
Research Article
Output Feedback Control for Couple-Group Consensus of
Multiagent Systems

Huanyu Zhao, Hongbiao Zhou, and Zhongyi Tang

Faculty of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu 223003, China

Correspondence should be addressed to Huanyu Zhao; hyzhao10@gmail.com

Received 18 January 2014; Accepted 5 April 2014; Published 24 April 2014

Academic Editor: Hao Shen

Copyright © 2014 Huanyu Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the couple-group consensus problem for multiagent systems via output feedback control. Both continuous-
and discrete-time cases are considered.The consensus problems are converted into the stability problem of the error systems by the
system transformation. We obtain two necessary and sufficient conditions of couple-group consensus in different forms for each
case. Two different algorithms are used to design the control gains for continuous- and discrete-time case, respectively. Finally,
simulation examples are given to show the effectiveness of the proposed results.

1. Introduction

During the past decade, consensus problem of multiagent
system has attracted a lot of attentions in control area [1–
11]. It is mainly due to its wide applications in practice, such
as sensor networks, unmanned aerial vehicles, and robotics.
In [2], the authors studied the consensus seeking problem
of multiagent systems with dynamically changing interaction
topologies, where both discrete and continuous consensus
algorithms were considered. In [9], the authors studied the
containment problem of linear multiagent systems, where a
pinning control strategy was designed for a part of agents
such that all the agents can achieve a consensus with the
leader asymptotically. A second-order consensus problem for
multiagent systems with nonlinear dynamics and directed
topologies was studied in [10]. More works about consensus
problem were surveyed in [11].

Sometimes the interaction topology does not have a
spanning tree, while it contains two or more subgraphs
which include a spanning tree, respectively. In this case, some
researchers studied the group consensus problem [12–15].
In [12], the authors studied the group consensus problem
of multiagent systems with switching topologies. The group
consensus was proved to be equivalent to the asymptotical
stability of a class of switched linear systems by a double-tree-
form transformation. In [13], two different kinds of consensus

protocols were given to deal with the group consensus
problem for double-integrator dynamic multiagent systems.
In [15], the sampled-data control method was employed
to deal with the group consensus problem for multiagent
systems, where the interaction topology is undirected.

Sometimes the system states are not known completely,
while the output of the systems is measurable. The output
will be used to design the controller for this case, that is,
output feedback controller. Recently, the output feedback
control problems have been reported in a lot of literature [16–
19]. In [16], the output feedback robust stabilization problem
for a class of jump linear system was studied. In [17], the
authors studied the finite-time stabilization of continuous-
time linear systems via dynamic output feedback. In [18],
the Lyapunov-Metzler inequalities were used to study the
dynamic output feedback control problem of switched linear
systems. Very recently, the method based on output feedback
control has been used to analyze the networked systems [20–
23]. In [20], the consensusability of a class of linearmultiagent
systems was studied, where the agent updates its information
by using the neighbor’s output. In [21], the output regulation
theory was used to study the output consensus problems
for heterogeneous uncertain linear multiagent systems. In
[22], by using appropriate coordinate transformation, a new
consensus algorithm via dynamic output feedback control
for multiagent systems was studied. While in [23], the joint
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effects of agent dynamic and network topology on the
consensusability of linear discrete-time multiagent systems
via relative output feedback were studied.

Motivated by the aforementioned works, we will inves-
tigate the couple-group consensus problems for multiagent
systems via output feedback control. The systems considered
include both continuous-time case and discrete-time case.
We convert the couple-group consensus problems of multi-
agent systems into the stability problems of the error systems
by a system transformation. Based on linear system theory,
some necessary and sufficient conditions for couple-group
consensus are obtained. For continuous-time case, the algo-
rithm based on homotopy method is given to compute the
allowable control gain. For discrete-time case, the algorithm
based on cone complementary linearization method is given
to compute the allowable control gain.
Notation. LetR andN represent, respectively, the real number
set and the nonnegative integer set. Denote the spectral radius
of the matrix 𝑀 by 𝜌(𝑀). Suppose that 𝐴, 𝐵 ∈ R𝑝×𝑝. Let
𝐴 ⪰ 𝐵 (resp., 𝐴 ≻ 𝐵) denote that 𝐴 − 𝐵 is symmetric
positive semidefinite (resp., symmetric positive definite). 𝐼𝑛
denotes the 𝑛 × 𝑛 identity matrix. Re(⋅) and Im(⋅) represent,
respectively, the real part and imaginary part of a number. Let
0 denote zero matrix with appropriate dimensions.

2. Preliminaries and Problem Formulation

GraphTheory. LetG = (V,E,A) be a directed graph of order
𝑛, where V = {V1, . . . , V𝑛} and E represent the node set and
the edge set, respectively. A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 is the adjacency
matrix associated with G, where 𝑎𝑖𝑗 > 0 if (V𝑖, V𝑗) ∈ E,
otherwise, 𝑎𝑖𝑗 = 0. An edge (V𝑖, V𝑗) ∈ E if agent 𝑗 can obtain
the information from agent 𝑖. We say agent 𝑖 is a neighbor of
agent 𝑗. Let𝑁𝑖 = {V𝑗 ∈ V : (V𝑖, V𝑗) ∈ E} denote the neighbor
set of agent 𝑖. The (nonsymmetrical) Laplacian matrix L
associated withA and henceG is defined asL = [𝑙𝑖𝑗] ∈ R

𝑛×𝑛,
where 𝑙𝑖𝑖 = ∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑎𝑖𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗, for all 𝑖 ̸= 𝑗. A directed

path is a sequence of edges in a directed graph in the form
of (V𝑖

1

, V𝑖
2

), (V𝑖
2

, V𝑖
3

), . . ., where V𝑖
𝑘

∈ V. A directed tree is
a directed graph, where every node has exactly one parent
except for one node, called the root, which has no parent, and
the root has a directed path to every other node. A directed
spanning tree of G is a directed tree that contains all nodes
of G. A directed graph has or contains a directed spanning
tree if there exists a directed spanning tree as a subset of the
directed graph; that is, there exists at least one node having a
directed path to all of the other nodes.

Suppose that themultiagent systems considered consist of
𝑛+𝑚 agents. In this paper, we will consider both continuous-
time case and discrete-time case. We assume that the first
𝑛 agents achieve a consistent state while the last 𝑚 agents
achieve another consistent state. Let G = (V,E,A) denote
the topology of multiagent system considered. DenoteI1 =
{1, 2, . . . , 𝑛},I2 = {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚}. LetV1 = {V1, V2,
. . . , V𝑛} and V2 = {V𝑛+1, V𝑛+2, . . . , V𝑛+𝑚} represent the first 𝑛
agents and the last𝑚 agents, respectively.Then,V =V1∪V2,
V1 ∩V2 = Φ. In addition, let𝑁1𝑖 = {V𝑗 ∈ V1 : (V𝑖, V𝑗) ∈ E}
and𝑁2𝑖 = {V𝑗 ∈V2 : (V𝑖, V𝑗) ∈ E}.

For continuous-time case, the 𝑖th agent’s dynamics are as
follows:

�̇�𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) ,

𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛 + 𝑚,

(1)

where 𝑥𝑖(𝑡) ∈ R is the state, 𝑢𝑖(𝑡) ∈ R is the control input,
and 𝑦𝑖(𝑡) ∈ R is the output. 𝐴, 𝐵, 𝐶 ∈ R are the system
coefficients.

For discrete-time case, the 𝑖th agent’s dynamics are as
follows:

𝑥𝑖 [𝑘 + 1] = 𝐴𝑥𝑖 [𝑘] + 𝐵𝑢𝑖 [𝑘] ,

𝑦𝑖 [𝑘] = 𝐶𝑥𝑖 [𝑘] ,

𝑖 = 1, . . . , 𝑛 + 𝑚,

(2)

where 𝑥𝑖[𝑘] ∈ R is the state, 𝑢𝑖[𝑘] ∈ R is the control input,
and 𝑦𝑖[𝑘] ∈ R is the output. 𝐴, 𝐵, 𝐶 ∈ R are the system
coefficients.

Sometimes the agent’s state is difficult to obtain, while the
output is measurable. Our main purpose in this paper is to
design consensus algorithm based on the output such that the
multiagent systems can achieve couple-group consensus. We
consider the following consensus algorithms for continuous-
time case and discrete-time case, respectively.
Continuous-Time Case. Consider
𝑢𝑖 (𝑡)

=

{{{{{{{

{{{{{{{

{

𝛼[

[

∑

𝑗∈𝑁
1𝑖

𝑎𝑖𝑗 (𝑦𝑗 (𝑡) − 𝑦𝑖 (𝑡)) + ∑

𝑗∈𝑁
2𝑖

𝑎𝑖𝑗𝑦𝑗 (𝑡)
]

]

∀𝑖 ∈ I1,

𝛼 [

[

∑

𝑗∈𝑁
1𝑖

𝑎𝑖𝑗𝑦𝑗 (𝑡) + ∑

𝑗∈𝑁
2𝑖

𝑎𝑖𝑗 (𝑦𝑗 (𝑡) − 𝑦𝑖 (𝑡))
]

]

∀𝑖 ∈ I2,

(3)

where 𝑎𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ I1, 𝑎𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ I2, and
𝑎𝑖𝑗 ∈ R for all (V𝑖, V𝑗) ∈ E𝑜 = {(𝑖, 𝑗) : 𝑖 ∈ I1, 𝑗 ∈ I2} ∪ {(𝑖, 𝑗) :
𝑗 ∈ I1, 𝑖 ∈ I2}. 𝛼 is the control gain to be designed.
Discrete-Time Case. Consider
𝑢𝑖 [𝑘]

=

{{{{{{{

{{{{{{{

{

𝛾[

[

∑

𝑗∈𝑁
1𝑖

𝑎𝑖𝑗 (𝑦𝑗 [𝑘] − 𝑦𝑖 [𝑘]) + ∑

𝑗∈𝑁
2𝑖

𝑎𝑖𝑗𝑦𝑗 [𝑘]
]

]

∀𝑖 ∈ I1,

𝛾 [

[

∑

𝑗∈𝑁
1𝑖

𝑎𝑖𝑗𝑦𝑗 [𝑘] + ∑

𝑗∈𝑁
2𝑖

𝑎𝑖𝑗 (𝑦𝑗 [𝑘] − 𝑦𝑖 [𝑘])
]

]

∀𝑖 ∈ I2,

(4)

where 𝑎𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ I1, 𝑎𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ I2, and
𝑎𝑖𝑗 ∈ R for all (V𝑖, V𝑗) ∈ E𝑜 = {(𝑖, 𝑗) : 𝑖 ∈ I1, 𝑗 ∈ I2} ∪
{(𝑖, 𝑗) : 𝑗 ∈ I1, 𝑖 ∈ I2}. 𝛾 is the control gain to be designed.
In addition, we suppose the algorithms in (3) and (4) satisfy
similar assumption to that of [24].

Assumption 1. (1):∑𝑛+𝑚
𝑗=𝑛+1

𝑎𝑖𝑗 = 0 for all 𝑖 ∈ I1; (2):∑
𝑛

𝑗=1
𝑎𝑖𝑗 =

0 for all 𝑖 ∈ I2.



Abstract and Applied Analysis 3

Assumption 2. The subgraphs G1 and G2 have a directed
spanning tree, respectively.

Denote 𝑋(𝑡) ≜ [𝑥1(𝑡), . . . , 𝑥𝑛+𝑚(𝑡)]
𝑇. Using (3) in (1)

yields

�̇� (𝑡) = [
𝐴𝐼𝑛 − 𝛼𝐵𝐶L1 𝛼𝐵𝐶Ω1

𝛼𝐵𝐶Ω2 𝐴𝐼𝑚 − 𝛼𝐵𝐶L2
]𝑋 (𝑡) , (5)

whereL1 andL2 are the Laplacian matrices corresponding
to subgraphsG1 andG2, respectively, and

Ω1 =
[
[

[

𝑎1(𝑛+1) 𝑎1(𝑛+2) ⋅ ⋅ ⋅ 𝑎1(𝑛+𝑚)

...
... ⋅ ⋅ ⋅

...
𝑎𝑛(𝑛+1) 𝑎𝑛(𝑛+2) ⋅ ⋅ ⋅ 𝑎𝑛(𝑛+𝑚)

]
]

]

,

Ω2 =
[
[

[

𝑎(𝑛+1)1 𝑎(𝑛+1)2 ⋅ ⋅ ⋅ 𝑎(𝑛+1)𝑛

...
... ⋅ ⋅ ⋅

...
𝑎(𝑛+𝑚)1 𝑎(𝑛+𝑚)2 ⋅ ⋅ ⋅ 𝑎(𝑛+𝑚)𝑛

]
]

]

.

(6)

Denote 𝑋[𝑘] ≜ [𝑥1[𝑘], . . . , 𝑥𝑛+𝑚[𝑘]]
𝑇. Using (4) in (2)

yields

𝑋 [𝑘 + 1] = [
𝐴𝐼𝑛 − 𝛼𝐵𝐶L1 𝛼𝐵𝐶Ω1

𝛼𝐵𝐶Ω2 𝐴𝐼𝑚 − 𝛼𝐵𝐶L2
]𝑋 [𝑘] , (7)

whereL1,L2,Ω1, andΩ2 are the same as that of continuous-
time case.

Remark 3. The group consensus problem of continuous time
multiagent systems was studied in [12, 13, 15]. In [14], the
authors studied the group consensus problem for discrete-
time multiagent systems. However, the couple-group con-
sensus problem for the multiagent systems with stochastic
switching topologies has not been researched. In addition,
our method in this paper is based on the output feedback
control, which is different from the existing results.

Our main purpose is to give the conditions for couple-
group consensus. We next convert the consensus problem of
multiagent system into the stability problem of the error sys-
tems. Before giving themain results, the following definitions
and lemma are needed.

Definition 4 (see [24]). Themultiagent system in (5) is said to
achieve couple-group consensus if the states of agents satisfy
(i) lim𝑡→∞‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ = 0, for all 𝑖, 𝑗 ∈ I1 and (ii)
lim𝑡→∞‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ = 0, for all 𝑖, 𝑗 ∈ I2.

Definition 5 (see [24]). Themultiagent system in (7) is said to
achieve couple-group consensus if the states of agents satisfy
(i) lim𝑘→∞‖𝑥𝑖[𝑘] − 𝑥𝑗[𝑘]‖ = 0, for all 𝑖, 𝑗 ∈ I1 and (ii)
lim𝑘→∞‖𝑥𝑖[𝑘] − 𝑥𝑗[𝑘]‖ = 0, for all 𝑖, 𝑗 ∈ I2.

Lemma 6 (see [25] Schur complements). Consider a hermi-
tian matrix𝑄 such that𝑄 = [ 𝑄11 𝑄12

𝑄
𝑇

12
𝑄
22

].Then,𝑄 ≻ 0 if and only
if

𝑄22 ≻ 0,

𝑄11 − 𝑄12𝑄
−1

22
𝑄
𝑇

12
≻ 0

(8)

or
𝑄11 ≻ 0,

𝑄22 − 𝑄
𝑇

12
𝑄
−1

11
𝑄12 ≻ 0.

(9)

3. Main Results

In this section, we will give the main results of this paper.

3.1. Continuous-Time Case. Let
𝑧𝑖 (𝑡) ≜ 𝑥𝑖 (𝑡) − 𝑥𝑛 (𝑡) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑧𝑗 (𝑡) ≜ 𝑥𝑗 (𝑡) − 𝑥𝑛+𝑚 (𝑡) , 𝑗 = 𝑛 + 1, . . . , 𝑛 + 𝑚 − 1,

𝑍 (𝑡) ≜ [𝑧1 (𝑡) , . . . , 𝑧𝑛−1 (𝑡) , 𝑧𝑛+1 (𝑡) , . . . , 𝑧𝑛+𝑚−1 (𝑡)]
𝑇
.

(10)

Then by some computations, we obtain the error systems as
follows:

�̇� (𝑡) = [
𝐴𝐼𝑛−1 − 𝛼𝐵𝐶L̃1 𝛼𝐵𝐶Ω̃1

𝛼𝐵𝐶Ω̃2 𝐴𝐼𝑚−1 − 𝛼𝐵𝐶L̃2
]𝑍 (𝑡)

≜ 𝐹𝑐𝑍 (𝑡)

= (𝐴𝐼𝑛+𝑚−2 + 𝛼𝐵𝐶𝐹𝑐)𝑍 (𝑡) ,

(11)

where

𝐹𝑐 = [
−L̃1 Ω̃1

Ω̃2 −L̃2
] ,

L̃1 =
[
[

[

𝑙11 − 𝑙𝑛1 ⋅ ⋅ ⋅ 𝑙1(𝑛−1) − 𝑙𝑛(𝑛−1)

... ⋅ ⋅ ⋅
...

𝑙(𝑛−1)1 − 𝑙𝑛1 ⋅ ⋅ ⋅ 𝑙(𝑛−1)(𝑛−1) − 𝑙𝑛(𝑛−1)

]
]

]

,

L̃2=
[
[

[

𝑙(𝑛+1)1−𝑙(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑙(𝑛+1)(𝑛+𝑚−1)− 𝑙(𝑛+𝑚)(𝑛+𝑚−1)

... ⋅ ⋅ ⋅
...

𝑙(𝑛+𝑚−1)1−𝑙(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑙(𝑛+𝑚−1)(𝑛+𝑚−1)− 𝑙(𝑛+𝑚)(𝑛+𝑚−1)

]
]

]

,

Ω̃1 =
[
[

[

𝑎1(𝑛+1) − 𝑎𝑛(𝑛+𝑚) ⋅ ⋅ ⋅ 𝑎1(𝑛+𝑚−1) − 𝑎𝑛(𝑛+𝑚−1)

... ⋅ ⋅ ⋅
...

𝑎(𝑛−1)(𝑛+1) − 𝑎𝑛(𝑛+𝑚) ⋅ ⋅ ⋅ 𝑎(𝑛−1)(𝑛+𝑚−1) − 𝑎𝑛(𝑛+𝑚−1)

]
]

]

,

Ω̃2 =
[
[

[

𝑎(𝑛+1)1 − 𝑎(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑎(𝑛+1)(𝑛−1) − 𝑎(𝑛+𝑚)(𝑛−1)

... ⋅ ⋅ ⋅
...

𝑎(𝑛+𝑚−1)1 − 𝑎(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑎(𝑛+𝑚−1)(𝑛−1) − 𝑎(𝑛+𝑚)(𝑛−1)

]
]

]

.

(12)

Here we have used Assumption 1 and the property of Lapla-
cian matrix.

Now the couple-group consensus problem of (5) has been
converted into the stability problem of error system (11). We
next give our main results.

Theorem 7. The multiagent system (5) can achieve couple-
group consensus asymptotically if and only if 𝛼 satisfies 𝐴 +
𝛼𝐵𝐶Re(𝜇𝑖) < 0, where 𝜇𝑖 (𝑖 = 1, . . . , 𝑛 + 𝑚 − 2) is the 𝑖th
eigenvalue of 𝐹𝑐.
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Proof. According to the aforementioned discussion, we know
that the multiagent systems (5) can achieve couple-group
consensus asymptotically if and only if the error system
(11) is asymptotically stable. It follows from linear system
theory [26] that system (11) which is asymptotically stable is
equivalent to all eigenvalues of 𝐹𝑐 having negative real parts.
Denote the 𝑖th eigenvalues of𝐹𝑐 and𝐹𝑐, respectively, by 𝜂𝑖 and
𝜇𝑖 (𝑖 = 1, . . . , 𝑛 + 𝑚 − 2). Then, 𝜂𝑖 = 𝐴 + 𝛼𝐵𝐶𝜇𝑖. Re(𝜂𝑖) < 0
is equivalent to 𝐴 + 𝛼𝐵𝐶Re(𝜇𝑖) < 0. This completes the
proof.

Remark 8. Theorem 7 provides a necessary and sufficient
condition of couple-group consensus for multiagent system
(5). According to linear system theory, we know that system
(11) which is asymptotically stable is equivalent to that in
which there exists a positive matrix 𝑃 such that 𝑃𝐹𝑐 + 𝐹

𝑇

𝑐
𝑃 ≺

0. Hence, we can get another condition of couple-group
consensus for multiagent systems (5).

Theorem 9. The multiagent system (5) can achieve couple-
group consensus asymptotically if and only if there exists a
positive definite matrix 𝑃 such that

2𝐴𝑃 + 𝛼𝐵𝐶 (𝑃𝐹𝑐 + 𝐹
𝑇

𝑐
𝑃) ≺ 0 (13)

holds.

Proof. The proof is straightforward; here is omitted.

Remark 10. Theorem 9 gives a necessary and sufficient condi-
tion for couple-group consensus in forms of matrix inequal-
ity. However, the matrix inequality in (13) is nonlinear with
regard to variables 𝛼 and 𝑃. Here we provide a numerical
algorithm based on homotopy method to solve this problem.
The similar method can be found in [22, 27, 28].

Algorithm 11. Consider the following

Step 1. Introduce a real number 𝜆 varying from 0 to 1, and
construct a matrix function

𝐻(𝛼, 𝑃, 𝜆) = (1 − 𝜆) 𝐹1 (𝑃) + 𝜆𝐹2 (𝛼, 𝑃) (14)

with 𝐹1(𝑃) = 2𝐴𝑃, 𝐹2(𝑃) = 𝛼𝐵𝐶(𝑃𝐹𝑐 + 𝐹
𝑇

𝑐
𝑃).

Step 2 (Set 𝜆 = 0). Compute the initial value of 𝑃0 by solving
the LMI𝐻(𝛼, 𝑃, 0) ≺ 0.
Step 3. Increase 𝜆 by some homotopy path, such as 𝜆 = (𝑘/𝑀)
(𝑘 = 1, 2, . . . ,𝑀).𝑀 is a large positive integer, for example,
𝑀 = 1000. Compute 𝛼0 by solving LMI𝐻(𝛼, 𝑃0, 1/𝑀) ≺ 0.
Step 4. Increase 𝜆 by the same homotopy path as Step 3.
Compute 𝑃1 by solving LMI𝐻(𝛼0, 𝑃, 2/𝑀) ≺ 0.
Step 5. Repeat Steps 3 and 4 until 𝜆 reaches Step 1.

3.2. Discrete-Time Case. Similar to continuous-time case, we
can get the similar results for discrete-time case.

Let

𝑧𝑖 [𝑘] ≜ 𝑥𝑖 [𝑘] − 𝑥𝑛 [𝑘] , 𝑖 = 1, . . . , 𝑛 − 1,

𝑧𝑗 [𝑘] ≜ 𝑥𝑗 [𝑘] − 𝑥𝑛+𝑚 [𝑘] , 𝑗 = 𝑛 + 1, . . . , 𝑛 + 𝑚 − 1,

𝑍 [𝑘] ≜ [𝑧1 [𝑘] , . . . , 𝑧𝑛−1 [𝑘] , 𝑧𝑛+1 [𝑘] , . . . , 𝑧𝑛+𝑚−1 [𝑘]]
𝑇
.

(15)

Then by some computations, we obtain the error systems as
follows:

𝑍 [𝑘 + 1]

= [
𝐴𝐼𝑛−1 − 𝛼𝐵𝐶L̃1 𝛼𝐵𝐶Ω̃1

𝛼𝐵𝐶Ω̃2 𝐴𝐼𝑚−1 − 𝛼𝐵𝐶L̃2
]𝑍 [𝑘]

≜ 𝐹𝑑𝑍 [𝑘]

= (𝐴𝐼𝑛+𝑚−2 + 𝛼𝐵𝐶𝐹𝑑)𝑍 [𝑘] ,

(16)

where

𝐹𝑑 = [
−L̃1 Ω̃1

Ω̃2 −L̃2
] ,

L̃1 =
[
[

[

𝑙11 − 𝑙𝑛1 ⋅ ⋅ ⋅ 𝑙1(𝑛−1) − 𝑙𝑛(𝑛−1)

... ⋅ ⋅ ⋅
...

𝑙(𝑛−1)1 − 𝑙𝑛1 ⋅ ⋅ ⋅ 𝑙(𝑛−1)(𝑛−1) − 𝑙𝑛(𝑛−1)

]
]

]

,

L̃2=
[
[

[

𝑙(𝑛+1)1−𝑙(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑙(𝑛+1)(𝑛+𝑚−1) − 𝑙(𝑛+𝑚)(𝑛+𝑚−1)

... ⋅ ⋅ ⋅
...

𝑙(𝑛+𝑚−1)1−𝑙(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑙(𝑛+𝑚−1)(𝑛+𝑚−1) − 𝑙(𝑛+𝑚)(𝑛+𝑚−1)

]
]

]

,

Ω̃1=
[
[

[

𝑎1(𝑛+1) − 𝑎𝑛(𝑛+𝑚) ⋅ ⋅ ⋅ 𝑎1(𝑛+𝑚−1) − 𝑎𝑛(𝑛+𝑚−1)

... ⋅ ⋅ ⋅
...

𝑎(𝑛−1)(𝑛+1) − 𝑎𝑛(𝑛+𝑚) ⋅ ⋅ ⋅ 𝑎(𝑛−1)(𝑛+𝑚−1) − 𝑎𝑛(𝑛+𝑚−1)

]
]

]

,

Ω̃2 =
[
[

[

𝑎(𝑛+1)1 − 𝑎(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑎(𝑛+1)(𝑛−1) − 𝑎(𝑛+𝑚)(𝑛−1)

... ⋅ ⋅ ⋅
...

𝑎(𝑛+𝑚−1)1 − 𝑎(𝑛+𝑚)1 ⋅ ⋅ ⋅ 𝑎(𝑛+𝑚−1)(𝑛−1) − 𝑎(𝑛+𝑚)(𝑛−1)

]
]

]

.

(17)

Here we have used Assumption 1 and the property of Lapla-
cian matrix.

Now the couple-group consensus problem of (7) has been
converted into the stability problem of error system (16). We
next give our main results.

Theorem 12. The multiagent system (7) can achieve couple-
group consensus asymptotically if and only if 𝛾 and (𝐴, 𝐵, 𝐶)
satisfy

−
𝐴

𝐵𝐶
cos (𝜇𝑖) −

1

𝐵2𝐶2
𝜇𝑖


2

× √𝐵2𝐶2 [𝐴2 Re 2 (𝜇𝑖) + (1 − 𝐴2)
𝜇𝑖


2
]

< 𝛼
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< −
𝐴

𝐵𝐶
cos (𝜇𝑖) +

1

𝐵2𝐶2
𝜇𝑖


2

× √𝐵2𝐶2 [𝐴2 Re 2 (𝜇𝑖) + (1 − 𝐴2)
𝜇𝑖


2
],

𝐴
2
( Re 2 (𝜇𝑖) −

𝜇𝑖


2
) +
𝜇𝑖


2
> 0,

(18)

where 𝜇𝑖 (𝑖 = 1, . . . , 𝑛 + 𝑚 − 2) is the 𝑖th eigenvalue of 𝐹𝑐.

Proof. According to the aforementioned discussion, we know
that the multiagent systems (7) can achieve couple-group
consensus asymptotically if and only if the error system
(16) is asymptotically stable. It follows from linear system
theory [26] that system (16) which is asymptotically stable
is equivalent to all eigenvalues of 𝐹𝑐 being within the unit
circle. Denote the 𝑖th eigenvalues of 𝐹𝑑 by 𝜇𝑖 (𝑖 = 1, . . . , 𝑛 +
𝑚 − 2). Then 𝜌(𝐹𝑑) < 1 is equivalent to (𝐴 + 𝛼𝐵𝐶Re(𝜇𝑖))

2
+

(𝛼𝐵𝐶 Im(𝜇𝑖))
2
< 1. That is,

𝐵
2
𝐶
2𝜇𝑖


2
𝛼
2
+ 2𝐴𝐵𝐶Re (𝜇𝑖) 𝛼 + 𝐴

2
− 1 < 0. (19)

By some computations, we know that if the conditions in (18)
hold, then the inequality (19) is solvable. This completes the
proof.

Remark 13. Theorem 12 provides a necessary and sufficient
condition of couple-group consensus for multiagent system
(7). According to linear system theory, we know that system
(16) which is asymptotically stable is equivalent to that in
which there exists a positive matrix 𝑃 such that 𝑃 − 𝐹𝑇

𝑑
𝑃𝐹𝑑 ≻

0. Hence, we can get another condition of couple-group
consensus for multiagent systems (7).

Theorem 14. The multiagent system (7) can achieve couple-
group consensus asymptotically if and only if there exist positive
definite matrices 𝑃,𝑄 and scalar 𝛾 such that the following LMI

[
𝑃 𝐹
𝑇

𝑑

𝐹𝑑 𝑄
] ≻ 0 (20)

holds with the constraint 𝑃−1 = 𝑄. Here 𝐹𝑑 is defined in (16).

Proof. According to the discussion in Remark 13, and by
using Schur complement lemma (Lemma 6) and letting 𝑄 ≜
𝑃
−1, the proof can be obtained.This completes the proof.

Remark 15. Theorem 14 provides a necessary and sufficient
condition of couple-group consensus for multiagent systems
(7). We can get 𝛾 by solving LMI in (20) with constrain 𝑃−1 =
𝑄. The cone complementarity linearization (CCL) method
can be used to solve this problem [19, 29].We next summarize
the algorithm as follows.

Algorithm 16. Consider the following

Step 1. Find a feasible point of LMI (20) 𝛾0, 𝑃0, 𝑄0, set 𝑘 = 0.
If there are none, exit.

𝒢1 𝒢2

1 2

3 4

5

6

Figure 1: TopologyG.

Step 2. Find 𝛾𝑘+1,𝑃𝑘+1,𝑄𝑘+1 by solving the convexminimiza-
tion problem

𝑡𝑘 = min {tr (𝑃𝑄𝑘 + 𝑄𝑃𝑘)} (21)

s.t.

[
𝑃 𝐹
𝑇

𝑑

𝐹𝑑 𝑄
] ≻ 0, [

𝑃 𝐼𝑛+𝑚−2

𝐼𝑛+𝑚−2 𝑄
] ⪰ 0. (22)

Step 3. If 𝑡𝑘 = 2(𝑛+𝑚−2), end this algorithm, and the feasible
𝛾 is given by 𝛾 = 𝛾𝑘+1. Otherwise, set 𝑘 = 𝑘+ 1 and go to Step
2.

4. Simulation Examples

In this section, two examples will be given to show the
usefulness of the theoretical results. For simplicity, we let
𝑎𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ E. On the other hand, we suppose that 𝑎𝑖𝑗
takes values in a set {−1, 0, 1} for V𝑖, V𝑗 belonging to different
node sets, respectively.

Example 1. This example is for continuous-time multiagent
systems. The interaction topology is as shown in Figure 1,
which includes six nodes. It can be seen that the graph
contains two subgraphs G1 and G2. (V1, V2, V3) ∈ G1,
(V4, V5, V6) ∈ G2. Each of them has a directed spanning tree.
Let 𝐴 = 0.3, 𝐵 = 0.8, and 𝐶 = −0.9. By solving the
optimization problem in Algorithm 11, we obtain 𝛼 = 0.6304
and

𝑄 =

[
[
[

[

32.3767 −2.6303 0 0

−2.6303 16.5170 0 0

0 0 21.9891 0

0 0 0 21.9891

]
]
]

]

. (23)

The state trajectories of the agents are as shown in Figure 2. It
can be seen that the agents belonging to G1 and G2 achieve
two different consistent states, respectively.

Example 2. This example is for discrete-time multiagent sys-
tems. For simplicity, we suppose that the interaction topology
is the same as that of continuous-time case, that is, G. Let
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Figure 2: State trajectories for continuous-time case.
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Figure 3: State trajectories for discrete-time case.

𝐴 = 0.4, 𝐵 = 0.7, and 𝐶 = −0.8. By solving the optimization
problem in Algorithm 16, we obtain 𝛾 = −0.2531 and

𝑃 =

[
[
[

[

1.7451 −0.8085 −1.2822 0.5011

−0.8085 4.2494 6.6476 −1.5457

−1.2822 6.6476 13.4860 −3.2780

0.5011 −1.5457 −3.2780 1.9709

]
]
]

]

,

𝑄 =

[
[
[

[

0.6426 0.1246 −0.0273 −0.1111

0.1246 1.0569 −0.5293 −0.0832

−0.0273 −0.5293 0.3915 0.2430

−0.1111 −0.0832 0.2430 0.8746

]
]
]

]

.

(24)

Figure 3 shows the consensus results.

5. Conclusion

In this paper, we have studied the couple-group consensus
problems for both continuous-time and discrete-time multi-
agent systems via output feedback control. By a system trans-
formation, the consensus problems of multiagent systems
have been converted into the stability problems of the error
systems. Some necessary and sufficient conditions of couple-
group consensus for multiagent systems have been obtained.
Two algorithms have been given to compute the allowable
control gains. The effectiveness of the proposed results has
been shown by the simulation examples.
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