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We investigate the multiple attribute decision making (MADM) problems with dual hesitant fuzzy information. We first introduce
some basic concepts and operations on dual hesitant fuzzy sets.Then, we develop some generalized dual hesitant fuzzy aggregation
operators which encompass some existing operators as their particular cases and discuss their basic properties. Next, we apply
the generalized dual hesitant fuzzy Choquet ordered aggregation (GDHFCOA) operator to deal with multiple attribute decision
making problems under dual hesitant fuzzy environment. Finally, an illustrative example is given to show the developed method
and demonstrate its practicality and effectiveness.

1. Introduction

Fuzzy set (FS), which is proposed by Zadeh [1], is a powerful
tool to deal with vagueness or nonstatistical imprecision.
Since its appearance, it has received much attention and
wide applications [2–6]. Many celebrated extensions have
been developed including type-2 fuzzy sets (T2FSs) [7], fuzzy
multisets (FMSs) [8, 9], intuitionistic fuzzy sets (IFSs) [10],
interval-valued intuitionistic fuzzy sets (IVIFSs) [11, 12], and
hesitant fuzzy sets (HFSs) [13–17].

Recently, Zhu et al. [18] introduced a dual hesitant fuzzy
set (DHFS) which is another new extension of FSs. It is a
comprehensive set containing FSs, IFSs, FMSs, and HFSs as
special cases under certain conditions. By several possible
values for the membership and nonmembership degrees,
respectively, DHFSs can take much more information given
by decision makers into account in multiple attribute deci-
sion making. In their work, some basic operations and
properties for DHFSs were investigated. Then Wang et al.
[19] investigated the multiple attribute decision making
(MADM) problem based on the aggregation operators with
dual hesitant fuzzy information. They also developed some
aggregation operators for aggregating dual hesitant fuzzy

information including dual hesitant fuzzy weighted average
(DHFWA) operator, dual hesitant fuzzy weighted geometric
(DHFWG) operator, dual hesitant fuzzy ordered weighted
average (DHFOWA) operator, dual hesitant fuzzy ordered
weighted geometric (DHFOWG) operator, dual hesitant
fuzzy hybrid average (DHFHA) operator, and dual hesitant
fuzzy hybrid geometric (DHFHG) operator.

However, the existing dual hesitant fuzzy aggregation
operators above only consider situations where all the
attributes in the dual hesitant fuzzy set are independent.
Nevertheless, attributes in DHFSs are usually correlative
in real life. Incidentally, the Choquet integral [20] can
characterize the correlations of the decision data. Motivated
by this idea, we propose a dual hesitant fuzzy Choquet
ordered aggregation (DHFCOA) operator, whose prominent
characteristic is that it can consider both the importance of
the attributes and the correlations of the attributes. It is worth
mentioning thatDHFCOAcan be regarded as an extension of
DHFWA and DHFOWA. Then, we also generate DHFCOA
operator to GDHFCOA.

To do so, the remainder of this paper is organized
as follows. In the next section, we introduce some basic
concepts related to dual hesitant fuzzy sets, as well as the
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existing dual hesitant fuzzy aggregation operators. Some
generalized aggregation operators for DHFSs are proposed
and their properties are studied in Section 3. In Section 4, we
discuss the families of GDHFCOAoperators. In Section 5, we
develop an approach to multiple attribute decision making
problems based on GDHFCOA operator under dual hesitant
fuzzy environment. An illustrative example is also given
to show the effectiveness of the developed approach in
Section 6. We conclude the paper and give some remarks in
Section 7.

2. Preliminaries

Torra [21] generalized FSs to HFSs as follows.

Definition 1 (see [21]). Let𝑋 be a reference set; thenwe define
hesitant fuzzy set on 𝑋 in terms of a function that when
applied to𝑋 returns a sunset of [0, 1].

To be easily understood, Xia and Xu [22] express the HFS
by a mathematical symbol: 𝐸 = (⟨𝑥, ℎ

𝐸
(𝑥)⟩ | 𝑥 ∈ 𝑋), where

ℎ
𝐸
(𝑥) is a set of some values in [0, 1], denoting the possible

membership degree of the element 𝑥 ∈ 𝑋 to the set 𝐸. For
convenience, Xia and Xu [22] call ℎ = ℎ

𝐸
(𝑥) a hesitant fuzzy

element (HFE) and 𝐻 the set of all HFEs when there is no
confusion.

Nevertheless, HFS only considers themembership degree
of the element 𝑥 ∈ 𝑋 to the set 𝐸 and ignores the
nonmembership degree. In order to overcome this difficulty,
Zhu et al. [18] generalized HFSs to DHFS.

Definition 2 (see [18]). Let 𝑋 be a fixed set; then a dual
hesitant fuzzy set𝐷 on𝑋 is defined as

𝐷 = {⟨𝑥, ℎ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} (1)

in which ℎ(𝑥) and 𝑔(𝑥) are two sets of some values in [0, 1],
denoting the possible membership degrees and nonmember-
ship degrees of the element 𝑥 ∈ 𝑋 to the set 𝐷, respectively,
with conditions: 0 ≤ 𝛾, 𝜂 ≤ 1 and 0 ≤ 𝛾

+
+ 𝜂
+
≤ 1, where

𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ
+
(𝑥) = ∪

𝛾∈ℎ(𝑥)
max{𝛾}, and

𝜂
+
∈ 𝑔
+
(𝑥) = ∪

𝜂∈𝑔(𝑥)
max{𝜂} for all 𝑥 ∈ 𝑋. For convenience,

the pair 𝑑(𝑥) = {ℎ(𝑥), 𝑔(𝑥)} is called a dual hesitant fuzzy
element (DHFE) and denoted by 𝑑 = {ℎ, 𝑔}.

In order to compare two dual hesitant fuzzy elements,
corresponding score function is defined as follows.

Definition 3 (see [18]). Let 𝑑
1
= {ℎ
1
, 𝑔
1
} and 𝑑

2
= {ℎ
2
, 𝑔
2
} be

any two DHFEs; then the score function of 𝑑
𝑖
(𝑖 = 1, 2) is

𝑆 (𝑑
𝑖
) =

1

𝑛 (ℎ
𝑖
)
∑

𝛾∈ℎ𝑖

𝛾 −
1

𝑛 (𝑔
𝑖
)
∑

𝜂∈𝑔𝑖

𝜂 (𝑖 = 1, 2) (2)

and the accuracy function of 𝑑
𝑖
(𝑖 = 1, 2) is

𝑃 (𝑑
𝑖
) =

1

𝑛 (ℎ
𝑖
)
∑

𝛾∈ℎ𝑖

𝛾 +
1

𝑛 (𝑔
𝑖
)
∑

𝜂∈𝑔𝑖

𝜂 (𝑖 = 1, 2) , (3)

where 𝑛(ℎ
𝑖
) and 𝑛(𝑔

𝑖
) are the numbers of the elements in ℎ

𝑖

and 𝑔
𝑖
, respectively. Then

(i) if 𝑆(𝑑
1
) > 𝑆(𝑑

2
), then 𝑑

1
is superior to 𝑑

2
, denoted by

𝑑
1
≻ 𝑑
2
;

(ii) if 𝑆(𝑑
1
) = 𝑆(𝑑

2
), then

(1) if 𝑃(𝑑
1
) = 𝑃(𝑑

2
), then 𝑑

1
is equivalent to 𝑑

2
,

denoted by 𝑑
1
∼ 𝑑
2
;

(2) if 𝑃(𝑑
1
) > 𝑃(𝑑

2
), then 𝑑

1
is superior to 𝑑

2
,

denoted by 𝑑
1
≻ 𝑑
2
.

Besides, some new operations on the DHFEs 𝑑, 𝑑
1
, and

𝑑
2
are also introduced in [18]:

(1) 𝑑𝜆 = ∪
𝛾∈ℎ,𝜂∈𝑔

{{𝛾
𝜆
}, {1 − (1 − 𝜂)

𝜆
}}, 𝜆 > 0;

(2) 𝜆𝑑 = ∪
𝛾∈ℎ,𝜂∈𝑔

{{1 − (1 − 𝛾)
𝜆
}, {𝜇𝜆}}, 𝜆 > 0;

(3) 𝑑
1
⊕𝑑
2
= ∪
𝛾1∈ℎ1 ,𝛾2∈ℎ2 ,𝜂1∈𝑔1,𝜂2∈𝑔2

{{𝛾
1
+𝛾
2
−𝛾
1
𝛾
2
}, {𝜂
1
𝜂
2
}};

(4) 𝑑
1
⊗𝑑
2
= ∪
𝛾1∈ℎ1 ,𝛾2∈ℎ2,𝜂1∈𝑔1,𝜂2∈𝑔2

{{𝛾
1
𝛾
2
}, {𝜂
1
+𝜂
2
−𝜂
1
𝜂
2
}}.

Wang et al. [19] developed some aggregation operators
for dual hesitant fuzzy information such as DHFOWA and
DHFOWG operators.

Definition 4 (see [19]). Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection

of DHFEs; then we define the dual hesitant fuzzy ordered
weighted average (DHFOWA) operator as follows:

DHFOWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) =

𝑛

⨁

𝑗=1

(𝑤
𝑗
𝑑
𝜎(𝑗)

) , (4)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

for all 𝑗 = 2, . . . , 𝑛, and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the aggregation-associated weight vector

such that 𝑤
𝑗
∈ [0, 1], and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Definition 5 (see [19]). Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection

of DHFEs; then we define the dual hesitant fuzzy ordered
weighted geometric (DHFOWG) operator as follows:

DHFOWG
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) =

𝑛

⨂

𝑗=1

(𝑑
𝜎(𝑗)

)
𝑤𝑗
, (5)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

for all 𝑗 = 2, . . . , 𝑛, and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the aggregation-associated weight vector

such that 𝑤
𝑗
∈ [0, 1], and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

In order to weight the elements in 𝑋, a fuzzy measure 𝜇
is defined as follows.

Definition 6 (see [23]). A fuzzymeasure 𝜇 on the set𝑋 is a set
function 𝜇 : 𝜃(𝑋) → [0, 1] satisfying the following axioms
and 𝜃(𝑋) is the set of all subsets of𝑋:

(1) 𝜇(𝜙) = 0, 𝜇(𝑋) = 1;
(2) 𝐴 ⊆ 𝐵 implies 𝜇(𝐴) ≤ 𝜇(𝐵), for all 𝐴, 𝐵 ⊆ 𝑋;
(3) 𝜇(𝐴∪𝐵) = 𝜇(𝐴) +𝜇(𝐵) + 𝜌𝜇(𝐴)𝜇(𝐵), for all𝐴, 𝐵 ⊆ 𝑋

and 𝐴 ∩ 𝐵 = 𝜙, where 𝜌 ∈ (−1,∞).
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Especially, if 𝜌 = 0, then the condition (3) reduces to the
axiom of additive measure: 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵), for all
𝐴, 𝐵 ⊆ 𝑋 and 𝐴 ∩ 𝐵 = 𝜙.

If all the elements in𝑋 are independent, then we have

𝜇 (𝐴) = ∑

𝑥𝑖∈𝐴

𝜇 ({𝑥
𝑖
}) , ∀𝐴 ⊆ 𝑋. (6)

The discrete Choquet integral is a linear expression up to
a reordering of the elements, which is defined as below.

Definition 7 (see [24]). Let 𝑓 be a positive real-valued
function on𝑋, and let𝜇 be a fuzzymeasure on𝑋.The discrete
Choquet integral of 𝑓 with respect to 𝜇 is defined by

𝐶
𝜇
(𝑓) =

𝑛

∑

𝑖=1

𝑓
𝜎(𝑖)

[𝜇 (𝐴
𝜎(𝑖)
) − 𝜇 (𝐴

𝜎(𝑖−1)
)] , (7)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑓

𝜎(𝑖−1)
≥ 𝑓
𝜎(𝑖)

for all 𝑖 = 2, 3, . . . , 𝑛, 𝐴
𝜎(𝑘)

= {𝑥
𝜎(𝑗)

|

𝑗 ≤ 𝑘}, for 𝑘 ≥ 1, and 𝐴
𝜎(0)

= 𝜙.

3. Generalized Aggregation
Operators for DHFS

In this section, by introducing parameter 𝜆, we will propose
some generalized aggregation operators for DHFSs.

Definition 8. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs

and let 𝜆 > 0; then we define the generalized dual hesitant
fuzzy weighted average (GDHFWA) operator as below:

GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = (

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝑗
)

1/𝜆

, (8)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of 𝑑

𝑗
(𝑗 =

1, 2, . . . , 𝑛) and 𝑤
𝑗
> 0, ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

According to the operational laws of DHFEs, we can get
the theorem below.

Theorem 9. Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 = 1, 2, . . . , 𝑛) be a collection

of DHFEs; then their aggregated value by using the GDHFWA
operator is also a DHFE, and

𝐺𝐷𝐻𝐹𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(9)

Proof. By using mathematics inductive method, we prove
Theorem 9 as follows.

For 𝑛 = 2 by the operational laws of DHFEs, we can get

𝑑
𝜆

1
= ⋃

𝛾1∈ℎ1 ,𝜂1∈𝑔1

{{𝛾
𝜆

1
} , {1 − (1 − 𝜂

1
)
𝜆
}} ,

𝑑
𝜆

2
= ⋃

𝛾2∈ℎ2 ,𝜂2∈𝑔2

{{𝛾
𝜆

2
} , {1 − (1 − 𝜂

2
)
𝜆
}} ,

𝑤
1
𝑑
𝜆

1
= ⋃

𝛾1∈ℎ1 ,𝜂1∈𝑔1

{{1 − (1 − 𝛾
𝜆

1
)
𝑤1
} , {(1 − (1 − 𝜂

1
)
𝜆
)

𝑤1

}} .

𝑤
2
𝑑
𝜆

2
= ⋃

𝛾2∈ℎ2 ,𝜂2∈𝑔2

{{1 − (1 − 𝛾
𝜆

2
)
𝑤2
} , {(1 − (1 − 𝜂

2
)
𝜆
)

𝑤2

}} .

𝑤
1
𝑑
𝜆

1
⊕ 𝑤
2
𝑑
𝜆

2
= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2 ,𝜂1∈𝑔1,𝜂2∈𝑔2

{{1− (1− 𝛾
𝜆

1
)
𝑤1
(1 − 𝛾

𝜆

2
)
𝑤2
},

{(1−(1−𝜂
1
)
𝜆
)

𝑤1

(1− (1 − 𝜂
2
)
𝜆
)

𝑤2

}} ,

(𝑤
1
𝑑
𝜆

1
⊕ 𝑤
2
𝑑
𝜆

2
)
1/𝜆

= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2,𝜂1∈𝑔1,𝜂2∈𝑔2

{

{

{

{

{

{

(1−

2

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1−(1−

2

∏

𝑗=1

(1−(1− 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(10)

If Theorem 9 holds for 𝑛 = 𝑘, that is,

GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑘
)

= ⋃

𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

(1 −

𝑘

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑘

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

,

(11)

then, when 𝑛 = 𝑘 + 1, by the operational laws for DHFEs, we
have

𝑘+1

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝑗

= (

𝑘

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝑗
)⨁ 𝑤

𝑘+1
𝑑
𝜆

𝑘+1

= ( ⋃

𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

1 −

𝑘

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
}

}

}

,
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{

{

{

𝑘

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗}

}

}

}

}

}

)⨁𝑤
𝑘+1

𝑑
𝜆

𝑘+1

= ⋃

𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

1 −

𝑘+1

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
}

}

}

,

{

{

{

𝑘+1

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗}

}

}

}

}

}

.

(12)

Then, we get

(

𝑘+1

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝑗
)

1/𝜆

= ⋃

𝛾𝑗∈ℎ𝑗,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

(1 −

𝑘+1

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑘+1

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(13)

That is, Theorem 9 holds for 𝑛 = 𝑘 + 1. Thus, by the principle
of mathematical inductionTheorem 9 holds for all 𝑛.

ByTheorem 9, we can prove that the GDHFWA operator
has the following properties.

Theorem 10 (pseudo-idempotency). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHFEs. If 𝜆 = 1, 𝑑
1
= 𝑑
2
= ⋅ ⋅ ⋅ =

𝑑
𝑛
= 𝑑, and their weights 𝑤

1
= 𝑤
2
= ⋅ ⋅ ⋅ = 𝑤

𝑛
= 1/𝑛, then

𝐺𝐷𝐻𝐹𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≥ 𝑑.

Proof. Let 𝑑
1
= 𝑑
2
= ⋅ ⋅ ⋅ = 𝑑

𝑛
= 𝑑 = {ℎ, 𝑔}, where ℎ =

{𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑘
}, 𝑔 = {𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑠
}. By Theorem 9, we obtain

𝑑 = GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

1 −

𝑛

∏

𝑗=1

(1 − 𝛾j)
1/𝑛}

}

}

,

{

{

{

𝑛

∏

𝑗=1

𝜂
1/𝑛

𝑗

}

}

}

}

}

}

.

(14)

Let 𝑑 = {ℎ̃, 𝑔}; then we can easily know that ℎ̃ contains 𝑘𝑛
numbers while 𝑔 contains 𝑠𝑛 numbers. By Definition 3 and
multiplication of polynomial, we acquire

𝑆 (𝑑) = 1 −

[(1 − 𝛾
1
)
1/𝑛

+ (1 − 𝛾
2
)
1/𝑛

+ ⋅ ⋅ ⋅ (1 − 𝛾
𝑘
)
1/𝑛
]

𝑛

𝑘𝑛

−

(𝜂
1/𝑛

1
+ 𝜂
1/𝑛

2
+ ⋅ ⋅ ⋅ + 𝜂

1/𝑛

𝑠
)
𝑛

𝑠𝑛
.

(15)

As we all know, 𝑓(𝑥) = 𝑥
1/𝑛 is concave when 𝑥 ∈ [0, 1]. By

Jensen’s inequality, we have

(1 − 𝛾
1
)
1/𝑛

+ (1 − 𝛾
2
)
1/𝑛

+ ⋅ ⋅ ⋅ + (1 − 𝛾
𝑘
)
1/𝑛

𝑘

≤ (
(1 − 𝛾

1
) + (1 − 𝛾

2
) + ⋅ ⋅ ⋅ + (1 − 𝛾

𝑘
)

𝑘
)

1/𝑛

= (1 −
𝛾
1
+ 𝛾
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑘

𝑘
)

1/𝑛

,

(16)

and further,

1 −

[(1 − 𝛾
1
)
1/𝑛

+ (1 − 𝛾
2
)
1/𝑛

+ ⋅ ⋅ ⋅ (1 − 𝛾
𝑘
)
1/𝑛
]

𝑛

𝑘𝑛

≥
𝛾
1
+ 𝛾
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑘

𝑘
.

(17)

Similarly, we have

(𝜂
1/𝑛

1
+ 𝜂
1/𝑛

2
+ ⋅ ⋅ ⋅ + 𝜂

1/𝑛

𝑠
)
𝑛

𝑠𝑛
≤
𝜂
1
+ 𝜂
2
+ ⋅ ⋅ ⋅ + 𝜂

𝑠

𝑠
.

(18)

So we get

𝑆 (𝑑) = 1 −

[(1 − 𝛾
1
)
1/𝑛

+ (1 − 𝛾
2
)
1/𝑛

+ ⋅ ⋅ ⋅ (1 − 𝛾
𝑘
)
1/𝑛
]

𝑛

𝑘𝑛

−

(𝜂
1/𝑛

1
+ 𝜂
1/𝑛

2
+ ⋅ ⋅ ⋅ + 𝜂

1/𝑛

𝑠
)
𝑛

𝑠𝑛

≥
𝛾
1
+ 𝛾
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑘

𝑘
−
𝜂
1
+ 𝜂
2
+ ⋅ ⋅ ⋅ + 𝜂

𝑠

𝑠

= 𝑆 (𝑑) .

(19)

This completes the proof.

Remark 11. Theorem 10 shows that idempotency of
GDHFWA operator usually does not hold. When 𝜆 = 1,
GDHFWA degenerates to DHFWA, so Theorem 10 also
indicates that theTheorem 2 in [19] is not correct. To further
clarify this, we give a concrete example in the following.

Example 12. Let 𝜆 = 1, 𝑑
1

= 𝑑
2

= 𝑑
3

= 𝑑 =

{{0.6, 0.7, 0.8}, {0.1, 0.2}} and let 𝑤
1
= 𝑤
2
= 𝑤
3
= 1/3. By

Theorem 9, we can compute

GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, 𝑑
3
)

= {{0.6, 0.636576, 0.68252, 0.636576, 0.669807,

0.71155, 0.68252, 0.71155, 0.748016, 0.636576,
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0.669807, 0.71155, 0.669807, 0.7, 0.737926,

0.71155, 0.737926, 0.771057, 0.68252, 0.71155,

0.748016, 0.71155, 0.737926, 0.771057, 0.748016,

0.771057, 0.8} ,

{0.1, 0.125992, 0.125992, 0.15874, 0.125992,

0.15874, 0.15874, 0.2}} .

(20)

Then, by Definition 3, we have 𝑆(GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, 𝑑
3
)) =

0.563392 > 0.55 = 𝑆(𝑑).

Theorem 13 (boundedness). Let 𝑑
𝑗

= {ℎ
𝑗
, 𝑔
𝑗
}, (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHFEs, and let

𝛾
∗
= min {𝛾 ∈ ℎ

𝑗
| 𝑗 = 1, 2, . . . , 𝑛} ,

𝛾
∗
= max {𝛾 ∈ ℎ

𝑗
| 𝑗 = 1, 2, . . . , 𝑛} ,

𝜂
∗
= min {𝜂 ∈ 𝑔

𝑗
| 𝑗 = 1, 2, . . . , 𝑛} ,

𝜂
∗
= max {𝜂 ∈ 𝑔

𝑗
| 𝑗 = 1, 2, . . . , 𝑛} ,

𝑑
−
= {𝛾
∗
, 𝜂
∗
} , 𝑑
+
= {𝛾
∗
, 𝜂
∗
} .

(21)

Then

𝑑
−
≤ 𝐺𝐷𝐻𝐹𝑊𝐴

𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≤ 𝑑
+
. (22)

Proof. ByTheorem 9, we get

GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗∈ℎ𝑗,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(23)

By the Definition of 𝛾
∗
, 𝛾
∗
, 𝜂
∗
, 𝜂
∗, we know

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

∗
)
𝑤𝑗
)

1/𝜆

≤ (1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

≤ (1 −

𝑛

∏

𝑗=1

(1 − 𝛾
∗𝜆
)
𝑤𝑗
)

1/𝜆

.

(24)

Using the condition∑𝑛
𝑗=1

𝑤
𝑗
= 1, we acquire

𝛾
∗
≤ (1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

≤ 𝛾
∗
. (25)

Similarly, we obtain

𝜂
∗
≤ 1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

≤ 𝜂
∗
. (26)

Theorem 14 (quasi-monotonicity). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHEEs, where ℎ
𝑗

=

{𝛾
𝑗1
, 𝛾
𝑗2
, . . . , 𝛾

𝑗𝑘
}, 𝑔
𝑗
= {𝜂
𝑗1
, 𝜂
𝑗2
, . . . , 𝜂

𝑗𝑠
} (𝑗 = 1, 2, . . . , 𝑛). Let

𝑑
󸀠

𝑗
= {ℎ
󸀠

𝑗
, 𝑔
󸀠

𝑗
} (𝑗 = 1, 2, . . . , 𝑛) be another collection of DHEEs,

where ℎ󸀠
𝑗
= {𝛾
󸀠

𝑗1
, 𝛾
󸀠

𝑗2
, . . . , 𝛾

󸀠

𝑗𝑘
}, 𝑔
󸀠

𝑗
= {𝜂
󸀠

𝑗1
, 𝜂
󸀠

𝑗2
, . . . , 𝜂

󸀠

𝑗𝑠
} (𝑗 =

1, 2, . . . , 𝑛). If 𝛾
𝑗𝑝
≤ 𝛾
󸀠

𝑗𝑝
, 𝜂
𝑗𝑞
≥ 𝜂
󸀠

𝑗𝑞
, for all 𝑝 = 1, 2, . . . , 𝑘, for all

𝑞 = 1, 2, . . . , 𝑠, then

𝐺𝐷𝐻𝐹𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≤ 𝐺𝐷𝐻𝐹𝑊𝐴

𝑤
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
) .

(27)

Proof. ByTheorem 9, we get

GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗𝑝∈ℎ𝑗,𝜂𝑗𝑞∈𝑔𝑗

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗𝑝
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗𝑞
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

,

GDHFWA
𝑤
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
)

= ⋃

𝛾
󸀠

𝑗𝑝
∈ℎ
󸀠

𝑗
,𝜂
󸀠

𝑗𝑞
∈𝑔
󸀠

𝑗

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝜆

𝑗𝑝
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
󸀠

𝑗𝑞
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(28)

Since 𝛾
𝑗𝑝
≤ 𝛾
󸀠

𝑗𝑝
, 𝜂
𝑗𝑞
≥ 𝜂
󸀠

𝑗𝑞
, for all 𝑝 = 1, 2, . . . , 𝑘, for all 𝑞 =

1, 2, . . . , 𝑠, we have

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗𝑝
)
𝑤𝑗
)

1/𝜆

≤ (1 −

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝜆

𝑗𝑝
)
𝑤𝑗
)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗𝑞
)
𝜆

)

𝑤𝑗

)

1/𝜆

≥ 1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
󸀠

𝑗𝑞
)
𝜆

)

𝑤𝑗

)

1/𝜆

.

(29)

Thus, by Definition 3, 𝑆(GDHFWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)) ≤

𝑆(GDHFWA
𝑤
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
)).

Whenwe need to weight the ordered positions of the dual
hesitant fuzzy arguments instead of weighting the arguments
themselves, GDHFWA can be generalized to GDHFOWA.

Definition 15. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

DHFEs and let 𝜆 > 0; then we define the generalized
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dual hesitant fuzzy ordered weighted average (GDHFOWA)
operator as follows:

GDHFOWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = (

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝜎(𝑗)
)

1/𝜆

, (30)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

for all 𝑗 = 2, . . . , 𝑛, and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the aggregation-associated weight vector

such that 𝑤
𝑗
∈ [0, 1], and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

According to the operational laws of DHFEs, we can get
the theorem below. As its proof is similar to Theorem 9, we
omit it for simplicity.

Theorem 16. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs;

then their aggregated value by using the GDHFWA operator is
also a DHFE, and

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

}

}

}

,

{

{

{

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝜂
𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

}

}

}

}

}

}

.

(31)

Then we will discuss some properties of GDHOWA
operator, as their proofs are parallel to Theorems 10, 13, and
14, and we need not to prove them.

Theorem 17 (pseudo-idempotency). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHFEs. If 𝜆 = 1, 𝑑
1
= 𝑑
2
= ⋅ ⋅ ⋅ =

𝑑
𝑛
= 𝑑, and their weights 𝑤

1
= 𝑤
2
= ⋅ ⋅ ⋅ = 𝑤

𝑛
= 1/𝑛, then

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≥ 𝑑.

Theorem 18 (boundedness). Let 𝑑
𝑗

= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHFEs, and 𝑑−, 𝑑+ are defined
as before; then

𝑑
−
≤ 𝐺𝐷𝐻𝐹𝑂𝑊𝐴

𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≤ 𝑑
+
. (32)

Theorem 19 (quasi-monotonicity). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHEEs, where ℎ
𝑗

=

{𝛾
𝑗1
, 𝛾
𝑗2
, . . . , 𝛾

𝑗𝑘
}, 𝑔
𝑗
= {𝜂
𝑗1
, 𝜂
𝑗2
, . . . , 𝜂

𝑗𝑠
} (𝑗 = 1, 2, . . . , 𝑛). Let

𝑑
󸀠

𝑗
= {ℎ
󸀠

𝑗
, 𝑔
󸀠

𝑗
} (𝑗 = 1, 2, . . . , 𝑛) be another collection of DHEEs,

where ℎ󸀠
𝑗
= {𝛾
󸀠

𝑗1
, 𝛾
󸀠

𝑗2
, . . . , 𝛾

󸀠

𝑗𝑘
}, 𝑔
󸀠

𝑗
= {𝜂
󸀠

𝑗1
, 𝜂
󸀠

𝑗2
, . . . , 𝜂

󸀠

𝑗𝑠
} (𝑗 =

1, 2, . . . , 𝑛). If 𝛾
𝜎(𝑗)𝑝

≤ 𝛾
󸀠

𝜎(𝑗)𝑝
, 𝜂
𝜎(𝑗)𝑞

≥ 𝜂
󸀠

𝜎(𝑗)𝑞
(for

all 𝑝 = 1, 2, . . . , 𝑘, for all 𝑞 = 1, 2, . . . , 𝑠), where
(𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

, 𝑑
󸀠

𝜎(𝑗−1)
≥ 𝑑
󸀠

𝜎(𝑗)
for all 𝑗 = 2, . . . , 𝑛;

then

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

≤ 𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
) .

(33)

By Theorem 16 and commutative law of multiplication,
we can easily draw the commutativity of GDHFOWA oper-
ator.

Theorem 20 (commutativity). Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a

collection of DHFEs; then

GDHFOWA
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= GDHFOWA
𝑤
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
) ,

(34)

where 𝑑󸀠
𝑗
(𝑗 = 1, 2, . . . , 𝑛) is any permutation of 𝑑

𝑗
(𝑗 =

1, 2, . . . , 𝑛).

Next, we will develop the dual hesitant fuzzy Choquet
ordered aggregation (DHFCOA) operator and develop it to
GDHFCOA.

Definition 21. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

DHFEs, and let 𝜇 be a fuzzy measure on𝑋; then we call

DHFCOA
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

=

𝑛

⨁

𝑗=1

((𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜎(𝑗)

)

(35)

the dual hesitant fuzzy Choquet ordered aggregation (DHF-
COA) operator, where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation
of (1, 2, . . . , 𝑛), such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

for all 𝑗 = 2, 3, . . . , 𝑛,
𝐴
𝜎(𝑘)

= {𝑥
𝜎(𝑗)

| 𝑗 ≤ 𝑘}, for 𝑘 ≥ 1, and 𝐴
𝜎(0)

= 𝜙.

TheDHFCOAoperator can be easily transformed into the
following form by induction on 𝑛:

DHFCOA
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

=

𝑛

⨁

𝑗=1

((𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜎(𝑗)

)

= ⋃

𝛾𝜎(𝑗)∈ℎ𝜎(𝑗) ,𝜂𝜎(𝑗)∈𝑔𝜎(𝑗)

{

{

{

{

{

{

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝜎(𝑗)

)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

}

}

}

,

{

{

{

𝑛

∏

𝑗=1

(𝜂
𝜎(𝑗)

)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

}

}

}

}

}

}

.

(36)

Obviously, this aggregated value is still a dual hesitant fuzzy
element.

Particularly, if 𝜇({𝑥
𝜎(𝑗)

}) = 𝜇(𝐴
𝜎(𝑗)

) − 𝜇(𝐴
𝜎(𝑗−1)

), 𝑗 =

1, 2, . . . , 𝑛; then DHFCOA operator degenerates into
DHFWA operator. If 𝜇(𝐴) = ∑

𝑥𝑗∈𝐴
𝜇(𝑥
𝑗
), for all 𝐴 ⊆ 𝑋,

let 𝜔
𝑗

= 𝜇(𝐴
𝜎(𝑗)

) − 𝜇(𝐴
𝜎(𝑗−1)

), 𝑗 = 1, 2, . . . , 𝑛, where
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇
, 𝜔
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and
∑
𝑛

𝑗=1
𝜔
𝑗
= 1; then DHFCOA operator reduces to DHFOWA

operator.
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Definition 22. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

DHFEs, 𝜆 > 0, and let 𝜇 be a fuzzy measure on 𝑋; then we
call

GDHFCOA
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= (

𝑛

⨁

𝑗=1

(𝜇(𝐴
𝜎(𝑗)

) − 𝜇(𝐴
𝜎(𝑗−1)

)) 𝑑
𝜆

𝜎(𝑗)
)

1/𝜆

(37)

the generalized dual hesitant fuzzy Choquet ordered aggre-
gation (GDHFCOA) operator, where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is
a permutation of (1, 2, . . . , 𝑛), such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

for
all 𝑗 = 2, 3, . . . , 𝑛, 𝐴

𝜎(𝑘)
= {𝑥
𝜎(𝑗)

| 𝑗 ≤ 𝑘}, for 𝑘 ≥ 1, and
𝐴
𝜎(0)

= 𝜙.

Theorem23. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs;

then their aggregated value by using the GDHFCOA operator
is also a DHFE, and

𝐺𝐷𝐻𝐹𝐶𝑂𝐴
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1 −

𝑛

∏

𝑗=1

(1− 𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

,

{

{

{

1−(1−

𝑛

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

.

(38)

Proof. By using mathematics inductive method, we prove
Theorem 23 as follows.

For 𝑛 = 2, by the operational laws of DHFEs, we can get

𝑑
𝜆

𝜎(1)
= ⋃

𝛾1∈ℎ𝜎(1) ,𝜂1∈𝑔𝜎(1)

{{𝛾
𝜆

1
} , {1 − (1 − 𝜂

1
)
𝜆
}} ,

𝑑
𝜆

𝜎(2)
= ⋃

𝛾2∈ℎ𝜎(2) ,𝜂2∈𝑔𝜎(2)

{{𝛾
𝜆

2
} , {1 − (1 − 𝜂

2
)
𝜆
}} ,

(𝜇 (𝐴
𝜎(1)

) − 𝜇 (𝐴
𝜎(0)

)) 𝑑
𝜆

𝜎(1)

= ⋃

𝛾1∈ℎ𝜎(1) ,𝜂1∈𝑔𝜎(1)

{{1 − (1 − 𝛾
𝜆

1
)
𝜇(𝐴𝜎(1))−𝜇(𝐴𝜎(0))

} ,

{(1 − (1 − 𝜂
1
)
𝜆
)

𝜇(𝐴𝜎(1))−𝜇(𝐴𝜎(0))

}} ,

(𝜇 (𝐴
𝜎(2)

) − 𝜇 (𝐴
𝜎(1)

)) 𝑑
𝜆

𝜎(2)

= ⋃

𝛾2∈ℎ𝜎(2) ,𝜂2∈𝑔𝜎(2)

{{1 − (1 − 𝛾
𝜆

2
)
𝜇(𝐴𝜎(2))−𝜇(𝐴𝜎(1))

} ,

{(1 − (1 − 𝜂
2
)
𝜆
)

𝜇(𝐴𝜎(2))−𝜇(𝐴𝜎(1))

}} .

(𝜇 (𝐴
𝜎(1)

) − 𝜇 (𝐴
𝜎(0)

)) 𝑑
𝜆

𝜎(1)
⊕ (𝜇 (𝐴

𝜎(2)
) − 𝜇 (𝐴

𝜎(1)
)) 𝑑
𝜆

𝜎(2)

= ⋃

𝛾𝑖∈ℎ𝜎(𝑖),𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

1−

2

∏

𝑗=1

(1− 𝛾
𝜆

𝑗
)
(𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1)))

}

}

}

,

{

{

{

1− (1−

2

∏

𝑗=1

1 − (1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

}

}

}

}

}

}

,

((𝜇 (𝐴
𝜎(1)

)−𝜇 (𝐴
𝜎(0)

))𝑑
𝜆

𝜎(1)
⊕(𝜇 (𝐴

𝜎(2)
) − 𝜇 (𝐴

𝜎(1)
)) 𝑑
𝜆

𝜎(2)
)
1/𝜆

= ⋃

𝛾𝑖∈ℎ𝜎(𝑖) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1−

2

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
(𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1)))

)

1/𝜆

}

}

}

,

{

{

{

1−(1−

2

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

.

(39)

If Theorem 23 holds for 𝑛 = 𝑘, that is,

GDHFCOA
𝜇
(𝑑
𝜎(1)

, 𝑑
𝜎(2)

, . . . , 𝑑
𝜎(𝑘)

)

= ⋃

𝛾𝑗∈ℎ𝜎(𝑗),𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1−

𝑘

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

,

{

{

{

1−(1−

𝑘

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

(40)

then, when 𝑛 = 𝑘 + 1, by the operational laws for DHFEs, we
have

𝑘+1

⨁

𝑗=1

(𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜆

𝜎(𝑗)

= (

𝑘

⨁

𝑗=1

(𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜆

𝜎(𝑗)
)

⊕ (𝜇 (𝐴
𝜎(𝑗+1)

) − 𝜇 (𝐴
𝜎(𝑗)

)) 𝑑
𝜆

𝜎(𝑘+1)

=( ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

1−

𝑘

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

}

}

}

,

{

{

{

𝑘

∏

𝑗=1

(1−(1− 𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))}

}

}

}

}

}

)

⊕ (𝜇 (𝐴
𝜎(𝑗+1)

) − 𝜇 (𝐴
𝜎(𝑗)

)) 𝑑
𝜆

𝜎(𝑘+1)
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= ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

1−

𝑘+1

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

}

}

}

,

{

{

{

𝑘+1

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))}

}

}

}

}

}

.

(41)

Then, we get

(

𝑘+1

⨁

𝑗=1

(𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜆

𝜎(𝑗)
)

1/𝜆

= ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1−

𝑘+1

∏

𝑗=1

(1− 𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

,

{

{

{

1−(1−

𝑘+1

∏

𝑗=1

(1−(1− 𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

.

(42)

That is,Theorem 23 holds for 𝑛 = 𝑘+1.Thus, by the principle
of mathematical induction, Theorem 23 holds for all 𝑛.

Parallel to Theorems 10, 13, 14, and 20, we can prove the
similar properties of GDHFCOA operator as follows.

Theorem 24 (pseudo-idempotency). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHFEs. If 𝜆 = 1, 𝑑
1
= 𝑑
2
= ⋅ ⋅ ⋅ =

𝑑
𝑛
= 𝑑, and 𝜇(𝐴

𝜎(𝑗)
) − 𝜇(𝐴

𝜎(𝑗−1)
) = 1/𝑛, 𝑗 = 1, 2, . . . , 𝑛, then

GDHFCOA
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≥ 𝑑.

Theorem 25 (boundedness). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of DHFEs, and 𝑑
−
, 𝑑
+ are defined as

before; then

𝑑
−
≤ 𝐺𝐷𝐻𝐹𝐶𝑂𝐴 (𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
) ≤ 𝑑
+
. (43)

Theorem 26 (quasi-monotonicity). Let 𝑑
𝑗
= {ℎ
𝑗
, 𝑔
𝑗
} (𝑗 =

1, 2, . . . , 𝑛) be a collection of DHEEs, where ℎ
𝑗

=

{𝛾
𝑗1
, 𝛾
𝑗2
, . . . , 𝛾

𝑗𝑘
}, 𝑔
𝑗
= {𝜂
𝑗1
, 𝜂
𝑗2
, . . . , 𝜂

𝑗𝑠
} (𝑗 = 1, 2, . . . , 𝑛). Let

𝑑
󸀠

𝑗
= {ℎ
󸀠

𝑗
, 𝑔
󸀠

𝑗
} (𝑗 = 1, 2, . . . , 𝑛) be another collection of DHEEs,

where ℎ󸀠
𝑗
= {𝛾
󸀠

𝑗1
, 𝛾
󸀠

𝑗2
, . . . , 𝛾

󸀠

𝑗𝑘
}, 𝑔
󸀠

𝑗
= {𝜂
󸀠

𝑗1
, 𝜂
󸀠

𝑗2
, . . . , 𝜂

󸀠

𝑗𝑠
} (𝑗 =

1, 2, . . . , 𝑛). If 𝛾
𝜎(𝑗)𝑝

≤ 𝛾
󸀠

𝜎(𝑗)𝑝
, 𝜂
𝜎(𝑗)𝑞

≥ 𝜂
󸀠

𝜎(𝑗)𝑞
(for

all 𝑝 = 1, 2, . . . , 𝑘, for all 𝑞 = 1, 2, . . . , 𝑠), where
(𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑑

𝜎(𝑗−1)
≥ 𝑑
𝜎(𝑗)

, 𝑑
󸀠

𝜎(𝑗−1)
≥ 𝑑
󸀠

𝜎(𝑗)
for all 𝑗 = 2, . . . , 𝑛,

then

𝐺𝐷𝐻𝐹𝐶𝑂𝐴
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

≤ 𝐺𝐷𝐻𝐹𝐶𝑂𝐴
𝜇
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
) .

(44)

Theorem 27 (commutativity). Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a

collection of DHFEs; then

𝐺𝐷𝐻𝐹𝐶𝑂𝐴
𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= 𝐺𝐷𝐻𝐹𝐶𝑂𝐴
𝜇
(𝑑
󸀠

1
, 𝑑
󸀠

2
, . . . , 𝑑

󸀠

𝑛
) ,

(45)

where 𝑑󸀠
𝑗
(𝑗 = 1, 2, . . . , 𝑛) is any permutation of 𝑑

𝑗
(𝑗 =

1, 2, . . . , 𝑛).

4. Families of GDHFCOA Operators

In this section, different types of GDHFCOA operators are
considered. When we change the parameters, GDHFCOA
operator can be reduced to various operators.

Theorem28. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs,

𝜆 > 0, and let 𝜇 be a fuzzy measure on 𝑋. If we denote
𝑤
𝑗
= 𝜇(𝐴

𝜎(𝑗)
) − 𝜇(𝐴

𝜎(𝑗−1)
), 𝑗 = 1, 2, . . . , 𝑛, then 𝑤

𝑗
∈

[0, 1], ∑
𝑛

𝑗=1
𝑤
𝑗
= 1 and GDHFCOA operator is reduced to

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = (

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝜎(𝑗)
)

1/𝜆

. (46)

Theorem29. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs,

𝜆 > 0, and let 𝜇 be a fuzzy measure on 𝑋. We denote w
𝑗
=

𝜇(𝐴
𝜎(𝑗)

) − 𝜇(𝐴
𝜎(𝑗−1)

), 𝑗 = 1, 2, . . . , 𝑛. If 𝑑
1
> 𝑑
2
> ⋅ ⋅ ⋅ > 𝑑

𝑛
,

then the GDHFOWA operator is reduced to

𝐺𝐷𝐻𝐹𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = (

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑑
𝜆

𝑗
)

1/𝜆

. (47)

Theorem 30. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs

and let 𝜇 be a fuzzy measure on𝑋. We denote𝑤
𝑗
= 𝜇(𝐴

𝜎(𝑗)
) −

𝜇(𝐴
𝜎(𝑗−1)

), 𝑗 = 1, 2, . . . , 𝑛. If 𝜆 = 1, then the GDHFOWA
operator and GDHFWA operator are reduced to DHFOWA
operator and DHFWA operator, respectively.

Theorem 31. Let 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs,

𝜆 > 0, and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-

associated weight vector such that 𝑤
𝑗
∈ [0, 1], and ∑𝑛

𝑗=1
𝑤
𝑗
=

1.

(1) If 𝑤 = (1, 0, . . . , 0)
𝑇, then the GDHFOWA operator is

reduced to the following:

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = 𝑑
𝜎(1)

= max
𝑗
{𝑑
𝑗
} . (48)

(2) If 𝑤 = (0, 0, . . . , 1)
𝑇, then the GDHFOWA operator is

reduced to the following:

𝐺𝐷𝐻𝐹𝑂𝑊𝐴
𝑤
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = 𝑑
𝜎(𝑛)

= min
𝑗
{𝑑
𝑗
} . (49)

5. An Approach to Multiple
Attribute Decision Making with Dual
Hesitant Fuzzy Information

In this section, we will utilize the GDHFCOA operator
to multiple attribute decision making under dual hesitant
fuzzy environment. The following assumptions or notations
are used to represent the MADM problems for evaluation
of theses with dual hesitant fuzzy information. Let 𝐴 =

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a discrete set of alternatives, and let
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𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
} be the state of nature. If the decision

makers provide several values for the alternative𝐴
𝑖
under the

attribute 𝐺
𝑗
with anonymity, these values can be considered

as a dual hesitant fuzzy element 𝑑
𝑖𝑗

= {ℎ
𝑖𝑗
, 𝑔
𝑖𝑗
}. Suppose

that the decision matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

is the dual hesitant
fuzzy decision matrix, where 𝑑

𝑖𝑗
= {ℎ
𝑖𝑗
, 𝑔
𝑖𝑗
}, (𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛) are in the form of DHFEs. In the following,
we apply the GDHFCOA operator to the multiple attribute
decision making problems for evaluation of theses with dual
hesitant fuzzy information.

Step 1. Confirm the fuzzy measures 𝜇 of attributes of G and
attributes sets of G.

Step 2. Utilize the decision information given in matrix 𝐷
and the GDHFCOA operator

𝑑
𝑖
= GDHFCOA

𝜇
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= (

𝑛

⨁

𝑗=1

(𝜇 (𝐴
𝜎(𝑗)

) − 𝜇 (𝐴
𝜎(𝑗−1)

)) 𝑑
𝜆

𝜎(𝑗)
)

1/𝜆

= ⋃

𝛾𝑗∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1−

𝑛

∏

𝑗=1

(1−𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

,

{

{

{

1−(1−

𝑛

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

(50)

to derive the overall preference values 𝑑
𝑖
(𝑖 = 1, 2, . . . , 𝑚) of

the alternative 𝐴
𝑖
.

Step 3. Calculate the scores 𝑠(𝑑
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) of the

overall dual hesitant fuzzy values 𝑑
𝑖
(𝑖 = 1, 2, . . . , 𝑚) by

Definition 3.

Step 4. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚) in

accordance with the scores 𝑠(𝑑
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) and select

the best one(s).

Step 5. End.

Remark 32. The advantages of the generalized dual hesitant
fuzzy Choquet ordered aggregation (GDHFCOA) operator
lie in four aspects.

First, there is a fuzzy measure 𝜇 in the GDHFCOA
operator, which can be regarded as an extension of the
weight vector. Sometimes, some attributes may have little
importance, respectively, but when they gather together, they
become very important. In order to deal with this situation,
we can use the fuzzy measure to define a weight on not only
each attribute but also each combination of attributes.

Second, our method does not assume the independence
of one attribute from another and it can deal with the
situation where the attributes are correlative. Traditional
additive aggregation operators, such asDHFWAoperator and
DHFOWA operator, are all based on the assumption that
the attributes are independent, and each attribute is given a
fixed weight representing its importance during the decision

process. Nevertheless, they do not consider the addition
of the importance of individual attribute, and as a result,
they cannot get reasonable results when the attributes are
correlative. In real decision problems, since there are often
interdependent or interactive phenomena among attributes,
the overall importance of an attribute is not only determined
by itself, but also by other attributes. So our method is a good
choice to solve the real decision making problems.

Third, the GDHFCOA operator can accommodate situ-
ations in which the input arguments are dual hesitant fuzzy
information. As dual hesitant fuzzy set is a comprehensive
set containing FSs, IFSs, FMSs, andHFSs as special cases, our
method can be widely used.

Fourth, the GDHFCOA operator has an additional
parameter 𝜆which controls the power. If the parameter takes
different values, the proposed operators can be evolved into
many special aggregation operators, which make decision
making more flexible and can meet the different needs of
different decision makers. That is to say, the decision makers
can choose the value of the parameter according to their
preferences and interests.

6. Numerical Example

Thus, in this section, we will present a numerical example
(adapted from [19, 25]) to show evaluation of theses with dual
hesitant fuzzy information in order to illustrate the proposed
method. There are five theses 𝐴

𝑖
(𝑖 = 1, 2, 3, 4, 5), and we

want to select the best one. Four attributes are selected by
experts to evaluate the theses: (1) 𝐺

1
is the language of a

thesis; (2) 𝐺
2
is the innovation; (3) 𝐺

3
is the rigor; (4) 𝐺

4

is the structure of the thesis. In order to avoid influencing
each other, the experts are required to evaluate the five
theses 𝐴

𝑖
(𝑖 = 1, 2, 3, 4, 5) under the above four attributes in

anonymity and the decisionmatrix𝐷 = (𝑑
𝑖𝑗
)
5 × 4

is presented
in Table 1, where 𝑑

𝑖𝑗
= {ℎ
𝑖𝑗
, 𝑔
𝑖𝑗
}, (𝑖 = 1, 2, 3, 4, 5, 𝑗 = 1, 2, 3, 4)

are in the form of DHFEs. The fuzzy measure of attribute
𝐺
𝑗
(𝑗 = 1, 2, . . . , 4) and attribute sets of 𝐺 are as follows:

𝜇(𝐺
1
) = 0.30, 𝜇(𝐺

2
) = 0.35, 𝜇(𝐺

3
) = 0.30, 𝜇(𝐺

4
) = 0.22,

𝜇(𝐺
1
, 𝐺
2
) = 0.70, 𝜇(𝐺

1
, 𝐺
3
) = 0.60, 𝜇(𝐺

1
, 𝐺
4
) = 0.55,

𝜇(𝐺
2
, 𝐺
3
) = 0.50, 𝜇(𝐺

2
, 𝐺
4
) = 0.45, 𝜇(𝐺

3
, 𝐺
4
) = 0.40,

𝜇(𝐺
1
, 𝐺
2
, 𝐺
3
) = 0.82, 𝜇(𝐺

1
, 𝐺
2
, 𝐺
4
) = 0.87, 𝜇(𝐺

1
, 𝐺
3
, 𝐺
4
) =

0.75, 𝜇(𝐺
2
, 𝐺
3
, 𝐺
4
) = 0.60, 𝜇(𝐺

1
, 𝐺
2
, 𝐺
3
, 𝐺
4
) = 1.00.

6.1. The Decision Making Steps. Next, we apply the developed
approach to evaluate these theses with dual hesitant fuzzy
information.

Step 1. We use the decision information given in matrix 𝐷
and the GDHFCOA operator to obtain the overall preference
values 𝑑

𝑖
of the thesis 𝐴

𝑖
(𝑖 = 1, 2, 3, 4, 5). Take thesis 𝐴

1
, for

example, we have (take 𝜆 = 1)

𝑑
1
= GDHFCOA

𝜇
(𝑑
11
, 𝑑
12
, 𝑑
13
, 𝑑
14
)

= ⋃

𝛾
𝑗
∈ℎ𝜎(𝑗) ,𝜂𝑗∈𝑔𝜎(𝑗)

{

{

{

{

{

{

(1−

4

∏

𝑗=1

(1 − 𝛾
𝜆

𝑗
)
𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

,
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Table 1: Dual hesitant fuzzy decision matrix𝐷.

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐴
1

{{0.4, 0.5}, {0.5}} {{0.5, 0.6}, {0.2, 0.3}} {{0.3, 0.4}, {0.5}} {{0.4, 0.6}, {0.2, 0.3}}

𝐴
2

{{0.5, 0.6}, {0.1, 0.3}} {{0.2, 0.4, 0.5}, {0.4}} {{0.2}, {0.6, 0.7, 0.8}} {{0.5}, {0.3, 0.4}}

𝐴
3

{{0.5, 0.8}, {0.2}} {{0.1}, {0.7, 0.8}} {{0.2, 0.3, 0.4}, {0.6}} {{0.4, 0.6, 0.7}, {0.3}}

𝐴
4

{{0.5}, {0.4}} {{0.4, 0.6, 0.8}, {0.2}} {{0.1, 0.2}, {0.6}} {{0.4}, {0.5, 0.6}}

𝐴
5

{{0.4, 0.6}, {0.2}} {{0.2, 0.3, 0.4}, {0.6}} {{0.4, 0.5}, {0.2}} {{0.1, 0.3, 0.4}, {0.6}}

{

{

{

1−(1−

4

∏

𝑗=1

(1−(1−𝜂
𝑗
)
𝜆

)

𝜇(𝐴𝜎(𝑗))−𝜇(𝐴𝜎(𝑗−1))

)

1/𝜆

}

}

}

}

}

}

.

={{0.425697, 0.437091, 0.468033, 0.478587, 0.448517,

0.459459, 0.489171, 0.499306, 0.468844, 0.479382,

0.507999, 0.51776, 0.489949, 0.500069, 0.527549,

0.536922}, {0.331053, 0.344751, 0.38153, 0.397318}} .

(51)

When assigning different values to the parameter 𝜆, we can
obtain different dual hesitant fuzzy values.

Step 2. Calculate the scores 𝑠(𝑑
𝑖
) (𝑖 = 1, 2, 3, 4, 5) of the

overall dual hesitant fuzzy values 𝑑
𝑖
(𝑖 = 1, 2, 3, 4, 5) of the

thesis 𝐴
𝑖
. Please see Table 2.

Step 3. According to the scores 𝑠(𝑑
𝑖
) of the overall dual

hesitant fuzzy values 𝑑
𝑖
(𝑖 = 1, 2, . . . , 5), we rank all the theses

𝐴
𝑖
(𝑖 = 1, 2, 3, 4, 5) by comparing laws of DHFEs. The results

are shown in Table 2.

6.2. Discussion. From Table 2, we find that the values
obtained by the GDHFCOA operator become bigger as the
parameter 𝜆 increases. Moreover, the rankings are different
whenwe choose different values of 𝜆.The trends are shown in
Figure 1 as the parameter values range from 0 to 4.We denote
the score 𝑠(𝑑

𝑖
) as𝑌
𝑖
(𝑖 = 1, 2, . . . , 5) for short in Figure 1. From

Figure 1, it can be clearly seen that

(1) when 𝜆 ∈ (0, 0.947173], the ranking of the five theses
is 𝐴
4
≻ 𝐴
1
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
3
;

(2) when 𝜆 ∈ (0.947173, 1.14939], the ranking of the five
theses is 𝐴

4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
5
≻ 𝐴
3
;

(3) when 𝜆 ∈ (1.14939, 1.47194], the ranking of the five
theses is 𝐴

4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
3
≻ 𝐴
5
;

(4) when 𝜆 ∈ (1.47194, 1.64355], the ranking of the five
theses is 𝐴

4
≻ 𝐴
2
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
5
;

(5) when 𝜆 ∈ (1.64355, 2.43027], the ranking of the five
theses is 𝐴

4
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
5
;

(6) when 𝜆 ∈ (2.43027, 2.85024], the ranking of the five
theses is 𝐴

4
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
1
;

(7) when 𝜆 ∈ (2.85024, 4], the ranking of the five theses
is 𝐴
3
≻ 𝐴
4
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
1
.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.1
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0.25
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Score = 0.196
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Figure 1: Scores for theses obtained by GDHFCOA operator.

Obviously, the decision makers can choose different param-
eters according to their interests, which make the decision
more flexible.

6.3. Comparative Analysis. In order to show the merit of
the proposed method, we utilized some existing methods to
solve this numerical example. As the GDHFCOA operator
is an ordered weighted operator, we choose DHFOWA and
DHFOWG rather than DHFWA and DHFWG. Then, we
utilized the method proposed byWang et al. [19] to solve this
illustrative example. For simplicity, we omit the calculation
process and only list the results in Tables 3 and 4.

From Table 2–Table 4, we can compare these methods as
follows.

(1) During the calculation, we can find that the weight
vectors can be obtained by the source decision
information in our method. As a result, different
decision data will acquire different weight vectors
automatically. However, for DHFOWA operator and
DHFOWGoperator, the weight vectorsmust be given
by experts in advance. Thus, the proposed method is
more objective and reasonable than Wang’s method
[19].
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Table 2: Scores of the dual hesitant fuzzy values obtained by GDHFCOA operator.

𝑠(𝑑
1
) 𝑠(𝑑

2
) 𝑠(𝑑

3
) 𝑠(𝑑

4
) 𝑠(𝑑

5
) Ranking

𝜆 = 0.5 0.113941 0.108192 0.060358 0.13701 0.0873121 𝐴
4
≻ 𝐴
1
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
3

𝜆 = 1 0.119733 0.120391 0.0951852 0.150743 0.101029 𝐴
4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
5
≻ 𝐴
3

𝜆 = 1.5 0.125836 0.132388 0.127193 0.164 0.11447 𝐴
4
≻ 𝐴
2
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
5

𝜆 = 2 0.132178 0.143864 0.155721 0.176611 0.127319 𝐴
4
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
5

𝜆 = 2.5 0.138683 0.154615 0.180793 0.188531 0.139405 𝐴
4
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
1

𝜆 = 3 0.145275 0.16455 0.202751 0.199774 0.150659 𝐴
3
≻ 𝐴
4
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
1

Table 3: Scores for theses obtained by DHFOWA operator.

Weight vectors 𝑠(𝑑
1
) 𝑠(𝑑

2
) 𝑠(𝑑

3
) 𝑠(𝑑

4
) 𝑠(𝑑

5
) Ranking

𝑤 = (0.35, 0.1, 0.42, 0.13)
𝑇 0.119733 0.115672 0.0818534 0.098652 0.0279722 𝐴

1
≻ 𝐴
2
≻ 𝐴
4
≻ 𝐴
3
≻ 𝐴
5

𝑤 = (0.3, 0.25, 0.32, 0.13)
𝑇 0.147745 0.120391 0.120942 0.100435 0.077588 𝐴

1
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
4
≻ 𝐴
5

𝑤 = (0.25, 0.25, 0.25, 0.25)
𝑇 0.119935 0.0584848 0.054057 0.0421476 0.0458413 𝐴

1
≻ 𝐴
2
≻ 𝐴
3
≻ 𝐴
5
≻ 𝐴
4

𝑤 = (0.3, 0.3, 0.22, 0.18)
𝑇 0.157777 0.113094 0.135685 0.100415 0.101029 𝐴

1
≻ 𝐴
3
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
4

Table 4: Scores for theses obtained by DHFOWG operator.

Weight vector 𝑠(𝑑
1
) 𝑠(𝑑

2
) 𝑠(𝑑

3
) 𝑠(𝑑

4
) 𝑠(𝑑

5
) Ranking

𝑤 = (0.35, 0.1, 0.42, 0.13)
𝑇 0.0692636 0.00329123 −0.13716 −0.0344067 −0.0970861 𝐴

1
≻ 𝐴
2
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
3

𝑤 = (0.3, 0.25, 0.32, 0.13)
𝑇 0.0958579 0.0129617 −0.0911802 −0.0205423 −0.0447992 𝐴

1
≻ 𝐴
2
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
3

𝑤 = (0.25, 0.25, 0.25, 0.25)
𝑇 0.0645639 −0.0802401 −0.19675 −0.0988189 −0.0822588 𝐴

1
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
4
≻ 𝐴
3

𝑤 = (0.3, 0.3, 0.22, 0.18)
𝑇 0.104939 −0.0109346 −0.0973555 −0.0317627 −0.0200345 𝐴

1
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
4
≻ 𝐴
3

(2) Tables 2 and 3 have some common scores such as
𝑆(𝑑
1
) = 0.119733. This indicates that DHFOWA

operator is a special case of GDHFCOA operator
under certain conditions, which has been pointed out
inTheorem 30.

(3) We find that the rankings in Table 2 are quite different
from Tables 3 and 4. The reason may be that there
are interdependent or interactive phenomena among
attributes in this numerical example. From another
perspective,

𝜇 (𝐺
1
) + 𝜇 (𝐺

2
) + 𝜇 (𝐺

3
) + 𝜇 (𝐺

4
)

= 0.30 + 0.35 + 0.30 + 0.22 > 1

= 𝜇 (𝐺
1
, 𝐺
2
, 𝐺
3
, 𝐺
4
)

(52)

also tells us that the attributes are correlative.
The GDHFCOA operator can perform aggregation
of attributes when they are correlative. However,
DHFOWA and DHFOWG operators always suppose
that the attributes are independent, and each attribute
is given a fixedweight subjectively. So theGDHFCOA
operator is a better choice here.

(4) When we change the parameter 𝜆, we get different
rankings in Table 2. This indicates that the GDHF-
COA operator have an additional parameter 𝜆, which
makes decision making more flexible and can meet
the needs of different types of decision makers.

7. Conclusion

In this paper, we have investigated the multiple attribute
decisionmaking (MADM)problembased on theGDHFCOA
operator with dual hesitant fuzzy information. Firstly, some
operational laws of dual hesitant fuzzy elements and score
function of dual hesitant fuzzy elements as well as existing
aggregation operators have been introduced.Then,motivated
by the ideal of Choquet integral, the generalized dual hesitant
fuzzy Choquet ordered aggregation (GDHFCOA) operator
has been developed. Its advantage is that it can consider the
importance of the attributes as well as the correlation among
the attributes, which makes it more feasible and practical.
At the same time, we have introduced several generalized
aggregation operators for DHFS such as GDHFWA, and
discussed their basic properties. As different parameters
can be chosen in these generalized aggregation operators,
the decision becomes more flexible. Furthermore, we have
discussed the families of GDHFCOA operator. Next, we have
applied the GDHFCOA operator to multiple attribute deci-
sion making problems with dual hesitant fuzzy information.
Finally, an illustrative example for evaluation of theses has
been given to demonstrate its practicality and effectiveness. In
the future, we will consider the monotonicity of GDHFCOA
operator and apply the dual hesitant fuzzy multiple attribute
decision making to other domains.
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