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Thousands of victims and millions of affected people are hurt by natural disasters every year. Therefore, it is essential to prepare
proper response programs that consider early activities of disaster management. In this paper, a multiobjective model for
distribution centers which are located and allocated periodically to the damaged areas in order to distribute relief commodities
is offered. The main objectives of this model are minimizing the total costs and maximizing the least rate of the satisfaction in the
sense of being fair while distributing the items.Themodel simultaneously determines the location of relief distribution centers and
the allocation of affected areas to relief distribution centers. Furthermore, an efficient solution approach based on genetic algorithm
has been developed in order to solve the proposed mathematical model. The results of genetic algorithm are compared with the
results provided by simulated annealing algorithm and LINGO software.The computational results show that the proposed genetic
algorithm provides relatively good solutions in a reasonable time.

1. Introduction

It is inevitable to have an integrated scientific system for crisis’
logistics management with clearly defined functions and
duties. Optimizing logistics and relief chain can affect issues
such as relief logistics management [1]. Logistics can create
greater coordination for delivering relief commodities while
accelerating the delivery speed and reducing the response
time [2, 3]. One of the logistics subproblems with strategic
roles in a critical situation is to locate the depots and their
supply savings [2]. In the depot locating, factors such as
cost, response time, and justice in distribution have to be
considered in preparedness phase [4]. Although researches
in facilities location problems have been widely done both
theoretically and practically, the problems have not been used
in humanitarian logistics [2].

The application of operation research in disaster manage-
ment programs has been one of the main issues in recent
decades. Supply chain and logistics management are recently
being used as analytical tools and techniques to provide

efficient and effective relief to people who need help in
devastated areas with optimized functions and activities.
Thus, emergency logistics management has been emerged
as a worldwide noticeable theme as disasters may occur
anytime around the world with enormous consequences.The
aim of response to disasters in humanitarian relief chains
is to provide a quick relief to the affected areas in order
to minimize the death and pain of people. Proper design
and operation of a relief chain are an essential element to
achieve an effective and efficient response, but, only in recent
years, humanitarian organizations have paid attention to its
importance [5].

In urban areas, earthquakes can cause serious damage to
inhabitance and force people to leave their homes.Therefore,
at the preparation planning phase of disaster management,
municipal authorities should consider emergency shelters,
proper equipment, and supplies for the affected people
in order to reduce the number of casualties and people’s
sufferings and bring relief to survivors [5].
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The number and location of the facilities and distribution
centers decrease the response time and the operation costs in
relief chain. Therefore, Location-Allocation is an important
issue in this process. Some of the applications of these
locations in the relief logistics problem are listed as follows:

(i) the location of critical management centers in the
city or province and the allocation of emergency
commodities such as water, food packages, and tents
from these centers to damaged areas,

(ii) Red Crescent depots’ locating and these depots allo-
cation to damaged cities andprovinces in the situation
of facing natural crisis or even war,

(iii) locating ambulance centers inside and between the
cities and provinces.

Actually in crisis management, we deal with locating process
already in preparedness and response phase. Locating process
and facility capacity determination are the two main topics
in the disaster management, and a few researches have been
focusing on this subject [6].

Barbarosoǧlu and Arda [7] modeled the transportation
planning in earthquake response by a scenario-based two
stage stochastic programming over a multicommodity and
multimodal network flow with uncertainty in demand, sup-
ply, and route capacities. The inclusion of uncertainties is
an important advance in the analysis, but the focus is still
postdisaster response. They did not consider the location of
facilities or the inventory decisions in their model. Akkihal
[8] has proposed a model for crisis management-center
location in order to manage relief items. Tzeng et al. [9]
have presented a certain multicriteria model in order to
distribute relief commodities to damaged areas considering
costs, response time, and damaged people satisfaction and
solved it by fuzzy multiobjective programming. Jia et al. [10]
presented an incapacitated facility location model to locate
emergency service facilities in the event of a large-scale
emergency.

Balcik and Beamon [2] considered the facility location
problem for humanitarian relief chains in order to respond to
quick onset disasters. Their proposed model aimed to locate
and determine the situation and the number of distribution
centers in relief network and the number of stored commodi-
ties in order to meet the demand of affected people.

Beraldi and Bruni [11] also offered a probable model to
have a relief facility to optimize locating in an uncertain
environment.Mete and Zabinsky [12] introduced a stochastic
optimization model for disaster preparedness and response
under demand/cost uncertainty in order to assist deciding
on the location and allocation of medical supplies which
are used during emergencies. They also offered a mixed-
integer programming transportationmodel that is potentially
useful in routing decisions during the response phase. Rawls
and Turnquist [13] developed a two-stage, stochastic, mixed-
integer program that determined the locations and quantities
of various types of emergency commodities; their model also

contained the transportation network availability following a
disaster under demand/cost uncertainty.

Moreover, Jabal-Ameli et al. [14] presented a location and
distribution model and solved it by fuzzy methods. Duran et
al. [15] studied inventory and location model and offered a
mathematical model which investigates the effect of location
on the average response time. Zeng and Wu [16] considered
location and routing in relief situation in two steps. It means
that they first solved the location problem and directly solved
the routing problem in a way tominimize total costs and then
they utilized a two-step heuristic algorithm to solve it.

Bozorgi-Amiri et al. [17] considered an uncertain model
for relief logistics. They suggested that some prepositioned
relief items might be destroyed after disasters based on this
idea; they developed a robustmultiobjective approach to their
uncertain location problem and solved it for a real case study
in Iran. Bozorgi-Amiri et al. [18] investigated uncertainty in
many parameters of a relief operation like demand, supply,
and operational costs associated with it. Location of relief
centers and allocation of affected areas to these centers can
be determined in situation described in their model. Yazdian
and Shahanaghi [19] presented a multiobjective possibility
programming approach for locating distribution centers and
allocating customers’ demands in supply chains.

In 2011, Barzinpour andEsmaeili [5] developed amultiob-
jective MILP model for a two-echelon relief chain in order to
maximize coverage of urban populations andminimize logis-
tics costs. Tancrez et al. [20] considered inventory-location
problem for three-level supply chain in which distribution
decisions of distribution centers, allocation, and number of
the transported commodities were made altogether.

In 2012, Schmid [21] offered a probability model for
relocation problem and dynamic distribution and solved it
by dynamic programming. Chrétienne et al. [22] suggested
location and dispatching problem which included minimiz-
ing setup and availability costs and then solved it through
branch and cut algorithm. Toro-Diaz et al. [23] offered a
mathematical model for location and distribution problem
and solved it through genetic algorithm. In 2012, Guillermo
Cabrera et al. [24] presented a hybrid approach using an arti-
ficial bee algorithmwithmixed-integer programming applied
to a large-scale capacitated facility location problem. Murali
et al. [25] considered a facility location problem to determine
the points in a city where medicine should be handed out to
the population. They consider locating capacitated facilities
in order to maximize the coverage, considering a distance-
dependent coverage function.

In 2013, Xi et al. [26] developed a modified 𝑝-median
problem model that accounts for rescue time limitations. A
variable neighborhood search- (VNS-) based algorithm is
developed for the model considered. Gharegozloo Hamedani
et al. [27] studied a multiobjective location problem in a
three-level supply chain network under uncertain environ-
ment, considering inventory decisions. The proposed model
presents a robust optimization model, which specifies loca-
tions of distribution centers to be opened, inventory control
parameters, and allocation of supply chain components,
concurrently.
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Abounacer et al. [28] proposed a three-objective location-
transportation problem for disaster response. The location
problem aims at determining the number, the position,
and the mission of required humanitarian aid distribution
centers (HADC) within the disaster region.Three conflicting
objectives are considered. The first objective minimizes the
total transportation duration of needed products from the
distribution centers to the demand points. The second objec-
tive minimizes the number of agents (first-aiders) required to
open and operate the selected distribution centers. The third
objective minimizes the noncovered demand for all demand
points within the affected area. They proposed an epsilon-
constraintmethod for this problem. Esmaeili and Barzinpour
[29] based on a real world case study for a municipal district
inTehran developed amultiobjectivemathematicalmodel for
the location-distribution problem.

Most of the researches in location and distribution of
relief logistics are dependent on preparedness phase on the
basis of predicting programming conditions. Now, the ques-
tion is whether the same criterion in preparedness phase can
be operation criterion or, based on the new conditions and
available information, new programs should be suggested.
Usually after any casualty, in the first 72 hours, based on the
available commodities in the distribution centers, services
are offered. Therefore, it would be possible to program
for damaged areas during that time based on the received
information. In this paper, the goal is to present a model to
locate distribution centers periodically and to consider good
distribution manner toward damaged areas.

This paper focuses on the logistics aspect of the response
phase and more precisely on two important related prob-
lems: location and allocation. The location problem aims at
designing a network for distributing humanitarian aids (e.g.,
water, food, medical commodities, and survival equipment).
Itmainly consists of determining the position and themission
of required humanitarian aid distribution centers (HADC)
within the disaster region. The allocation problem deals with
the distribution of humanitarian aid fromHADCs to demand
points. When both problems are solved simultaneously, we
discuss a location-allocation problem. Based on this partic-
ular context, this paper has provided a biobjective location-
allocation problem. The first objective is to minimize the
total costs. The second objective is to maximize the covered
demand for all demand points.

We propose a genetic algorithm and a simulated anneal-
ing algorithm to biobjective location–allocation problem
addressed.

2. Problem Definition and Model Assumptions

A two-level system including distributers and damaged areas
is considered. There are regions as candidate regions to
establish distribution centers in this system. And also the
number of commodities in distribution centers and demands
of damaged areas in different periods are available. Our goal is
to determine active distribution centers and their distribution
manner in different periods. Location and allocation have to
be done so that total costs becomeminimized and commodi-
ties have to be distributed in a fair manner.

2.1. Model Assumptions

(i) The inventories of distribution centers in different
periods are available in the form of triangular fuzzy
numbers.

(ii) The damaged area requests in different periods are
available in the form of triangular fuzzy numbers.

(iii) The maximum number of distribution centers that
can be active in each period is determined.

(iv) Some types of relief commodities are available.
(v) It is possible to transfer inventories from one period

to the next one.
(vi) Unsatisfied request does not transfer from one period

to the next one.

2.2. Model Indexes

𝐼
𝑡
: set of distribution centers in period 𝑡,
𝐽
𝑡
: set of damaged areas in period 𝑡,
𝐶: set of relief commodities,
𝑖: indexes related to distribution centers,
𝑗: indexes related to damaged area,
𝑐: indexes related to relief commodities.

2.3. Model Parameters

𝑞
𝑖𝑡
: setup cost of distribution center 𝑖 in period 𝑡 that

is a triangular fuzzy number,
𝑝
𝑡
: the maximum number of distribution centers that

can be active in period 𝑡,
𝑐𝑐
𝑐𝑖𝑗𝑡

: transporting cost of 𝑐 commodity unit between
distribution center 𝑖 and damaged area 𝑗 in period 𝑡
that is a triangular fuzzy number,

𝑐𝑐1
𝑐𝑖𝑗𝑡

: transporting cost of 𝑐 commodity unit between
distribution center 𝑖 and distribution center 𝑗 in
period 𝑡 that is a triangular fuzzy number,

ĩnv
𝑐𝑖𝑡
: the number of commodities 𝑐 in distribution

center 𝑖 in period 𝑡 that is a triangular fuzzy number,

𝑑
𝑐𝑗𝑡
: the number demand commodities 𝑐 in damaged

area 𝑗 in period 𝑡 that is a triangular fuzzy number,
𝛽
𝑐
: penalty costs for the shortage of good 𝑐,

𝑀big: a big number.

2.4. Decision Variables

𝑥
𝑐𝑖𝑗𝑡

: number of commodities 𝑐 that can be delivered
in period 𝑡 from distribution center 𝑖 to damaged area
𝑗,
𝑥1
𝑐𝑖𝑗𝑡

: binary variable, it is 1 if commodity 𝑐 transfers
from distribution center 𝑖 to distribution center 𝑗 in
period 𝑡; otherwise, it is 0,



4 Journal of Applied Mathematics

𝑦
𝑖𝑡
: binary variable, it is 1 if distribution center 𝑖

becomes active in period 𝑡; otherwise, it is 0,
inv1
𝑐𝑖𝑡
: amount of transferred supply of commodity 𝑐

in period 𝑡 to period 𝑡 + 1 in distribution center 𝑖.

2.5. The Proposed Mathematical Model. Consider

min 𝑓
1
= ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐽
𝑡

𝑐𝑐
𝑐𝑖𝑗𝑡
𝑥
𝑐𝑖𝑗𝑡

+ ∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

max(0, 𝑦
𝑖𝑡
−

𝑡−1

∑

𝑘=1

𝑦
𝑖𝑘
)𝑞
𝑖𝑡

+ ∑

𝑡∈𝑇

∑

𝑐∈𝐶

∑

𝑗∈𝐽
𝑡

𝛽
𝑐
(𝑑
𝑐𝑗𝑡
− ∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
)

+ ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐼
𝑡

𝑐𝑐1
𝑐𝑖𝑗𝑡

ĩnv
𝑐𝑖𝑡
𝑥1
𝑐𝑖𝑗𝑡
,

(1)

max𝑓
2
= ∑

𝑡∈𝑇

∑

𝑐∈𝐶

min
𝑗∈𝐽
𝑡

∑
𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡

𝑑
𝑐𝑗𝑡

, (2)

∑

𝑖∈𝐼
𝑡

𝑦
𝑖𝑡
≤ 𝑝
𝑡
, ∀𝑡 ∈ 𝑇, (3)

∑

𝑐∈𝐶

∑

𝑗∈𝐽
𝑡

𝑥
𝑐𝑖𝑗𝑡
+ ∑

𝑐∈𝐶

∑

𝑗∈𝐼
𝑡

𝑥1
𝑐𝑗𝑖𝑡
≤ 𝑀big𝑦

𝑖𝑡
, ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼

𝑡
, (4)

inv1
𝑐𝑖𝑡
= ĩnv
𝑐𝑖𝑡
+ inv1

𝑐𝑖(𝑡−1)
𝑦
𝑖(𝑡−1)

+ ∑

𝑗∈𝐼
𝑡

ĩnv
𝑐𝑗𝑡
𝑥1
𝑐𝑗𝑖𝑡
− ∑

𝑗∈𝐽
𝑡

𝑥
𝑐𝑖𝑗𝑡
, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
,

(5)

∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
≤ 𝑑
𝑐𝑗𝑡
, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽

𝑡
, (6)

∑

𝑐∈𝐶

∑

𝑗∈𝐼
𝑡

𝑥1
𝑐𝑖𝑗𝑡
= 1, ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼

𝑡 (7)

𝑥
𝑐𝑖𝑗𝑡
∈ Integer, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
, 𝑗 ∈ 𝐽

𝑡
, (8)

𝑥1
𝑐𝑖𝑗𝑡
∈ {0, 1} , ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
, 𝑗 ∈ 𝐼

𝑡
, (9)

𝑦
𝑖𝑡
∈ {0, 1} , ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼

𝑡
, (10)

inv1
𝑐𝑖𝑡
∈ Integer, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
. (11)

There are two objective functions in the above model.

Objective 1. It aims at minimizing total transportation costs
between distribution centers and damaged areas and also
minimizing setup costs and penalty costs for the shortage of
goods.

Objective 2. It aims at maximizing damaged area satisfaction
through maximizing satisfied requests of damaged areas.

Constraint (3) indicates the number of distribution cen-
ters that can be active. Constraint (4) shows that it will be

possible to send goods from one distribution center to a
damaged area if that center becomes active in that period.
Constraint (5) shows the way in which it will be possible
to calculate transported inventories from one period to the
next period. Constraint (6) indicates that the number of
received commodities to one damaged area should not be
more than its demand. Constraint (7) shows that it will
be possible to send goods from one distribution center to
another distribution center if that destination center becomes
active in that period. Constraints (8)–(11) express the nature
of decision variables used in the model.

2.6. Linearization of the Proposed Model. The second objec-
tive function is nonlinear term. To make it linear, we act as
follows:

max 𝑓
2
= ∑

𝑡∈𝑇

∑

𝑐∈𝐶

𝑘
𝑡𝑐
,

𝑘
𝑡𝑐
≤
∑
𝑖∈𝐼
𝑥
𝑐𝑖𝑗𝑡

𝑑
𝑐𝑗𝑡

, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽
𝑡
.

(12)

In constraint (5), inv1
𝑐𝑖(𝑡−1)

𝑦
𝑖(𝑡−1)

is nonlinear. So, for
linearization, it can be replaced with inv𝑦

𝑐𝑖(𝑡−1)
and three

constraints are added to models as follows:

inv𝑦
𝑐𝑖(𝑡−1)

≤ inv1
𝑐𝑖(𝑡−1)

, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼
𝑡
,

inv𝑦
𝑐𝑖(𝑡−1)

≤ 𝑀big𝑦
𝑖(𝑡−1)

, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼
𝑡
,

inv𝑦
𝑐𝑖(𝑡−1)

≥ inv1
𝑐𝑖(𝑡−1)

−𝑀big (1 − 𝑦
𝑖(𝑡−1)

) ,

∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼
𝑡
,

inv𝑦
𝑐𝑖𝑡
∈ Integer, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
.

(13)

2.7. Multipurpose Linear Programming Approach. Consider-
ing the following multiobjective model, using Zimmerman
method, this problem can be changed into a single objective
linear programming model using max-min operator [14, 30]:

max 𝑍 = [𝑐
1
𝑥, 𝑐
2
𝑥, . . . , 𝑐

𝑙
𝑥]
𝑇

,

min 𝑊 = [𝑑
1
𝑥, 𝑑
2
𝑥, . . . , 𝑑

𝑟
𝑥]
𝑇

,

s.t. 𝐴𝑥 ≤ 𝐵; 𝑥 ≥ 0.

(14)

Membership functions for objective functions are defined
as follows:

𝜇
𝑘
(𝑧
𝑘
) =

𝑧
𝑘
(𝑥) − 𝑧

nis
𝑘

𝑧
pis
𝑘
− 𝑧nis
𝑘

, 𝑘 = {1, 2, . . . , 𝑙} ,

𝜇
𝑠
(𝑤
𝑠
) =

𝑤
nis
𝑠
− 𝑤
𝑠
(𝑥)

𝑤nis
𝑠
− 𝑤

pis
𝑠

, 𝑠 = {1, 2, . . . , 𝑟} .

(15)

In the above equations, 𝑤pis
𝑠
, 𝑧pis
𝑘

are positive ideal solu-
tions and𝑤nis

𝑠
, 𝑧nis
𝑘

are negative ideal solutions. Now, by max-
min operator and satisfied degree, the multiobjective linear
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programming problem has been written as a single-objective
programming problem

max 𝜆

s.t. 𝜆 ≤
𝑧
𝑘
(𝑥) − 𝑧

nis
𝑘

𝑧
pis
𝑘
− 𝑧nis
𝑘

, 𝑘 = 1 ⋅ ⋅ ⋅ 𝑙

𝜆 ≤
𝑤

nis
𝑠
− 𝑤
𝑠
(𝑥)

𝑤nis
𝑠
− 𝑤

pis
𝑠

, 𝑠 = 1 ⋅ ⋅ ⋅ 𝑟

𝐴𝑥 ≤ 𝐵; 𝑥 ≥ 0.

(16)

2.8. Solving Proposed Model. The first objective function of
the proposed model is a function with triangular fuzzy coef-
ficient.Therefore, we can change it to 3 objective functions as
follows:

min 𝑓
11
= ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐽
𝑡

(𝑐𝑐
𝑢

𝑐𝑖𝑗𝑡
− 𝑐𝑐
𝑚

𝑐𝑖𝑗𝑡
) 𝑥
𝑐𝑖𝑗𝑡

+ ∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

max(0, 𝑦
𝑖𝑡
−

𝑡−1

∑

𝑘=1

𝑦
𝑖𝑘
)(𝑞
𝑢

𝑖𝑡
− 𝑞
𝑚

𝑖𝑡
)

+ ∑

𝑡∈𝑇

∑

𝑐∈𝐶

∑

𝑗∈𝐽
𝑡

𝛽
𝑐
[(𝑑
𝑢

𝑐𝑗𝑡
− 𝑑
𝑚

𝑐𝑗𝑡
) − ∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
]

+ ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐼
𝑡

(𝑐𝑐1
𝑢

𝑐𝑖𝑗𝑡
− 𝑐𝑐1
𝑚

𝑐𝑖𝑗𝑡
)

× (inv𝑢
𝑐𝑖𝑡
− inv𝑚
𝑐𝑖𝑡
) 𝑥1
𝑐𝑖𝑗𝑡
,

min 𝑓
12
= ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐽
𝑡

𝑐𝑐
𝑚

𝑐𝑖𝑗𝑡
𝑥
𝑐𝑖𝑗𝑡

+ ∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

max(0, 𝑦
𝑖𝑡
−

𝑡−1

∑

𝑘=1

𝑦
𝑖𝑘
)𝑞
𝑚

𝑖𝑡

+ ∑

𝑡∈𝑇

∑

𝑐∈𝐶

∑

𝑗∈𝐽
𝑡

𝛽
𝑐
(𝑑
𝑚

𝑐𝑗𝑡
− ∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
)

+ ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐼
𝑡

𝑐𝑐1
𝑚

𝑐𝑖𝑗𝑡
inv𝑚
𝑐𝑖𝑡
𝑥1
𝑐𝑖𝑗𝑡
,

max 𝑓
13
= ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐽
𝑡

(𝑐𝑐
𝑚

𝑐𝑖𝑗𝑡
− 𝑐𝑐
𝑙

𝑐𝑖𝑗𝑡
) 𝑥
𝑐𝑖𝑗𝑡

+ ∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

max(0, 𝑦
𝑖𝑡
−

𝑡−1

∑

𝑘=1

𝑦
𝑖𝑘
)(𝑞
𝑚

𝑖𝑡
− 𝑞
𝑙

𝑖𝑡
)

+ ∑

𝑡∈𝑇

∑

𝑐∈𝐶

∑

𝑗∈𝐽
𝑡

𝛽
𝑐
[ (𝑑
𝑚

𝑐𝑗𝑡
− 𝑑
𝑙

𝑐𝑗𝑡
) −∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
]

+ ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑖∈𝐼
𝑡

∑

𝑗∈𝐼
𝑡

(𝑐𝑐1
𝑚

𝑐𝑖𝑗𝑡
− 𝑐𝑐1
𝑙

𝑐𝑖𝑗𝑡
)

× (inv𝑚
𝑐𝑖𝑡
− inv𝑙
𝑐𝑖𝑡
) 𝑥1
𝑐𝑖𝑗𝑡
.

(17)

There are three fuzzy constraints in the presented model.
Therefore, we can change it to 3 certain constraints as follows
[10]:

𝑘
𝑡𝑐
≤

∑
𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡

((𝑑𝑢
𝑐𝑗𝑡
− 𝑑𝑙
𝑐𝑗𝑡
) + (𝑑𝑚

𝑐𝑗𝑡
− 𝑑𝑙
𝑐𝑗𝑡
)) /3 + 𝑑𝑙

𝑐𝑗𝑡

,

∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽
𝑡
,

inv1
𝑐𝑖𝑡

=
(inv𝑢
𝑐𝑖𝑡
− inv𝑙
𝑐𝑖𝑡
) + (inv𝑚

𝑐𝑖𝑡
− inv𝑙
𝑐𝑖𝑡
)

3

+ inv𝑙
𝑐𝑖𝑡
+ inv1

𝑐𝑖(𝑡−1)
𝑦
𝑖(𝑡−1)

+ ∑

𝑗∈𝐼
𝑡

[

[

(inv𝑢
𝑐𝑗𝑡
−inv𝑙
𝑐𝑗𝑡
)+(inv𝑚

𝑐𝑗𝑡
−inv𝑙
𝑐𝑗𝑡
)

3
+ inv𝑙
𝑐𝑗𝑡
]

]

𝑥1
𝑐𝑗𝑖𝑡

−∑

𝑗∈𝐽

𝑥
𝑐𝑖𝑗𝑡
, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼

𝑡
,

∑

𝑖∈𝐼
𝑡

𝑥
𝑐𝑖𝑗𝑡
≤
(𝑑
𝑢

𝑐𝑗𝑡
− 𝑑
𝑙

𝑐𝑗𝑡
) + (𝑑

𝑚

𝑐𝑗𝑡
− 𝑑
𝑙

𝑐𝑗𝑡
)

3
+ 𝑑
𝑙

𝑐𝑗𝑡
,

∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽
𝑡
.

(18)

Now, a certain linear multiobjective model can be
achieved as follows:

MOLP:

Min 𝑍 = [𝑓
11
, 𝑓
12
]

Max 𝑊 = [𝑓
13
, 𝑓
2
]

S.t. (3) , (4) , (7) , (8) , (9) , (10) ,

(11) , (13) , (18) .

(19)

To solve this linear multiobjective model through Zim-
mermann fuzzy sets (15), membership functions are defined
as follows for the objective functions of the problem [30]:

𝜇
𝑓
11

=

{{{{

{{{{

{

1 𝑓
11
≤ 𝑓

pis
11

𝑓
nis
11
− 𝑓
11

𝑓nis
11
− 𝑓

pis
11

𝑓
pis
11
≤ 𝑓
11
≤ 𝑓

nis
11

0 𝑓
11
≥ 𝑓

nis
11
,

𝜇
𝑓
2

=

{{{{

{{{{

{

1 𝑓
2
≥ 𝑓

pis
2

𝑓
2
− 𝑓

nis
2

𝑓
pis
2
− 𝑓nis
2

𝑓
nis
2
≤ 𝑓
2
≤ 𝑓

pis
2

0 𝑓
2
≥ 𝑓

nis
2
.

(20)

To calculate 𝜇
𝑓12

and 𝜇
𝑓13

, a procedure the same as that
of 𝜇
𝑓11

and 𝜇
𝑓2

would be followed respectively. Now, we use
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the following equations to obtain an ideal positive value (pis)
and a negative value (nis):

𝑓
pis
11
= min𝑓

11
, 𝑓

nis
11
= max𝑓

11
,

𝑓
pis
12
= min𝑓

12
, 𝑓

nis
12
= max𝑓

12
,

𝑓
pis
13
= max𝑓

13
, 𝑓

nis
13
= min𝑓

13
,

𝑓
pis
2
= max𝑓

2
, 𝑓

nis
2
= min𝑓

2
.

(21)

Now, we change the multiobjective problem (19) to the
single-objective problem (22) via (16). The model is defined
as follows:

max 𝜆

S.t. 𝜆 ≤
𝑓
nis
11
− 𝑓
11

𝑓nis
11
− 𝑓

pis
11

𝜆 ≤
𝑓
nis
12
− 𝑓
12

𝑓nis
12
− 𝑓

pis
12

𝜆 ≤
𝑓
pis
13
− 𝑓
13

𝑓
pis
13
− 𝑓nis
13

𝜆 ≤
𝑓
pis
2
− 𝑓
2

𝑓
pis
2
− 𝑓nis
2

(3) , (4) , (7) , (8) , (9) ,

(10) , (11) , (13) , (18) .

(22)

3. Genetic Algorithm

In the last decade, we have seen a growing interest in bio-
logically motivated approaches such as evolutionary strate-
gies and genetic algorithms (GAs) being applied to many
complex optimization problems. The processes occurring in
the natural systems have inspired the development of these
algorithms. Evolutionary strategies and genetic algorithms
are constructed based on the observation of evolutionary
processes in biological systems. Evolutionary processes such
as adaptation, selection, reproduction, mutation, and com-
petition are closely studied and translated into the form
of computer simulations. Although these algorithms are a
crude simplification of the natural processes, they have been
successfully applied to many complex problems that were
once intractable [31, 32].

GA is a stochastic search technique that explores the
problem domain by maintaining a population of individuals,
which represents a set of potential solutions in the search
space. GA attempts to combine the good features found in
each individual using a structured yet randomized infor-
mation exchange in order to construct individuals who are
better suited to their environment than the individuals that
were created through the evolution of better individuals; it
is anticipated that the desired solution will be found. The
following steps are defined to design this algorithm.

3.1. Solution Representation. To show the chromosome, we
used three matrices; the first matrix amount is zero or one
and the rest of them are positive integer numbers.

The first matrix is called location matrix that is related to
distribution centers. Its lines are related to a time period and
its columns are related to distribution centers. Its dimension
is |𝑇| ×max

𝑡∈𝑇
|𝐼
𝑡
| in which lines are periods and columns are

distribution centers. This matrix’s elements are zero and one
in a way that zero and one correspond to inactiveness and
activeness of the distribution center, respectively,

Location =
[
[
[
[

[

𝐿
11
𝐿
12
⋅ ⋅ ⋅ 𝐿
1|𝐼
1
|

𝐿
21
𝐿
22
⋅ ⋅ ⋅ 𝐿
1|𝐼
2
|

...
𝐿
|𝑇|1
𝐿
|𝑇|2

⋅ ⋅ ⋅ 𝐿
|𝑇||𝐼
|𝑇|
|

]
]
]
]

]

. (23)

The second matrix is called Commodity Allocated
matrix. To each commodity, there is a combined matrix
including |𝑇| submatrix with |𝐼

𝑡
| × |𝐽

𝑡
| dimension. Each

element in these submatrices indicates the number of
commodities which are sent to corresponding damaged
areas from the distribution center
Commodity Allocated 1

=

[
[
[
[
[

[

[
[
[
[

[

𝑖
11
𝑖
12
⋅ ⋅ ⋅ 𝑖
1|𝐽
1
|

𝑖
21
𝑖
22
⋅ ⋅ ⋅ 𝑖
2|𝐽
1
|

...
𝑖
|𝐼
1
|1
𝑖
|𝐼
1
|2
⋅ ⋅ ⋅ 𝑖
|𝐼
1
||𝐽
1
|

]
]
]
]

]

1

⋅ ⋅ ⋅

[
[
[
[
[

[

𝑖
11
𝑖
12
⋅ ⋅ ⋅ 𝑖
1|𝐽
|𝑇|
|

𝑖
21
𝑖
22
⋅ ⋅ ⋅ 𝑖
2|𝐽
|𝑇|
|

...
𝑖
|𝐼
|𝑇|
|1
𝑖
|𝐼
|𝑇|
|2
⋅ ⋅ ⋅ 𝑖
|𝐼
|𝑇|
||𝐽
|𝑇|
|

]
]
]
]
]

]

|𝑇|

]
]
]
]
]

]

, . . . ,

Commodity Allocated |𝑐|

=

[
[
[
[
[

[

[
[
[
[

[

𝑖
11
𝑖
12
⋅ ⋅ ⋅ 𝑖
1|𝐽
1
|

𝑖
21
𝑖
22
⋅ ⋅ ⋅ 𝑖
2|𝐽
1
|

...
𝑖
|𝐼
1
|1
𝑖
|𝐼
1
|2
⋅ ⋅ ⋅ 𝑖
|𝐼
1
||𝐽
1
|

]
]
]
]

]

1

⋅ ⋅ ⋅

[
[
[
[
[

[

𝑖
11
𝑖
12
⋅ ⋅ ⋅ 𝑖
1|𝐽
|𝑇|
|

𝑖
21
𝑖
22
⋅ ⋅ ⋅ 𝑖
2|𝐽
|𝑇|
|

...
𝑖
|𝐼
|𝑇|
|1
𝑖
|𝐼
|𝑇|
|2
⋅ ⋅ ⋅ 𝑖
|𝐼
|𝑇|
||𝐽
|𝑇|
|

]
]
]
]
]

]

|𝑇|

]
]
]
]
]

]

.

(24)
The third matrix is called inventory matrix that indicates

the amount of transported inventory from one period to the
next one in each distribution center

Inventory 1=
[
[
[
[

[

inv
11
inv
12
⋅ ⋅ ⋅ inv

1|𝑇|

inv
21
inv
22
⋅ ⋅ ⋅ inv

2|𝑇|

...
inv
|𝐼
1
|1
inv
|𝐼
2
|2
⋅ ⋅ ⋅ inv

|𝐼
|𝑇|
||𝑇|

]
]
]
]

]max
𝑡∈𝑇
|𝐼
𝑡
|×|𝑇|

, . . . ,

Inventory |𝑐|=
[
[
[
[

[

inv
11
inv
12
. . . inv

1|𝑇|

inv
21
inv
22
. . . inv

2|𝑇|

...
inv
|𝐼
1
|1
inv
|𝐼
2
|2
. . . inv

|𝐼
|𝑇|
||𝑇|

]
]
]
]

]max
𝑡∈𝑇
|𝐼
𝑡
|×|𝑇|

.

(25)
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10001010
00011100
01000111
00001111

Location matrix of parent 1

(a)

01011000
10001100
00110101
00011110

Location matrix of parent 2

(b)

10001010
10001100
01000111
00001111

Location matrix of child 1

(c)

01011000
00011100
00110101
00011110

Location matrix of child 1

(d)

Figure 1: Crossover operator.

10001010
00011100
01000111
00001111

Location matrix before mutation  

(a)

10101000
00011100
00010111
00001111

Location matrix after mutation

(b)

Figure 2: Mutation operator.

Begin

Generate a random primary population equals with population size

Calculate chromosomes fitness function

Do sampling through tournament strategy from primary population and put them in mating pool

Do crossover operator with RC rate

Do mutation operator with RM rate

Do elitism with 1-RC-RM rate

Stop criterion

End

Figure 3: Genetic algorithm flowchart.

Table 1: Simulated annealing algorithm parameters and their levels.

Problem
size Levels 𝐴 𝐵 𝐶 𝐷

Cooling rate (𝛼) Number of repetitions in each temperature (𝑁) Final temperature (𝑇
𝑓
) Initial temperature (𝑇

0
)

Small
1 0.9 20 0.0000001 100
2 0.925 40 0.00001 10000
3 0.95 60 0.001 1000000

Large
1 0.94 50 0.0000001 100
2 0.96 75 0.00001 10000
3 0.98 100 0.001 1000000
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Yes
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update temperature

No

No

No
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Metropolis 
decision

making loop

No

End

Begin

X0 E(X0)

k = 0, n = 0

X E(X )

Y = 1) E(Xn) − E(X ) < 0

n = n + 1

Xn = X

n > N

k = k + 1

k > K or Tk < Tf

� < e−ΔE/T𝑘

Figure 4: Simulated annealing flowchart.

Level 1 Level 2 Level 3
A(Ps)

−4.2

−4.0

−3.8

−3.6

−3.4

(a)

Level 1 Level 2 Level 3
B(Ng)

−5.0

−4.0

−3.0

−

(b)

Level 1 Level 2 Level 3

−4

−3

−3.60

C(Cr)

(c)

Level 1 Level 2 Level 3

−4.5

−4.0

−3.5

−3.0

D(Mr)

(d)

Figure 5: Diagram of mean effect of the 𝑆/𝑁 ratio for small problem in genetic algorithm.
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Table 2: Genetic algorithm parameters and their levels.

Problem size Levels 𝐴 𝐵 𝐶 𝐷

Population size (𝑃
𝑠
) Number of generations (𝑁

𝑔
) Crossover rate (𝐶

𝑟
) Mutation rate (𝑀

𝑟
)

Small
1 100 400 0.7 0.01
2 120 500 0.75 0.02
3 150 600 0.8 0.05

Large
1 180 600 0.8 0.01
2 200 800 0.9 0.02
3 220 1000 0.95 0.05

Table 3: Orthogonal array 𝐿9.

Experiments 𝐴 𝐵 𝐶 𝐷

1 𝐴(1) 𝐵(1) 𝐶(1) 𝐷(1)

2 𝐴(1) 𝐵(2) 𝐶(2) 𝐷(2)

3 𝐴(1) 𝐵(3) 𝐶(3) 𝐷(3)

4 𝐴(2) 𝐵(1) 𝐶(2) 𝐷(3)

5 𝐴(2) 𝐵(2) 𝐶(3) 𝐷(1)

6 𝐴(2) 𝐵(3) 𝐶(1) 𝐷(2)

7 𝐴(3) 𝐵(1) 𝐶(3) 𝐷(2)

8 𝐴(3) 𝐵(2) 𝐶(1) 𝐷(3)

9 𝐴(3) 𝐵(3) 𝐶(2) 𝐷(1)

Table 4: Characteristics of instances.

Problem size Instance
name

Number of
periods

Number of
damaged areas

Number of areas for
distribution center

Maximum number of
distribution centers in

periods

Small

I1 5 (5, 5, 5, 6, 6) (4, 4, 5, 5, 5) (2, 2, 2, 2, 2)
I2 5 (6, 6, 6, 6, 6) (4, 4, 5, 5, 5) (2, 2, 3, 3, 3)
I3 5 (6, 6, 8, 8, 8) (5, 5, 5, 6, 6) (2, 2, 3, 3, 3)
I4 3 (10, 10, 10) (5, 6, 6) (3, 4, 4)
I5 3 (10, 12, 12) (6, 6, 8) (3, 4, 4)
I6 3 (12, 12, 14) (6, 8, 8) (3, 5, 5)
I7 3 (14, 14, 14) (8, 10, 10) (4, 5, 5)
I8 3 (14, 14, 16) (12, 14, 14) (4, 5, 5)

Large

I9 5 (30, 30, 30, 35, 35) (12, 12, 14, 14, 14) (4, 4, 5, 5, 5)
I10 5 (30, 30, 35, 35, 35) (14, 14, 14, 15, 15) (5, 5, 5, 5, 5)
I11 5 (35, 35, 35, 40, 40) (15, 15, 18, 18, 18) (5, 5, 5, 5, 5)
I12 5 (40, 40, 40, 45, 45) (16, 16, 18, 20, 20) (5, 5, 6, 6, 6)
I13 5 (45, 45, 45, 48, 50) (20, 20, 22, 22, 22) (6, 6, 6, 6, 6)
I14 5 (45, 48, 48, 48, 50) (22, 24, 24, 25, 25) (6, 6, 7, 7, 7)
I15 5 (50, 55, 55, 50, 50) (25, 28, 28, 28, 28) (6, 6, 7, 7, 7)
I16 5 (50, 55, 55, 55, 55) (28, 30, 30, 30, 30) (7, 7, 7, 7, 7)
I17 3 (80, 100, 100) (30, 30, 32) (8, 8, 8)
I18 3 (100, 100, 120) (32, 35, 35) (8, 10, 10)
I19 3 (120, 120, 140) (35, 35, 38) (10, 10, 10)
I20 3 (140, 140, 160) (38, 40, 42) (10, 10, 12)
I21 3 (150, 160, 150) (42, 45, 45) (10, 12, 12)
I22 3 (160, 160, 170) (45, 50, 50) (12, 12, 12)
I23 3 (180, 180, 200) (50, 50, 60) (12, 12, 12)
I24 3 (200, 220, 220) (60, 60, 62) (12, 14, 14)
I25 3 (220, 250, 250) (60, 65, 65) (12, 14, 14)
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Table 5: Characteristics of sample problems that have been used for Taguchi method.

Problem size Number of
periods

Number of
damaged areas

Number of areas for
distribution center

Maximum number of
distribution centers in

periods
Small 3 (10, 10, 10) (5, 6, 6) (3, 4, 4)
Large 5 (35, 35, 35, 40, 40) (15, 15, 18, 18, 18) (5, 5, 5, 5, 5)

Table 6: The optimum factor for genetic algorithm and simulated annealing.

Problem size Factors Level 1 Level 2 Level 3 Optimum factor

Genetic algorithm

Mean 𝑆/𝑁 ratio

Small

𝐴 −4.0524 −3.9078 −3.6780 𝐴(3)

𝐵 −4.5873 −3.7776 −3.2731 𝐵(3)

𝐶 −3.9725 −3.9144 −3.7512 𝐶(3)

𝐷 −4.0079 −3.7381 −3.8921 𝐷(2)

Large

𝐴 −5.5750 −5.4837 −5.4807 𝐴(3)

𝐵 −6.0750 −5.4906 −4.9739 𝐵(3)

𝐶 −5.6615 −5.4169 −5.4610 𝐶(2)

𝐷 −5.5713 −5.3525 −5.6156 𝐷(2)

Mean objective function

Small

𝐴 0.6301 0.6395 0.6558 𝐴(3)

𝐵 0.5914 0.6479 0.6861 𝐵(3)

𝐶 0.6360 0.6391 0.6502 𝐶(3)

𝐷 0.6334 0.6514 0.6405 𝐷(2)

Large

𝐴 0.5286 0.5339 0.5345 𝐴(2), 𝐴(3)

𝐵 0.4995 0.5323 0.5641 𝐵(3)

𝐶 0.5235 0.5380 0.5345 𝐶(2)

𝐷 0.5290 0.5412 0.5258 𝐷(2)

Simulated annealing

Mean 𝑆/𝑁 ratio

Small

𝐴 −4.1877 −4.0033 −3.7003 𝐴(3)

𝐵 −4.1164 −3.9694 −3.8055 𝐵(3)

𝐶 −4.1038 −3.7080 −4.0795 𝐶(2)

𝐷 −4.4123 −4.0730 −3.4060 𝐷(3)

Large

𝐴 −6.4144 −6.0149 −5.4369 𝐴(3)

𝐵 −6.2095 −6.0824 −5.5743 𝐵(3)

𝐶 −5.9112 −5.8779 −6.0771 𝐶(2)

𝐷 −6.3202 −5.8310 −5.7150 𝐷(3)

Mean objective function

Small

𝐴 0.6209 0.6327 0.6544 𝐴(3)

𝐵 0.6262 0.6353 0.6464 𝐵(3)

𝐶 0.6272 0.6537 0.6270 𝐶(2)

𝐷 0.6048 0.6272 0.6760 𝐷(3)

Large

𝐴 0.4817 0.5032 0.5351 𝐴(3)

𝐵 0.4925 0.5006 0.5269 𝐵(3)

𝐶 0.5100 0.5108 0.4993 𝐶(1), 𝐶(2)

𝐷 0.4880 0.5131 0.5189 𝐷(3)

Table 7: Tuned values of the simulated annealing parameters.

Problem size 𝛼 𝑁 𝑇
𝑓

𝑇
0

Small 0.95 60 0.00001 1000000
Large 0.98 100 0.00001 1000000
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Figure 6: Diagram of mean effect of parameters based on the objective function for small problem in genetic algorithm.
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Nehbandan

Figure 7: Iran: South Khorasan.

3.2. Generating Initial Population. After determining a tech-
nique to assign a chromosome to each solution, one can create
an initial population. In this process, the location matrix is
generated randomly.

To initialize the Commodity Allocated matrices, we use
a heuristic method so that first, for each commodity type, the
total damaged area requests and total supply of active distri-
bution centers have been evaluated, and, then, considering
justice in distribution, commodities are distributed among
damaged areas equally. Now, to allocate active centers to
damaged areas, an area has been chosen randomly and it
would be allocated to an active distribution center obtained
by the roulette wheel, which is generated based on the
allocation costs. If this distribution center cannot satisfy all
predicted demands, the next center obtained by the roulette
wheel will meet the remaining demands of this damaged area.
Then, one area is chosen randomly from the other damaged
areas. All the above-mentioned activities are executed until
allocation manner of centers to damaged areas is determined
for all the areas.

3.3. Sampling Mechanisms. This mechanism is related to
selection chromosomes’ method. Tournament selection has
been used in this research. Based on this method, first, the
value of each chromosome’s fitness functions in a population
has been calculated, and a tournament size is chosen (here,
tournament size is 3). Then, chromosome from one popula-
tion has been chosen randomly equal with tournament size
and, at the end, the best chromosome based on suitability
will be transferred to mating pool. This has been repeated up
to the number of population. It is possible to create several
copies from a chromosome with higher fitness function.This
shows that better chromosomes have greater chance to be
chosen.

3.4. Genetic Operators. To generate a new generation of the
present chromosome, the following genetic operators could
be used.

3.4.1. Crossover Operator. In this crossover operator, a row of
location matrix of one chromosome is exchanged with the
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Table 8: Tuned values of the genetic algorithm parameters.

Problem size 𝑃
𝑠

𝑁
𝑔

𝐶
𝑟

𝑀
𝑟

Small 150 600 0.8 0.02
Large 220 1000 0.9 0.02

same row of location matrix of another one and also corre-
sponding elements are exchanged in Commodity Allocated
matrices and inventory matrices. In other words, we choose
a random number from {1, . . . , 𝑇} (𝑇 is the number of time
periods), and we exchange corresponding row of location
matrix of parent 1 with the same row of location matrix of
parent 2 and also corresponding elements are exchanged in
Commodity Allocated matrices and inventory matrices in
two chromosomes. Figure 1 shows the crossover operator.

3.4.2. Mutation Operators. Mutation operator operates on
location matrix in the developed algorithm. In the first
mutation operator, elements corresponding to two distri-
bution centers exchange in a row of location matrix. As
distribution center locating conditions change, Commod-
ity Allocated matrices are valued by the stated heuristic
method in Section 3.2.

Figure 2 shows the mutation operator.
In the second mutation operator, one element corre-

sponding to the distribution center in location matrix has
been considered. It will be zero if it is one and it will be one
if it is zero (provided that the number of active centers does
not violate the number of authorized ones).

Now, as the location conditions of distribution cen-
ter change, Commodity Allocated matrices are updated by
explained heuristic method in Section 3.2.

3.5. Elitism Selection. When genetic operators (mutation and
crossover) are used, it would be possible to lose the best
chromosomes. Elitism is a method to keep a copy from the
best chromosomes in the new generations.The abovemecha-
nismmakes genetic algorithmkeep some of the best solutions
in each generation. Previous experiences have proved that
this mechanism optimizes genetic algorithm operation and
shortens coverage time.

3.6. Algorithm Stop Criterion. Since metaheuristic algo-
rithms do not have any criteria for the global optima, a max-
imum number of iterations have been considered in order
to stop the algorithm. Figure 3 shows the genetic algorithm
flowchart.

4. Simulated Annealing Algorithm

Simulated annealing is a probabilistic metaheuristic algo-
rithm which is a local search method. The simulated anneal-
ing begins its search from a random initial solution.The iter-
ation loop that characterizes the main procedure randomly
generates in each iteration only one neighbor 𝑠 of the current
solution 𝑠. The variation Δ for the value of the objective
function 𝑓(𝑥) is tested for each neighbor generation. To

test this variation, Δ = 𝑓(𝑠) − 𝑓(𝑠

) is computed. If the

value of Δ is less than 0 (zero), then the new solution 𝑠 is
automatically accepted to replace 𝑠. Otherwise, accepting the
new solution 𝑠 will depend on the probability established by
the Metropolis criteria, which is given by 𝑒Δ/𝑇, where 𝑇 is a
temperature parameter, a key variable for the method.

Figure 4 shows the simulated annealing flowchart. In
Figure 4, n is the number of internal circles, 𝑘 is the number
of external circles, and 𝐸() is the objective function.

In the following, we discuss the proposed SA heuristic in
detail, including the solution representation, the generation
of the initial solution, and various types of neighborhood.

Solution representation: solution representation is similar
to Section 3.1.

Generation of the initial solution: this is similar to
Section 3.2.

Neighborhood generation mechanism: we produce
neighborhood by mutation operators that is exhibited in
Section 3.4.2.

5. Numerical Results

In this section, the developed algorithms have been used on
the sample problems that have been generated randomly and
the presented genetic algorithmefficacy has been studied.The
characteristics of instances are shown in Table 3.

To solve the model used of LINGO 11 on a com-
puter with the following characteristics: intel(R) core(Tm)
i3 cpuM330@2.13Ghz, 4G RAM. Considering the intense
effect of parameter configuration on the performance of
algorithms, the Taguchi method is used for the configuration
of parameters. Before calibration of the employed algorithms,
we run some preliminary tests to find appropriate parameter
levels. To obtain more accurate, as well as better sustained,
results for the offered algorithm, the following four parame-
ters were configured:𝑇

0
,𝑇
𝑓
,𝑁, and𝛼 for simulated annealing

and 𝐶
𝑟
, 𝑀
𝑟
, 𝑁
𝑔
, and 𝑃

𝑠
for the genetic algorithm. These

parameters and their levels are given in Tables 1 and 2. The
square matrix with 4 parameters in 3 levels used in the
Taguchi method is L9, which is given in Table 3. In Taguchi
method, the variation of the output results is measured by
means of signal-to-noise (𝑆/𝑁) ratio. Here, the larger value
of 𝑆/𝑁 ratio leads to the smaller variation of the response
variable. Factor levels that maximize the appropriate 𝑆/𝑁
ratio are optimal [33]. The value of 𝑆/𝑁 ratio is computed by

𝑆

𝑁
= −10 log

10
[
1

𝑛

𝑛

∑

𝑖=1

1

𝑦2
𝑖

] , (26)

where 𝑛 is the number of repetitions under the same exper-
imental conditions and 𝑦

𝑖
denotes the experimental result at

each repetition.
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Table 10: The amount of inventory has been estimated in the candidate areas for the establishment of distribution centers (∗1000).

Sarayan Qaen Birjand

Period 1 Commodity 1 (19, 23, 30) (54, 57, 59) (128, 130, 134)
Commodity 2 (96, 99, 107) (144, 149, 162) (274, 280, 291)

Period 2 Commodity 1 (47, 53, 55) (67, 72, 79) (175, 180, 182)
Commodity 2 (102, 113, 124) (192, 209, 223) (389, 400, 419)

Period 3 Commodity 1 (41, 43, 48) (69, 78, 85) (192, 200, 212)
Commodity 2 (89, 96, 109) (117, 127, 139) (270, 280, 296)

Characteristics of sample problems that have been used
for Taguchi method are shown in Table 5. Calculating all test
results using the Taguchi method, the mean rate of 𝑆/𝑁 for
small-scale problem is presented in Figure 5 and the mean
of the objective function for small-scale problem is shown in
Figure 6.

Optimum factors for genetic algorithm and simulated
annealing are given in Table 6. The final configurations of
parameters for all algorithms are summarized in Tables 7 and
8.

Table 9 shows that the proposed genetic algorithm and
simulated annealing algorithm operate faster than LINGO
with little errors and the standard deviation is not consider-
able in ten iterations indicating that the solutions do not have
deviation. Now, we generate a number of sample problems
with small and large size that are exhibited in Table 4 and
then operate the proposed genetic algorithm and simulated
annealing algorithm on these problems. Table 9 shows more
details on computational results for all test problems. The
CPU times corresponding to the exact solution, as seen in
Table 9, show that computational time grows exponentially
by size of the problem. Unfortunately, for the large-scale
calculations, LINGO cannot even find the feasible solution
in the limited run time.

In Table 9, we present the following: average value, stan-
dard deviation, best solution, computational time, PRAS%,
and PRBS% for each problem. As observed in Table 9, there
are only 2 cases out of 25 forwhich the SA algorithmperforms
better than theGA.Also, in 2 cases out of 25, the SA algorithm
and GA behave identically. Moreover, in the other cases than
those mentioned, GA performs better than the SA. Finally,
in an average sense, the genetic algorithm gives less standard
deviation than the simulated annealing. These observations
show that the GA gives more stable results than the SA.
Solution average in genetic algorithm meets more suitable
conditions especially in the case of large size problems. As
can be seen, the percent reduction best solution (%PRBS)
and the percent reduction average solution (%PRAS) are both
positive values, so the GA performs better than the SA.

The percent reduction best solution (%PRBS) and the
percent reduction average solution (%PRAS) are calculated
using

%PRBS =
BestGA − BestSA

BestGA
× 100%,

%PRAS =
AverageGA − AverageSA

AverageGA
× 100%.

(27)

For the proposed algorithms, the average results of the
ten simulations are also presented. The efficiency of the two
algorithms is measured by the quality of the produced solu-
tions. The quality is given in terms of the relative deviation
from the optimum solution that the best solution’s error
= (LINGO solution − the best solution)/LINGO solution,
where LINGO solution denotes the solution of the LINGO
software and the best solution is considered to be the solution
of the metaheuristic algorithms. As it can be seen from
Table 9, the algorithms lead to very good and stable results
for most cases. Also, the genetic algorithm performs better
than the simulated annealing, in each and every instance.

The comparison of LINGO with the proposed genetic
algorithm shows that the GA can find approximately an
optimal solution in a shorter time compared to the LINGO
as presented in Table 9. In Table 9, it is also shown that the
average gap between the optimal and the GA solutions is
1.421%. The maximum gap is related to the test problem 𝐼

6
.

As observed in Table 9, the standard deviation has
increased as the problem’s dimension increases. To obtain
better solution in large dimensions, population size and the
number of generations should both increase.

A small size example is considered to test the reli-
ability of the model. Figure 7 shows the map of south-
khorasan province of Iran that has been used at this example.
Three cities (Birjand, Qaen, and Sarayan) are selected to
set up relief commodities distribution centers for different
periods. Furthermore, nine cities including Birjand, Qaen,
Darmiyan, Nehbandan, Ferdows, Zirkoh, Sarayan, Sarbisheh,
and Boshruyeh are considered as damaged areas. The fixed
cost to open distribution centers for all the areas is $25000,
$26000, and $27500. The shortage penalty for each com-
modity is $1.5 for commodity 1 and $2.5 for commodity
2. These values are confirmed with experts’ estimations. In
this example, two types of relief commodities have been
considered. In addition, there are two active centers for each
period. The model has been solved for a situation that the
number of planning periods is 3. The demand of damaged
areas is available as triangular fuzzy numbers in Table 11. The
amount of inventory in distribution centers is presented in
Table 10. The proposed model tries to minimize the cost of
commodities relocation and maximize the demand coverage
ratio of damaged area for fair distribution. This is done by a
multiobjective possibility linear programming model.

As shown in Tables 12 and 13, considering the inventories
of distribution centers and damaged area demands in periods
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Table 12: Allocated commodity (type 1) (∗1000).

Ferdows Boshruyeh Darmiyan Sarayan Sarbisheh Nehbandan Zirkoh Qaen Birjand

Period 1 Birjand 25 8 20 27 20 31
Qaen 21 26 11 23

Period 2 Birjand 32 32 27 42 46
Qaen 32 40 25 27

Period 3 Birjand 46 23 23 34 22 53
Qaen 38 38 7 13 45

Table 13: Allocated commodity (type 2) (∗1000).

Ferdows Boshruyeh Darmiyan Sarayan Sarbisheh Nehbandan Zirkoh Qaen Birjand

Period 1 Birjand 57 47 46 43 13 76
Qaen 54 53 17 23 42 63

Period 2 Birjand 105 55 72 68 103
Qaen 77 76 22 71 75

Period 3 Birjand 52 29 42 49 30 80
Qaen 61 58 22 24 59

Table 14: The amount of inventory in established distribution centers (∗1000).

Birjand Qaen

Period 1 Commodity 1 (128, 130, 134) (73, 80, 89)
Commodity 2 (274, 280, 291) (240, 248, 269)

Period 2 Commodity 1 (175, 180, 182) (114, 125, 134)
Commodity 2 (389, 400, 419) (294, 322, 347)

Period 3 Commodity 1 (192, 200, 212) (110, 121, 133)
Commodity 2 (270, 280, 296) (206, 223, 248)

1, 2, and 3, Birjand and Qaen are considered as active distri-
bution centers.The amount of inventory in active distribution
centers is presented in Table 14. Tables 12 and 13 show how to
allocate goods from distribution centers to the affected areas.
As demonstrated, it has been tried as much as possible to
use one distribution center as a closest center to damaged
area. However, if the inventory of a distribution center is not
sufficient, several distribution centers will be used to fulfill all
demands. Reviewing the tables shows that almost all damaged
areas receive commodities equally to have fair distribution of
commodities. For instance, almost 52% of the 1st commodity
demands and 77% of the 2nd commodity demands aremet in
period 1. Therefore, accuracy and reliability of the model are
both acceptable.

6. Conclusions

It is clear that logistic activities are very important in response
phase of the disaster management. Also, precise program-
ming can improve the efficacy of the system. According to the
crucial role of location-allocation in reducing cost and time,
a multiobjective possibility programming model has been
developed for relief logistics. This model follows two main
objectives. The first one is minimizing good distribution cost
and the second one is justice in good distribution process,

while the efforts are to maximize the minimum number of
satisfied requests. Considering estimated information from
problem conditions, some of the model parameters such as
the number of damaged area requests and distribution center
supply in different periods and transportation cost have been
seeded as triangular fuzzy numbers. As observed earlier, the
quality of the genetic algorithm is relatively higher, especially
in large-scale problems.

Finally, for future research, the relief chain can be recon-
figured with three echelons: central disaster facilities of the
city as main suppliers, local emergency facilities as distribu-
tors, and urban areas as customer. Also, location and routing
can be considered simultaneously.
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[25] P. Murali, F. Ordóñez, and M. M. Dessouky, “Facility location
under demand uncertainty: response to a large-scale bio-terror
attack,” Socio-Economic Planning Sciences, vol. 46, no. 1, pp. 78–
87, 2012.

[26] M. Xi, F. Ye, Z. Yao, and Q. Zhao, “A modified 𝑝-median model
for the emergency facilities location problem and its variable
neighbourhood search-based algorithm,” Journal of Applied
Mathematics, vol. 2013, Article ID 375657, 10 pages, 2013.

[27] S. Gharegozloo Hamedani, M. S. Jabalameli, and A. Bozorgi-
Amiri, “A multi-objective model for locating distribution cen-
ters in a supply chain network considering risk and inventory
decisions,” Management Science Letters, vol. 3, pp. 1077–1088,
2013.

[28] R. Abounacer, M. Rekik, and J. Renaud, “An exact solution
approach for multi-objective location-transportation problem
for disaster response,” Computers & Operations Research, vol.
41, pp. 83–93, 2014.

[29] V. Esmaeili and F. Barzinpour, “Integrated decision making
model for urbandisastermanagement: amulti-objective genetic
algorithm approach,” International Journal of Industrial Engi-
neering Computations, vol. 5, no. 1, pp. 55–70, 2014.

[30] H. J. Zimmermann, “Fuzzy programming and linear program-
ming with several objective functions,” Fuzzy Sets and Systems,
vol. 1, no. 1, pp. 45–55, 1978.

[31] D. E. Goldberg,Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Publishing Company, 1986.

[32] C. Cotta and V. Hemert, Studies in Computational Intelligence:
Recent Advances in Evolutionary Computation for Combinato-
rial Optimization, Springer, 2008.

[33] B. Naderi, M. Zandieh, and S.M. T. Fatemi Ghomi, “Scheduling
job shop problems with sequence-dependent setup times,”
International Journal of Production Research, vol. 47, no. 21, pp.
5959–5976, 2009.


