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We consider a Schrödinger-Poisson system in R3 with a strongly indefinite potential and a general nonlinearity. Its variational
functional does not satisfy the global linking geometry. We obtain a nontrivial solution and, in case of odd nonlinearity, infinitely
many solutions using the local linking and improved fountain theorems, respectively.

1. Introduction and Statement of Results

In this paper, we consider the Schrödinger-Poisson system:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 + 𝐾

1 (
𝑥) 𝜙𝑢 = 𝑄 (𝑥) 𝑓 (𝑢) , in R

3
,

−Δ𝜙 = 𝐾

2
(𝑥) 𝑢

2
, in R

3
.

(1)

For 𝑉, 𝐾
1
, 𝐾
2
, 𝑄, and 𝑓, we assume the following.

(k) 𝑉 ∈ 𝐿

𝑞

loc(R
3
) and 𝑉

−
= min{−𝑉, 0} ∈ 𝐿

∞
(R3) +

𝐿

𝑞
(R3) for some 𝑞 ∈ [2,∞). This assumption ensures

that the Schrödinger operator 𝑆 = −Δ + 𝑉 is self-
adjoint and semibounded on 𝐿

2
(R3) (see Theorem

A.2.7 in [1]). 𝜎(𝑆) denotes the spectrum of 𝑆. We
assume that 0 lies in a gap of 𝜎(𝑆); that is, there exist
𝛼, 𝛽 > 0 such that

𝜎 (𝑆) ∩ (−𝛼, 𝛽) = 0. (2)

(k) 𝑄,𝐾
𝑖
∈ 𝐶(R3) satisfy 𝑄(𝑥) > 0, 𝐾

𝑖
(𝑥) > 0 for all 𝑥,

lim
|𝑥|→∞

𝑄 (𝑥) = 0, lim
|𝑥|→∞

𝐾

𝑖 (
𝑥) = 0, 𝑖 = 1, 2, (3)

and there exists 𝑝 ∈ (4, 6) such that

∫

R3

𝐾

6𝑝/(5𝑝−12)

𝑖
(𝑥)

𝑄

12/(5𝑝−12)
(𝑥)

𝑑𝑥 < ∞, 𝑖 = 1, 2.

(4)

(f1) 𝑓 ∈ 𝐶(R) and there exists 𝐶 > 0 such that for all
𝑡 ∈ R,

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶 (|𝑡| + |𝑡|

𝑝−1
) . (5)

(f2) 𝑓(𝑡) = 𝑜(𝑡) as 𝑡 → 0.
(f3) Let

𝐹 (𝑡) = ∫

𝑡

0

𝑓 (𝜏) 𝑑𝜏.
(6)

We assume that there exists 𝐴 > 0 such that for all
𝑡 ∈ R,

̃

𝐹 (𝑡) := 𝑡𝑓 (𝑡) − 2𝐹 (𝑡) ≥ 𝐴|𝑡|

𝑝
.

(7)

(f4) 𝑓(−𝑡) = −𝑓(𝑡) for all 𝑡 ∈ R.

Remark 1. Note that

(

𝐹 (𝑡)

𝑡

2
)

󸀠

=

𝑡𝑓 (𝑡) − 2𝐹 (𝑡)

𝑡

3
.

(8)

This together with (7) implies that there exists 𝐶
1
> 0 such

that for all 𝑡 ∈ R,

𝐹 (𝑡) ≥ 𝐶

1
|𝑡|

𝑝
. (9)

Our main results are as follows.
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Theorem 2. Suppose that (k), (k), and (f1)–(f3) are satisfied,
then the problem (1) has a nontrivial solution.

Theorem 3. Suppose that (k), (k), and (f1)–(f4) are satisfied,
then the problem (1) has infinitely many solutions.

Problem (1) arises in quantummechanics and is related to
the study of the nonlinear Schrödinger equation for a particle
in an electromagnetic field or the Hartree-Fock equation.
For a more detailed physical background of the Schrödinger-
Poisson system, readers can refer to [2, 3] and the references
therein.

This system has attracted considerable research attention
in the recent decade, and it has been studied widely by using
the modern variational method and critical point theory
under various assumptions. However, many mathematical
studies have been devoted to the case infR3𝑉 > 0. In this
case, there are many results on the existence, nonexistence,
or multiplicity of solutions for (1). One can refer to [2–20].

There are very few studies devoted to (1) under the
assumption that −Δ + 𝑉 has a nontrivial negative eigenspace
compared to the case infR3𝑉 > 0. In a recent paper [21], Chen
and Liu studied the problem under the assumption on𝑉 that

(v󸀠) 𝑉 ∈ 𝐶(R3) is bounded from below and 𝜇(𝑉

−1
(−∞,

𝑀]) < ∞ for every 𝑀 > 0, where 𝜇 is the Lebesgue
measure on R3. Moreover, the operator −Δ + 𝑉 has
negative eigenvalues.

They verified the existence of multiple solutions of (1)
under this assumption on 𝑉 and under certain 4-superlinear
conditions on 𝑓. Our assumptions on 𝑉, which are different
from (v󸀠), allow an infinitely dimensional negative eigenspace
of −Δ+𝑉.This causes some difficulties. For example, it makes
the verification of the compactness conditions amore delicate
problem. In addition, when we search for infinitely many
solutions of (1) for the case where 𝑓 is odd, the classical
fountain theorem of Bartsch (see [22] or [23]) cannot be
applied. Fortunately, this difficulty can be overcome using a
recently improved fountain theorem of Batkama and Colin
[24]. To the best of our knowledge, the Schrödinger-Poisson
equation with a strongly indefinite linear part has never been
studied. Besides the difficulties caused by the strongly indef-
inite linear part, the functional related to (1) (see Section 2)
involves a nonlocal term and it makes the functional not
satisfy the global linking structure. To overcome this difficulty
and obtain a nontrivial solution of (1), we use the local linking
method (see [25]).

Throughout this paper, we denote the strong and the
weak convergence by → and ⇀, respectively. 𝐿

𝑝
(R3)

denotes the standard Lebesgue space with norm ‖𝑢‖

𝐿
𝑝

=

(∫

R3
|𝑢|

𝑝
𝑑𝑥)

1/𝑝. For 𝑘 ∈ N, 𝐻𝑘(R3) denotes the standard

Sobolev space with norm ‖𝑢‖

𝐻
𝑘 = (∫

R3
∑

|𝛾|≤𝑘
|𝜕

𝛾
𝑢|

2
𝑑𝑥)

1/2

.
For a Banach space 𝐸, we denote the dual space of 𝐸 by 𝐸

∗,
and the norm of 𝐸∗ is denoted by ‖ ⋅ ‖

𝐸
∗ .

2. Proof of Theorem 2

Assume that (k) holds and let 𝑆 = −Δ + 𝑉 be the self-adjoint
operator acting on 𝐿

2
(R3) with domain 𝐷(𝑆) = 𝐻

2
(R3). By

virtue of (k), we have the orthogonal decomposition

𝐿

2
= 𝐿

2
(R
3
) = 𝐿

+
+ 𝐿

− (10)

such that 𝑆 is negative (resp. positive) in 𝐿

− (resp. in 𝐿

+). Let
𝑋 = 𝐷(|𝑆|

1/2
) be equipped with the inner product

(𝑢, V) = (|𝑆|

1/2
𝑢, |𝑆|

1/2V)
𝐿
2

(11)

and norm ‖𝑢‖ = ‖|𝑆|

1/2
𝑢‖

𝐿
2 , where (⋅, ⋅)

𝐿
2 denotes the inner

product of 𝐿2. From (v),

𝑋 = 𝐻

1
(R
3
) (12)

with equivalent norms. Therefore, 𝑋 continuously embeds
in 𝐿

𝑞
(R3) for all 2 ≤ 𝑞 ≤ 6. In addition, we have the

decomposition

𝑋 = 𝑋

+
+ 𝑋

−
, (13)

where 𝑋

±
= 𝑋 ∩ 𝐿

± is orthogonal with respect to both
(⋅, ⋅)

𝐿
2 and (⋅, ⋅). Therefore, for every 𝑢 ∈ 𝑋, there is a unique

decomposition

𝑢 = 𝑢

+
+ 𝑢

−
, 𝑢

±
∈ 𝑋

± (14)

with (𝑢

+
, 𝑢

−
) = 0 and

∫

R3
|∇𝑢|

2
𝑑𝑥 + ∫

R3
𝑉 (𝑥) 𝑢

2
𝑑𝑥 =

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

, 𝑢 ∈ 𝑋.

(15)

For 𝑢 ∈ 𝑋, it is well known (see, e.g., Theorem 2.2.1 of
[26]) that the Poisson equation

−Δ𝜙 = 𝐾

2 (
𝑥) 𝑢

2 (16)

has a unique solution

𝜙

𝑢
(𝑥) =

1

4𝜋

∫

R3

𝐾

2
(𝑦) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑦,
(17)

and 𝜙

𝑢
∈ D1,2(R3) = {𝑢 ∈ 𝐿

6
(R3) | ∫

R3
|∇𝑢|

2
𝑑𝑥 < ∞}.

Let

Φ (𝑢) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+

1

16𝜋

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

− ∫

R3
𝑄 (𝑥) 𝐹 (𝑢) 𝑑𝑥, 𝑢 ∈ 𝑋.

(18)
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Under the assumptions (f1) and (k); Φ is a 𝐶

1 functional in
𝑋. The derivative of Φ is given by

⟨Φ

󸀠
(𝑢) , V⟩

= (𝑢

+
, V) − (𝑢

−
, V)

+

1

8𝜋

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢 (𝑦) V (𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+

1

8𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢 (𝑥) V (𝑥) 𝑢2 (𝑦)
󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

− ∫

R3
𝑄 (𝑥) 𝑓 (𝑢) V𝑑𝑥, ∀𝑢, V ∈ 𝑋.

(19)

It is easy to see that if 𝑢 is a critical point of Φ, then (𝑢, 𝜙

𝑢
) is

a solution of (1).
Our functionalΦ does not satisfy the geometric assump-

tions of the generalized linking theorem (see, e.g., [23,
Chapter 6]) because of the term

1

16𝜋

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦.
(20)

To overcome this difficulty, we apply the local linking theo-
rem to find critical points of Φ.

Recall that by definition (see [25]), a functionalΨ defined
in 𝑋 has a local linking at 0 with respect to the direct sum
decomposition𝑋 = 𝑋

−
⊕ 𝑋

+, if there is 𝜌 > 0 such that

Ψ (𝑢) ≤ 0, for 𝑢 ∈ 𝑋

−
, ‖𝑢‖ ≤ 𝜌,

Ψ (𝑢) ≥ 0, for 𝑢 ∈ 𝑋

+
, ‖𝑢‖ ≤ 𝜌.

(21)

Let {𝑒

±

𝑘
} be the total orthonormal sequences in 𝑋

±. We
consider two sequences of finite dimensional subspaces

𝑋

±

1
⊂ ⋅ ⋅ ⋅ ⊂ 𝑋

±

𝑛
⊂ ⋅ ⋅ ⋅ ⊂ 𝑋

±
, (22)

where𝑋±
𝑛
= span {𝑒

±

1
, . . . , 𝑒

±

𝑛
}. It is easy to see that

𝑋

±
= ⋃

𝑛∈N

𝑋

±

𝑛
. (23)

For 𝑛 ∈ N, let𝑋
𝑛
= 𝑋

−

𝑛
⊕𝑋

+

𝑛
andΨ

𝑛
denote the restriction of

Ψ on𝑋

𝑛
.

Definition 4. We say that Ψ ∈ 𝐶

1
(𝑋) satisfies (𝐶)∗ condition

if any sequence {𝑢
𝑛
} ⊂ 𝑋 such that

𝑢

𝑛
∈ 𝑋

𝑛
,

sup
𝑛

Ψ (𝑢

𝑛
) < ∞,

(1 +

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

) ‖ Ψ

󸀠

𝑛
(𝑢

𝑛
) ‖

𝑋
∗

𝑛

󳨀→ 0

(24)

contains a subsequence that converges to a critical point ofΨ.

From [27, Theorem 2.2], we have the following.

Theorem 5. Suppose that Ψ ∈ 𝐶

1
(𝑋) has a local linking at 0,

Φ satisfies (𝐶)∗ condition, Ψ maps bounded sets into bounded
sets, and for every𝑚 ∈ N,

Ψ (𝑢) 󳨀→ −∞, as ‖𝑢‖ 󳨀→ ∞, 𝑢 ∈ 𝑋

−
⊕ 𝑋

+

𝑚
. (25)

Then, Ψ has a nontrivial critical point.

Lemma 6. The functional Φ has a local linking in 0 with
respect to the direct sum decomposition 𝑋 = 𝑋

+
⊕ 𝑋

−.

Proof. From the Hardy-littlewood-Sobolev inequality (see,
e.g., [28]), we infer that there exists 𝐶 > 0 such that for every
𝑢 ∈ 𝑋,

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1
𝑢

2󵄩
󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

2
𝑢

2󵄩
󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

= 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

1
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐿
12/5

(

R3
)

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

2
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐿
12/5

(

R3
)

.

(26)

From (k), we deduce that 𝐾
𝑖
is bounded in R3, 𝑖 = 1, 2.

Therefore, by the Sobolev inequality, we have
󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

𝑖
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
12/5
(R3)

≤ 𝐶‖𝑢‖

𝐿
12/5
(R3) ≤ 𝐶 ‖𝑢‖ , 𝑖 = 1, 2. (27)

It follows that

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦 ≤ 𝐶‖𝑢‖

4 (28)

for some 𝐶 > 0.
From (f1) and (f2), we deduce that for any 𝜖 > 0, there

exists 𝐶
𝜖
> 0 such that

|𝐹 (𝑡)| ≤ 𝜖𝑡

2
+ 𝐶

𝜖|
𝑡|

𝑝
, ∀𝑡 ∈ R.

(29)

This together with the fact that𝑄 is a bounded function inR3
(see (k)) implies that there exists 𝐶󸀠 > 0 such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

R3
𝑄 (𝑥) 𝐹 (𝑢) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

󸀠
𝜖‖𝑢‖

2
+ 𝐶

󸀠
𝐶

𝜖‖
𝑢‖

𝑝
. (30)

Combining (28), (30), and the definition of Φ (see (18)), we
get that for any 𝑢 ∈ 𝑋

+,

Φ (𝑢) ≥

1

2

‖𝑢‖

2
− 𝐶

󸀠
𝜖‖𝑢‖

2
− 𝐶

󸀠
𝐶

𝜖‖
𝑢‖

𝑝

= (

1

2

− 𝐶

󸀠
𝜖) ‖𝑢‖

2
− 𝐶

󸀠
𝐶

𝜖‖
𝑢‖

𝑝
,

(31)

and for any 𝑢 ∈ 𝑋

−,

Φ (𝑢) ≤ −

1

2

‖𝑢‖

2
+

𝐶

16𝜋

‖𝑢‖

4
− 𝐶

󸀠
𝜖‖𝑢‖

2
− 𝐶

󸀠
𝐶

𝜖‖
𝑢‖

𝑝

= −(

1

2

− 𝐶

󸀠
𝜀) ‖𝑢‖

2
+

𝐶

16𝜋

‖𝑢‖

4
+ 𝐶

󸀠
𝐶

𝜖‖
𝑢‖

𝑝
.

(32)

Choose 𝜖 = 1/4𝐶

󸀠. Then, from the above two inequalities, we
deduce that we can choose small 𝜌 > 0 such that Φ satisfies
(21). Therefore, Φ has a local linking in 0 with respect to the
direct sum decomposition𝑋 = 𝑋

+
⊕ 𝑋

−.
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Lemma 7. Under the assumptions (k), (k), and (f1)–(f3), the
functional Φ satisfies the (𝐶)∗ condition.

Proof. Let {𝑢
𝑛
} be a (𝐶)∗

𝑐
sequence; that is, sup

𝑛
Φ(𝑢

𝑛
) ≤ 𝑐 and

(1 + ‖𝑢

𝑛
‖)‖Φ

󸀠
(𝑢

𝑛
)‖

𝑋
∗

𝑛

→ 0.
First, we prove that {𝑢

𝑛
} is bounded in 𝑋. From (7), we

have

𝑜 (1) + 2𝑐 ≥ 2Φ (𝑢

𝑛
) − ⟨Φ

󸀠
(𝑢

𝑛
) , 𝑢

𝑛
⟩

= −

1

8𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+ ∫

R3
𝑄 (𝑥) (𝑢𝑛

𝑓 (𝑢

𝑛
) − 2𝐹 (𝑢

𝑛
)) 𝑑𝑥

≥ −

1

8𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+ 𝐴∫

R3
𝑄 (𝑥) |𝑢𝑛

|

𝑝
𝑑𝑥.

(33)

From (26), we have

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1
𝑢

2󵄩
󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

2
𝑢

2󵄩
󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

.

(34)

By the Hölder inequality and (4), we have

∫

R3
𝐾

6/5

𝑖
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

12/5
𝑑𝑥

≤ (∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

12/5𝑝

× (∫

R3
𝐾

6𝑝/(5𝑝−12)

𝑖
(𝑥)𝑄

−12/(5𝑝−12)
(𝑥) 𝑑𝑥)

1−(12/5𝑝)

≤ 𝐶(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

12/5𝑝

, 𝑖 = 1, 2.

(35)

Combining (34) and (35), we get that

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥𝑑𝑦

≤ 𝐶(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

4/𝑝

.

(36)

This together with (33) yields that ∫

R3
𝑄(𝑥)|𝑢

𝑛
(𝑥)|

𝑝
𝑑𝑥 is

bounded.

Second, we prove that ‖𝑢
𝑛
‖ is bounded. We have

𝑜 (1) = ⟨Φ

󸀠
(𝑢

𝑛
) , 𝑢

+

𝑛
− 𝑢

−

𝑛
⟩

=

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
− ∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

+

1

8𝜋

∬

R3
( (𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

𝑛
(𝑦)

× (𝑢

+

𝑛
(𝑦) − 𝑢

−

𝑛
(𝑦)) )

× (

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

)

−1
) 𝑑𝑥 𝑑𝑦

+

1

8𝜋

∬

R3
( (𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

𝑛
(𝑥)

× (𝑢

+

𝑛
(𝑥) − 𝑢

−

𝑛
(𝑥)) 𝑢

2

𝑛
(𝑦))

×(

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

)

−1
) 𝑑𝑥 𝑑𝑦.

(37)

From (5) and the Hölder inequality, we get that for any𝑅 > 0,

∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

≤ 𝐶∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ 𝐶∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝−1
󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶∫

{𝑥∈R3 | |𝑥|>𝑅}

𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ 𝐶∫

{𝑥∈R3 | |𝑥|≤𝑅}

𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ 𝐶(∫

R3
𝑄 (𝑥) |𝑢

𝑛
|

𝑝
𝑑𝑥)

(𝑝−1)/𝑝

× (∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥)

1/𝑝

.

(38)

Since ∫
R3

𝑄(𝑥)|𝑢

𝑛
|

𝑝
𝑑𝑥 is bounded,

𝐶(∫

R3
𝑄(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

(𝑝−1)/𝑝

(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

.

(39)

From lim
|𝑥|→∞

𝑄(𝑥) = 0 (see (k)) and the Sobolev inequality,
we get that there exists 𝑅 > 0 such that

𝐶∫

{𝑥∈R3 | |𝑥|>𝑅}

𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶 sup
|𝑥|>𝑅

𝑄 ⋅ ∫

{𝑥∈R3 | |𝑥|>𝑅}

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶 sup
|𝑥|>𝑅

𝑄 ⋅

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
.

(40)
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From the Hölder and Sobolev inequalities and boundedness
of ∫

R3
𝑄(𝑥)|𝑢

𝑛
|

𝑝
𝑑𝑥, we have

𝐶∫

{𝑥∈R3| |𝑥|≤𝑅}

𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶(∫

{𝑥∈R3| |𝑥|≤𝑅}

𝑄 (𝑥) 𝑑𝑥)

𝑝/(𝑝−2)

(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

1/𝑝

× (∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐷

𝑅

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

,

(41)

where 𝐷

𝑅
is a positive constant that depends only on 𝑅.

Combining (38)–(41), we infer that there exists 𝑅 > 0 such
that

∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥 ≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
+ (𝐷

𝑅
+ 𝐶)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

.

(42)

From the Hardy-Littlewood-Sobolev and Hölder ine-
qualities, we get that

∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢𝑛

(𝑦) (𝑢

+

𝑛
(𝑦) − 𝑢

−

𝑛
(𝑦))

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1
𝑢

2

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

󵄩

󵄩

󵄩

󵄩

𝐾

2
𝑢

𝑛
(𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

1
𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐿
12/5

(

R3
)

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

2
𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
12/5
(R3)

×

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

2
(𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
12/5
(R3)

.

(43)

From (43), (35), and the boundedness of ∫
R3

𝑄(𝑥)|𝑢

𝑛
|

𝑝
𝑑𝑥, we

get that there exists a constant 𝐶 > 0 such that

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

𝑛
(𝑦) (𝑢

+

𝑛
(𝑦) − 𝑢

−

𝑛
(𝑦))

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1/2

2
(𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩 𝐿
12/5
(R3)

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

.

(44)

Similarly, we have

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

𝑛
(𝑥) (𝑢

+

𝑛
(𝑥) − 𝑢

−

𝑛
(𝑥)) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

.

(45)

Combining (37), (42), (44), and (45), we infer that ‖𝑢
𝑛
‖ is

bounded.
Finally, we prove that {𝑢

𝑛
} has a convergent subsequence.

Up to a subsequence, we assume that 𝑢
𝑛
⇀ 𝑢 in𝑋. Then, 𝑢 is

a critical point ofΦ. From (f1),

∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) 𝑢

+
𝑑𝑥 󳨀→ ∫

R3
𝑄 (𝑥) 𝑓 (𝑢) 𝑢

+
𝑑𝑥 (46)

and from lim
|𝑥|→∞

𝑄(𝑥) = 0 and 𝑢

𝑛
⇀ 𝑢,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

+
) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝−1
󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
− 𝑢

+󵄨
󵄨

󵄨

󵄨

𝑑𝑥 󳨀→ 0.

(47)

Therefore,

∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) 𝑢

+

𝑛
𝑑𝑥 − ∫

R3
𝑄 (𝑥) 𝑓 (𝑢) 𝑢

+
𝑑𝑥 󳨀→ 0. (48)

By 𝑢
𝑛
⇀ 𝑢 and lim

|𝑥|→∞
𝐾

𝑖
(𝑥) = 0, 𝑖 = 1, 2, we get that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

𝑛
(𝑦) 𝑢

+

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

−∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2
(𝑥) 𝑢 (𝑦) 𝑢

+
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄩

󵄩

󵄩

󵄩

󵄩

𝐾

1
(𝑢

2

𝑛
− 𝑢

2
)

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

󵄩

󵄩

󵄩

󵄩

𝐾

2
(𝑢

𝑛
𝑢

+

𝑛
− 𝑢𝑢

+
)

󵄩

󵄩

󵄩

󵄩𝐿
6/5
(R3)

󳨀→ 0.

(49)

Similarly,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

𝑛
(𝑥) 𝑢

+

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

−∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢 (𝑥) 𝑢

+
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0.

(50)

By (48)–(50), ⟨Φ󸀠(𝑢), 𝑢+⟩ = 0, and

𝑜 (1) = ⟨Φ

󸀠
(𝑢

𝑛
) , 𝑢

+

𝑛
⟩

=

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

− ∫

R3
𝑄 (𝑥) 𝑓 (𝑢

𝑛
) 𝑢

+

𝑛
𝑑𝑥

+

1

8𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

𝑛
(𝑦) 𝑢

+

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+

1

8𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

𝑛
(𝑥) 𝑢

+

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦,

(51)

we get that 𝑢+
𝑛

→ 𝑢

+ in 𝑋. The same argument implies that
𝑢

−

𝑛
→ 𝑢

− in𝑋. Therefore, 𝑢
𝑛
→ 𝑢 in𝑋.

Remark 8. From the proof of this theorem, we infer that Φ
also satisfies the Cerami condition; that is, if {𝑢

𝑛
} ⊂ 𝑋 satisfies

sup
𝑛

Φ(𝑢

𝑛
) < +∞, (1 +

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

)

󵄩

󵄩

󵄩

󵄩

󵄩

Φ

󸀠
(𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩𝑋
∗
󳨀→ 0, (52)

then {𝑢

𝑛
} contains a convergent subsequence.

Lemma 9. The functional Φ satisfies (25).
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Proof. If the functional does not satisfy (25), then there exist
𝑀 > 0, 𝑚 ∈ N, and 𝑢

𝑛
∈ 𝑋

+

𝑚
⊕𝑋

− such that ‖𝑢
𝑛
‖ → ∞ and

Φ(𝑢

𝑛
) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+

1

16𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

− ∫

R3
𝑄 (𝑥) 𝐹 (𝑢

𝑛
) 𝑑𝑥 ≥ −𝑀.

(53)

This together with (36) and (9) yields

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+ 𝐶(∫

R3
𝑄 (𝑥) |𝑢

𝑛
(𝑥) |

𝑝
𝑑𝑥)

4/𝑝

− 𝐶

1
∫

R3
𝑄 (𝑥) |𝑢

𝑛
(𝑥) |

𝑝
𝑑𝑥 ≥ −𝑀.

(54)

Since 𝑝 > 4, there exists𝐷 > 0 such that

𝐷 −

𝐶

1

2

∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥

≥ 𝐶(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥)

4/𝑝

− 𝐶

1
∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥.

(55)

Then, by (54),

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

𝐶

1

2

∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥 ≥ −𝑀 − 𝐷.

(56)

We use 𝐸 to denote the closure of 𝑋

+

𝑚
⊕ 𝑋

− under the
norm ||𝑢||

𝑄,𝑝
= (∫

R3
𝑄(𝑥)|𝑢(𝑥)|

𝑝
𝑑𝑥)

1/𝑝. Since there exists a
continuous projection 𝑃 : 𝐸 → 𝑋

+

𝑚
, there exists 𝐶

3
> 0 such

that for every 𝑢 ∈ 𝑋

+

𝑚
⊕ 𝑋

−,

(∫

R3
𝑄 (𝑥) |𝑢 (𝑥)|

𝑝
𝑑𝑥)

1/𝑝

≥ 𝐶

3
(∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

+
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥)

1/𝑝

.

(57)

Since ‖𝑢

𝑛
‖ → ∞ and 𝑋

+

𝑚
is finite dimensional, from (56)

and (57), we get that

−𝑀 − 𝐷 ≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

𝐶

1
𝐶

𝑝

3

2

∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥 󳨀→ −∞.

(58)

This contradiction implies that Φ satisfies (25).

Proof of Theorem 2. The desired result of Theorem 2 can be
derived by combining Theorem 5 and Lemmas 6, 7, and 9.

3. Proof of Theorem 3

Recall that {𝑒±
𝑘
} are the total orthonormal sequences in 𝑋

±.
For 𝑘 = 1, 2, . . ., let

𝑌

𝑘
= 𝑋

−
⊕ 𝑋

+

𝑘
= 𝑋

−
⊕ span {𝑒

+

1
, . . . , 𝑒

+

𝑘
} ,

𝑍

𝑘
= span {𝑒

+

𝑘
, 𝑒

+

𝑘+1
, . . .}.

(59)

Let 𝑃 : 𝑋 → 𝑋

−, 𝑄 : 𝑋 → 𝑋

+ be the orthogonal
projections. As [23], on𝑋, we define

|‖𝑢‖| = max
{

{

{

‖𝑄𝑢‖ ,

∞

∑

𝑗=1

1

2

𝑘+1

󵄨

󵄨

󵄨

󵄨

(𝑃𝑢, 𝑒

−

𝑘
)

󵄨

󵄨

󵄨

󵄨

}

}

}

. (60)

The topology generated by |‖ ⋅ ‖| will be denoted by 𝜏 and all
topological notations related to it will include this symbol.

For the proof of Theorem 3, we use the following
improved fountain theorem of Batkam and Colin [24, The-
orem 12], which is a generalization of the classical fountain
theorem of Bartsch [22] (see also [23]).

Theorem 10. Assume that an even functional Ψ ∈ 𝐶

1
(𝑋)

satisfies the following:

(A) Ψ is 𝜏-upper semicontinuous, and the gradient ∇Ψ is
weakly sequentially continuous.

If there exist 𝜌
𝑘
> 𝑟

𝑘
> 0 such that

(i) 𝑏
𝑘
= inf
𝑢∈𝑍𝑘 ,‖𝑢‖=𝑟𝑘

Ψ(𝑢) → +∞, as 𝑘 → ∞,
(ii) 𝑎
𝑘
= max

𝑢∈𝑌𝑘,‖𝑢‖=𝜌𝑘
Ψ(𝑢) ≤ 0,

then there exist {𝑐
𝑘
} ⊂ R and sequences {𝑢

𝑘,𝑛
} ⊂ 𝑋 such that

for every 𝑘 ∈ N, 𝑐
𝑘
≥ 𝑏

𝑘
and

Ψ (𝑢

𝑘,𝑛
) 󳨀→ 𝑐

𝑘
, (1 +

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘,𝑛

󵄩

󵄩

󵄩

󵄩

)

󵄩

󵄩

󵄩

󵄩

󵄩

Ψ

󸀠
(𝑢

𝑘,𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩𝑋
∗
󳨀→ 0,

as 𝑛 󳨀→ ∞.

(61)

Remark 11. In [24], the result of this fountain theorem is

Ψ (𝑢

𝑘,𝑛
) 󳨀→ 𝑐

𝑘
,

󵄩

󵄩

󵄩

󵄩

󵄩

Ψ

󸀠
(𝑢

𝑘,𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩𝑋
∗
󳨀→ 0, as 𝑛 󳨀→ ∞. (62)

Since the deformation theorem is still valid under the Cerami
condition (see, e.g., [27]), replacing the pseudogradient
vector field 2‖∇Ψ(V)‖−2∇Ψ(V) in page 442 of [24] by the
Cerami-type pseudogradient vector field (1 + ‖V‖)∇Ψ(V), we
see that similar to many critical point theorems, the result of
the fountain theorem in [24] can be improved as (61).

Proof of Theorem 3. (1) Let us prove that Φ is 𝜏-upper semi-
continuous. Assume that |‖𝑢

𝑛
−𝑢‖| → 0 and 𝑐 ≤ Φ(𝑢

𝑛
). Since

𝑢

+

𝑛
= 𝑄𝑢

𝑛
→ 𝑄𝑢, 𝑢−

𝑛
= 𝑃𝑢

𝑛
are bounded so that 𝑃𝑢

𝑛
⇀ 𝑃𝑢,

it follows that 𝑢
𝑛
⇀ 𝑢 in 𝑋. Since lim

|𝑥|→∞
𝑄(𝑥) = 0, from

(f1) and 𝑢

𝑛
⇀ 𝑢, we obtain

∫

R3
𝑄 (𝑥) 𝐹 (𝑢

𝑛
) 𝑑𝑥 󳨀→ ∫

R3
𝑄 (𝑥) 𝐹 (𝑢) 𝑑𝑥. (63)
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In addition, from the proof of (49) we infer that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

−∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0.

(64)

Using the Fatou lemma, we obtain

−Φ (𝑢)

=

‖𝑃𝑢‖

2

2

−

‖𝑄𝑢‖

2

2

−

1

16𝜋

×∬

R3

𝐾

1 (
𝑥)𝐾2

(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+∫

R3
𝑄 (𝑥) 𝐹 (𝑢) 𝑑𝑥

≤ lim inf
𝑛→∞

(

󵄩

󵄩

󵄩

󵄩

𝑃𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

2

−

󵄩

󵄩

󵄩

󵄩

𝑄𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

2

−

1

16𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2

𝑛
(𝑥) 𝑢

2

𝑛
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

+∫

R3
𝑄 (𝑥) 𝐹 (𝑢

𝑛
) 𝑑𝑥)

= lim inf
𝑛→∞

− Φ (𝑢

𝑛
) ≤ −𝑐.

(65)

(2) The proof that ∇Ψ is weakly sequentially continuous
is similar to that in the proof of Lemma 6.15 of [23].

(3) Verification of (i) for Φ: since lim
|𝑥|→∞

𝑄(𝑥) = 0, we
infer that if 𝑢

𝑘
⇀ 0 in𝑋, then

∫

R3
𝑄 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥 󳨀→ 0. (66)

It follows that

𝛽

𝑘
= sup
𝑢∈𝑍𝑘,‖𝑢‖=1

‖𝑢‖𝑄,𝑝
󳨀→ 0, as 𝑘 󳨀→ ∞, (67)

where

‖𝑢‖𝑄,𝑞
= (∫

R3
𝑄 (𝑥) |𝑢|

𝑞
𝑑𝑥)

1/𝑞

.

(68)

From (f1) and (f2), we deduce that for any 𝜖 > 0, there exists
𝐶

𝜖
> 0 such that

|𝐹 (𝑡)| ≤ 𝜖|𝑡|

2
+ 𝐶

𝜖|
𝑡|

𝑝
, ∀𝑡 ∈ R.

(69)

For 𝑢 ∈ 𝑍

𝑘
, by the Sobolev inequality and (67),

Φ (𝑢) =

1

2

‖𝑢‖

2

+

1

16𝜋

∬

R3

𝐾

1
(𝑥)𝐾

2
(𝑦) 𝑢

2
(𝑥) 𝑢

2
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦

− ∫

R3
𝑄 (𝑥) 𝐹 (𝑢) 𝑑𝑥

≥

1

2

‖𝑢‖

2
− 𝜖‖𝑢‖

2

𝑄,2
− 𝐶

𝜖‖
𝑢‖

𝑝

𝑄,𝑝

≥

1

2

‖𝑢‖

2
− 𝐶𝜖‖𝑢‖

2
− 𝐶

𝜖
𝛽

𝑝

𝑘
‖𝑢‖

𝑝
.

(70)

Choosing 𝜖 = 1/4𝐶 and letting 𝑟

𝑘
= (2𝐶

𝜖
𝑝𝛽

𝑝

𝑘
)

1/(2−𝑝), we get
from (70) that for ‖𝑢‖ = 𝑟

𝑘
,

Φ (𝑢) ≥

1

2

(

1

2

−

1

𝑝

) (2𝐶

𝜖
𝑝𝛽

𝑝

𝑘
)

2/(2−𝑝)

. (71)

Since 𝛽
𝑘
→ 0 and 𝑝 > 2, it follows that

𝑏

𝑘
= inf
𝑢∈𝑍𝑘,‖𝑢‖=𝑟𝑘

Φ (𝑢) 󳨀→ +∞. (72)

(4) Verification of (ii) for Φ: since 𝑌
𝑘
= 𝑋

−
⊕ 𝑋

+

𝑘
, (ii) is a

direct consequence of Lemma 9.
Finally, from (f4), we obtain that Φ is an even functional.

Then, from (1)–(4) and Remark 8, we deduce that for every
𝑘, there exists a critical point 𝑢

𝑘
of Φ such that Φ(𝑢

𝑘
) ≥ 𝑏

𝑘
.

Therefore, (1) has infinitely many solutions {(𝑢
𝑘
, 𝜙

𝑢𝑘
)}.
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