𝑛

𝑥 + 𝑀
1
− 𝑗) , 𝑏2

𝑛

− 3 ≤ 𝑘 ≤ 𝑏2
𝑛

.

(25)

Thus, when specific boundary conditions are given, the
differential coefficients of extension can be determined in
accordance with the above process, and the corresponding
improved scaling function is given by (25).

3. Numerical Algorithm

In this section, we will consider themodified wavelet approx-
imation scheme to solve nonlinear Riccati differential equa-
tion (1) with the initial condition expressed by (2).

First, applying the Laplace transform on the time variable
𝑡 in (1) leads to

𝑠
𝛼

𝑌 (𝑠) = 𝐴 (𝑠) + 𝐵𝑌 (𝑠) + 𝐶𝐿 [(𝑦 (𝑡))
2

] +

[𝛼]

∑

𝜆=0

𝑠
𝛼−1−𝜆

𝑦
𝜆
;

(26)

that is,

𝑌 (𝑠) = 𝑠
𝑝

𝑅 (𝑠) {𝐴 (𝑠) + 𝐶𝐿 [(𝑦 (𝑡))
2

]} +

[𝛼]

∑

𝜆=0

𝑠
𝛼−1−𝜆

𝑦
𝜆
𝑠
𝑝

𝑅 (𝑠)

(27)

in which 𝑅(𝑠) = 1/𝑠
𝑝

(𝑠
𝛼

−𝐵). 𝑝 = 0 or 𝑝 = 1, and the formula
of the Laplace transform of the fractional order derivative is
considered [3]. When the function obtained by the inverse
Laplace transform of 𝑅(𝑠) is singular, we take 𝑝 = 1, else we
take 𝑝 = 0. For example, for 𝐵 = 0, 0 < 𝛼 ≤ 1, we just need
to take 𝑝 = 1; then 𝑅(𝑠) = 1/𝑠

𝛼+1, whose inverse Laplace
transform is 𝑡

𝛼

/gamma(𝛼 + 1), and it is nonsingular. Taking
the inverse Laplace transform of (27), we obtain

𝑦 (𝑡) = ∫

𝑡

0

𝑟 (𝑡 − 𝜏)
𝜕
𝑝

𝜕𝜏𝑝
[𝐶(𝑦 (𝜏))

2

+ 𝐴 (𝜏)] 𝑑𝜏 +

[𝛼]

∑

𝜆=0

𝑦
𝜆
𝑟
𝜆
(𝑡) ,

(28)

where

𝑟 (𝑡) = 𝐿
−1

(𝑅 (𝑠)) , 𝑟
𝜆
(𝑡) = 𝐿

−1

(𝑠
𝛼−1−𝜆

𝑠
𝑝

𝑅 (𝑠)) . (29)

By [12], 𝑟(𝑡), 𝑟
𝜆
(𝑡) can be obtained by numerical method.

From [6], we know

𝐿
−1

[
𝑠
𝛼−𝛽

𝑠𝛼 + 𝜎
] = 𝑡
𝛼+𝛽−1

𝐸
𝛼,𝛽

(𝜎𝑡
𝛼

) , (30)

where 𝐸
𝛼,𝛽

(𝜎𝑡
𝛼

) is the generalized Mittag-Leffler type func-
tions defined in the power series

𝐸
𝑎,𝑏

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑎𝑘 + 𝑏)
. (31)

It can be seen from (30) that the integral kernel 𝑟(𝑡) is a
nonsingular smooth function with property of 𝑟(0) = 0when
0 < 𝛼 ≤ 2; applying (24), (25), we have

𝑦 (𝑡) ≈

𝑏2
𝑛

∑

𝑘=0

𝑦 (𝑡
𝑘
)Φ
𝑏,𝑛,𝑘

(𝑡) . (32)

By using (19), we denote

𝐻
(𝑝)

(𝑡) =
𝜕
𝑝

𝜕𝑡𝑝
[𝐶(𝑦 (𝜏))

2

+ 𝐴 (𝜏)]

≈

𝑏2
𝑛

∑

𝑗=0

[𝐶(𝑦 (𝑡
𝑗
))
2

+ 𝐴 (𝑡
𝑗
)]Φ
(𝑝)

𝑏,𝑛,𝑗
(𝑡) .

(33)
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Applying (24) to approximate the term 𝑟(𝑡 − 𝜏)𝐻
(𝑃)

(𝜏) with
𝜏 ∈ [0, 𝑡] in (28), we have

𝑟 (𝑡 − 𝜏)𝐻
(𝑃)

(𝜏) ≈

𝑡2
𝑛

∑

𝑘=0

𝑟 (𝑡 − 𝑡
𝑘
)𝐻
(𝑃)

(𝑡
𝑘
)Φ
𝑡,𝑛,𝑘

(𝜏) , (34)

where 𝑡
𝑘
= 𝑘/2

𝑛. Integrating both sides of (34), we obtain

∫

𝑡

0

𝑟 (𝑡 − 𝜏)𝐻
(𝑃)

(𝜏) 𝑑𝜏 ≈

𝑡2
𝑛

∑

𝑘=0

𝑟 (𝑡 − 𝑡
𝑘
)𝐻
(𝑃)

(𝑡
𝑘
)Φ
∫

𝑡,𝑛,𝑘
(𝑡) ,

(35)

where Φ
∫

𝑡,𝑛,𝑘
(𝑡
𝑖
) ≡ ∫

𝑡
𝑖

0

Φ
𝑡,𝑛,𝑘

(𝜏)𝑑𝜏 can be exactly obtained
according to Wang [22]. Inserting (35) into (28) and then
setting 𝑡 = 𝑡

𝑖
yield

𝑦
𝑖
≈

𝑖

∑

𝑘=0

𝑟
𝑖−𝑘

𝐻
(𝑃)

(𝑡
𝑘
)Φ
∫

𝑡
𝑖
,𝑛,𝑘

(𝑡
𝑖
) , (36)

where 𝑦
𝑖
= 𝑦(𝑡

𝑖
), 𝑡
𝑖
= 𝑖/2
𝑛 (𝑖 = 1, 2, 3, . . .) and 𝑟

𝑖−𝑘
= 𝑟(𝑡
𝑖
−

𝑡
𝑘
). Then one can solve the algebraic equations to obtain the

solution of the Riccati equation. According to (30), note that
if there should be 𝑟(0) = 0 for 0 < 𝛼 ≤ 2, which implies that
𝑟(𝑖 − 𝑘)[𝑔(𝑦

𝑘
) − 𝑓
𝑘
]Φ
∫

𝑡
𝑖
,𝑛,𝑘

(𝑡
𝑖
) = 0 when 𝑘 = 𝑖, thus (36) can be

further simplified into the form

𝑦
𝑖
≈

𝑖−1

∑

𝑘=0

𝑟
𝑖−𝑘

𝐻
(𝑃)

(𝑡
𝑘
)Φ
∫

𝑡
𝑖
,𝑛,𝑘

(𝑡
𝑖
) . (37)

It can be seen from (37) that the solution 𝑦
𝑖
can be directly

obtained step-by-step as the index 𝑖 increases. In this process,
no matrix inversion is needed. The scale 𝑛 is bigger, and the
precision of the results of (36) and (37) is better, which will be
shown in examples. In fact, in most practice problems, (37) is
possible, and even without the special nature of 𝑟(𝑡) in some
case, we can still solve the nonlinear algebraic equation (36),
which is nonsingular and easy. Then we promote the method
to the fractional Riccati equations.

4. Numerical Examples

In this sectionwewill give twonumerical experimentsto illus-
trate the efficiency and apply the approach proposed in this
paper.

Example 1. Consider the following fractional Riccati equa-
tion given in [7, 19, 21]:

𝐷
𝛼

𝑦 (𝑡) = 1 − [𝑦 (𝑡)]
2

, 𝑡 > 0, 0 < 𝛼 ≤ 1 (38)

with initial conditions

𝑦 (0) = 0, (0 < 𝛼 ≤ 1) (39)

and the exact solution of (38) is 𝑦(𝑡) = (𝑒
2𝑡

−1)/(𝑒
2𝑡

+1)when
𝛼 = 1.
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Figure 1: Comparison between the numerical and exact solution of
Example 1 for 𝛼 = 1.
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Figure 2: The absolute errors of the exact solution and the results
obtained by CWLM with different 𝑛 for 𝛼 = 1.

Figure 1 is the comparison between the exact result and
the numerical result for 𝑛 = 5. We can see that the numerical
solution is in very good agreement with the exact solution.
Figure 2 shows the absolute errors of the exact solution and
the results obtained by CWLM with different 𝑛. One can see
that approximate solution converges to the exact solution,
and the absolute error goes down while 𝑛 is increased.
Contrast of numerical solution of (38) for 𝛼 = 0.5 and 𝛼 = 1

is given in Figure 3.
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Figure 3: Solution of (38) obtained by the CWLM for 𝛼 = 0.5 and
𝛼 = 1.

Table 1: Solution of (38) obtained by different methods for 𝛼 = 0.5.

𝑡

Methods

HAM [21] HWOMM [19] CWLM
𝑛 = 4 𝑛 = 6 𝑛 = 7

1.0 0.6982 0.6987 0.6667 0.6837 0.6883
2.0 0.7858 0.7857 0.7732 0.7796 0.7814
3.0 0.8268 0.8258 0.8190 0.8224 0.8234
4.0 0.8525 0.8499 0.8455 0.8477 0.8484
5.0 0.8714 0.8664 0.8633 0.8648 0.8652
6.0 0.8869 0.8785 0.8761 0.8773 0.8776
7.0 0.9004 0.8878 0.8860 0.8869 0.8871
8.0 0.9127 0.8953 0.8938 0.8946 0.8948
9.0 0.9243 0.9016 0.9003 0.9009 0.9011
10.0 0.9354 0.9068 0.9057 0.9062 0.9064

Table 1 is the solutions of Example 1 obtained by dif-
ferent methods when 𝛼 = 0.5. Compared with results in
[21] obtained by using HAM with [4, 4] homotopy-Pade
approximations and HWOMM in [19], which need to solve
a nonlinear system of nearly hundreds of algebraic equations.

Example 2. Consider the following fractional Riccati equa-
tion [7, 19]:

𝐷
𝛼

𝑦 (𝑡) = 1 + 2𝑦 (𝑡) − [𝑦 (𝑡)]
2

, 𝑡 > 0, 0 < 𝛼 ≤ 1. (40)

With initial conditions

𝑦 (0) = 0, (41)

the exact solution is 𝑦(𝑡) = 1+√2 tanh(√2𝑡+(1/2) log((√2−

1)/(√2 + 1))) when 𝛼 = 1.
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Figure 4: Comparison between the numerical and exact solutions
of Example 2 for 𝛼 = 1.
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Figure 5: The absolute errors of the exact solution and the results
obtained by CWLM with different 𝑛 for 𝛼 = 1.

Figure 4 is the comparison between the exact result and
the numerical result for 𝑛 = 7. One can see that CWLM is
accurate and is able to solve this nonlinear Riccati differential
equation in a very wider region. Figure 5 shows the absolute
errors of the exact solution and the results obtained by
CWLMwith different 𝑛 for Example 2when𝛼 = 1, inwhich it
can be seen that the bigger the value of the scale is, the smaller
absolute error is. Figure 6 is the solution of (40) obtained by
the CWLM for 𝛼 = 0.75 and 𝛼 = 1, compared with results
obtained by other methods in [19, 23, 24], which are given in
Table 2.
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Figure 6: Solution of (40) obtained by the CWLM for 𝛼 = 0.75 and
𝛼 = 1.

Table 2: Solution of (40) obtained by the EHPM, MHPM,
HWOMM, and CWLM for 𝛼 = 0.75.

𝑡

Methods

EHPM [23] MHPM [24] HWOMM [19] CWLM
𝑛 = 7 𝑛 = 8

1.0 1.9753 2.0874 1.8186 1.1571 1.1538
2.0 2.2062 0.7787 2.1796 1.8206 1.8198
3.0 2.2813 5.8102 2.2684 2.0566 2.0629
4.0 2.3153 −0.0807 2.3062 2.1539 2.1643
5.0 2.3340 −396.4145 2.3273 2.2038 2.2164
6.0 2.3460 −2.8182𝑒3 2.3408 2.2337 2.2477
7.0 2.3544 −1.1876𝑒4 2.3504 2.2537 2.2685
8.0 2.3608 −3.7971𝑒4 2.3574 2.2679 2.2833
9.0 2.3657 −1.0148𝑒5 2.3629 2.2787 2.2945
10.0 2.3679 −2.3858𝑒5 2.3673 2.2870 2.3031

5. Conclusions

In this paper, a numerical method based on the Coiflets
wavelet operational method is applied to solve the fractional
differential equations. In this method, the equation with
fractional differential order is transferred to an integral
equation of convolution type by the Laplace transform and
then the solution is approximated by the modified wavelet
approximate scheme. This simple method was established
by Zhou et al. [14] (including the author) and has been
applied to solve nonlinear equations of vibration, diffusion,
and wave equations. Compared with the results for solving
fractional Riccati differential equation by the other numerical
methods [7, 19, 21, 23, 24], the results for numerical examples
demonstrate that the presentmethod can give a high accurate
approximation in a larger region.This is also the advantage of
the present method.
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