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We consider the skew circulant and skew left circulant matrices with any continuous Lucas numbers. Firstly, we discuss the
invertibility of the skew circulantmatrices and present the determinant and the inversematrices by constructing the transformation
matrices. Furthermore, the invertibility of the skew left circulant matrices is also discussed. We obtain the determinants and the
inverse matrices of the skew left circulant matrices by utilizing the relationship between skew left circulant matrices and skew
circulant matrix, respectively. Finally, the four kinds of norms and bounds for the spread of these matrices are given, respectively.

1. Introduction

Circulant and skew-circulant matrices are appearing increas-
ingly often in scientific and engineering applications. Briefly,
scanning the recent literature, one can see their utility
is appreciated in the design of digital filters [1–3], image
processing [4–6], communications [7], signal processing [8],
and encoding [9]. They have been put on firm basis with the
work of Davis [10] and Jiang and Zhou [11].

The skew circulant matrices as preconditioners for lin-
ear multistep formulae- (LMF-) based ordinary differential
equations (ODEs) codes. Hermitian and skew-Hermitian
Toeplitz systems are considered in [12–15]. Lyness and
Sørevik employed a skew circulant matrix to construct 𝑠-
dimensional lattice rules in [16]. Spectral decompositions of
skew circulant and skew left circulantmatriceswere discussed
in [17]. Compared with cyclic convolution algorithm, the
skew cyclic convolution algorithm [8] is able to perform
filtering procedure in approximate half of computational cost
for real signals. In [2] two new normal-form realizations are
presented which utilize circulant and skew circulant matrices
as their state transition matrices. The well-known second-
order coupled form is a special case of the skew circulant
form. Li et al. [18] gave the style spectral decomposition

of skew circulant matrix firstly and then dealt with the
optimal backward perturbation analysis for the linear system
with skew circulant coefficient matrix. In [3], a new fast
algorithm for optimal design of block digital filters (BDFs)
was proposed based on skew circulant matrix.

Besides, some scholars have given various algorithms for
the determinants and inverses of nonsingular circulantmatri-
ces [10, 11]. Unfortunately, the computational complexity of
these algorithms is very amazing with the order of matrix
increasing. However, some authors gave the explicit determi-
nants and inverse of circulant and skew circulant involving
some famous numbers. For example, Jaiswal evaluated some
determinants of circulant whose elements are the generalized
Fibonacci numbers [19]. Lind presented the determinants
of circulant and skew circulant involving the Fibonacci
numbers [20]. Dazheng [21] gave the determinant of the
Fibonacci-Lucas quasicyclic matrices. Shen et al. considered
circulant matrices with the Fibonacci and Lucas numbers
and presented their explicit determinants and inverses by
constructing the transformationmatrices [22]. Gao et al. [23]
gave explicit determinants and inverses of skew circulant and
skew left circulant matrices with the Fibonacci and Lucas
numbers. Jiang et al. [24, 25] considered the skew circulant
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and skew left circulant matrices with the 𝑘-Fibonacci num-
bers and the 𝑘-Lucas numbers and discussed the invertibility
of the thesematrices and presented their determinant and the
inverse matrix by constructing the transformation matrices,
respectively.

Recently, there are several papers on the norms of some
special matrices. Solak [26] established the lower and upper
bounds for the spectral norms of circulant matrices with
the classical Fibonacci and Lucas numbers entries. İpek [27]
investigated an improved estimation for spectral norms of
these matrices. Shen and Cen [28] gave upper and lower
bounds for the spectral norms of 𝑟-circulant matrices in the
forms of 𝐴 = 𝐶

𝑟
(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
), 𝐵 = 𝐶

𝑟
(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
),

and they also obtained some bounds for the spectral norms of
Kronecker and Hadamard products of matrix 𝐴 and matrix
𝐵. Akbulak and Bozkurt [29] found upper and lower bounds
for the spectral norms of Toeplitz matrices such that 𝑎

𝑖𝑗
≡

𝐹
𝑖−𝑗

and 𝑏
𝑖𝑗
≡ 𝐿
𝑖−𝑗
. The convergence in probability and in

distribution of the spectral norm of scaled Toeplitz, circulant,
reverse circulant, symmetric circulant, and a class of 𝑘-
circulant matrices is discussed in [30].

Beginning with Mirsky [31], several authors [32–38] have
obtained bounds for the spread of a matrix.

The purpose of this paper is to obtain the explicit deter-
minants, explicit inverses, norm, and spread of skew circulant
type matrices involving any continuous Lucas numbers. And
we generalize the result [23]. In passing, the norm and spread
of skew circulant type matrices have not been researched. It
is hoped that this paper will help in changing this. More work
continuing the present paper is forthcoming.

In the following, let 𝑟 be a nonnegative integer. We adopt
the following two conventions 00 = 1, and, for any sequence
{𝑎
𝑛
}, ∑𝑛
𝑘=𝑖

𝑎
𝑘
= 0 in the case 𝑖 > 𝑛.

The Lucas sequences are defined by the following recur-
rence relations [21–23, 27–29]:

𝐿
𝑛+1

= 𝐿
𝑛
+ 𝐿
𝑛−1
, where 𝐿

0
= 2, 𝐿

1
= 1, (1)

for 𝑛 ≥ 0. The first few values of the sequences are given by
the following table:

𝑛 0 1 2 3 4 5 6 7 8 9

𝐿
𝑛
2 1 3 4 7 11 18 29 47 76

. (2)

The {𝐿
𝑛
} is given by the formula

𝐿
𝑛
= 𝛼
𝑛

+ 𝛽
𝑛

, (3)

where 𝛼 and 𝛽 are the roots of the characteristic equation 𝑥2−
𝑥 − 1 = 0.

Definition 1 (see [17]). A skew circulant matrix over 𝐶 with
the first row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) is meant a square matrix of the

form

(

(

𝑎
1

𝑎
2

. . . 𝑎
𝑛−1

𝑎
𝑛

−𝑎
𝑛

𝑎
1

𝑎
2

. . . 𝑎
𝑛−1

... −𝑎
𝑛
𝑎
1

d
...

−𝑎
3

... d d 𝑎
2

−𝑎
2
−𝑎
3
. . . −𝑎

𝑛
𝑎
1

)

)𝑛×𝑛

, (4)

denoted by SCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Definition 2 (see [17]). A skew left circulant matrix over 𝐶
with the first row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) is meant a square matrix of

the form

(

(

𝑎
1

𝑎
2

𝑎
3

⋅ ⋅ ⋅ 𝑎
𝑛

𝑎
2

𝑎
3

⋅ ⋅ ⋅ 𝑎
𝑛

−𝑎
1

𝑎
3

c c c
...

... 𝑎
𝑛

−𝑎
1

⋅ ⋅ ⋅ −𝑎
𝑛−2

𝑎
𝑛
−𝑎
1

⋅ ⋅ ⋅ −𝑎
𝑛−2

−𝑎
𝑛−1

)

)𝑛×𝑛

, (5)

denoted by SLCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Lemma 3 (see [10, 17]). Let 𝐴 = SCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be skew

circulant matrix; then

(i) 𝐴 is invertible if and only if the eigenvalues of 𝐴

𝜆
𝑘
= 𝑓 (𝜔

𝑘

𝜂) ̸= 0, (𝑘 = 0, 1, 2, . . . , 𝑛 − 1) , (6)

where 𝑓(𝑥) = ∑
𝑛

𝑗=1
𝑎
𝑗
𝑥
𝑗−1, 𝜔 = exp(2𝜋𝑖/𝑛), and 𝜂 =

exp(𝜋𝑖/𝑛);
(ii) if𝐴 is invertible, then the inverse of𝐴 is a skew circulant

matrix.

Lemma 4 (see [17]). Let 𝐴 = SLCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be skew

left circulant matrix and let n be odd; then

𝜆
𝑗
= ±












𝑛

∑

𝑘=1

𝑎
𝑘
𝜔
(𝑗−(1/2))(𝑘−1)












, (𝑗 = 1, 2, . . . ,

𝑛 − 1

2

) ,

𝜆
(𝑛+1)/2

=

𝑛

∑

𝑘=1






𝑎
𝑘
(−1)
𝑘−1





,

(7)

where 𝜆
𝑗
, 𝑗 = 1, 2, . . . , (𝑛 − 1)/2, (𝑛 + 1)/2 are the eigenvalues

of 𝐴.

Lemma 5 (see [23]). With the orthogonal skew left circulant
matrix

Θ :=(

1 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 −1

0 0 ⋅ ⋅ ⋅ −1 0

...
... d

...
...

0 −1 ⋅ ⋅ ⋅ 0 0

)

𝑛×𝑛

, (8)

it holds that

SCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = Θ SLCirc (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) . (9)

Lemma 6 (see [23]). If

[SCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)]
−1

= SCirc (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) , (10)

then

[SLCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)]
−1

= SLCirc (𝑏
1
, −𝑏
𝑛
, . . . , −𝑏

2
) . (11)
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Lemma 7 (see [27, 28]). Let {𝐿
𝑛
} be the Lucas numbers; then

(𝑖)

𝑛−1

∑

𝑖=0

𝐿
𝑖
= 𝐿
𝑛+1

− 1, (12)

(𝑖𝑖)

𝑛−1

∑

𝑖=0

𝐿
2

𝑖
= 𝐿
𝑛
𝐿
𝑛−1

+ 2, (13)

(𝑖𝑖𝑖)

𝑛−1

∑

𝑖=0

𝑖𝐿
𝑖
= (𝑛 − 1) 𝐿

𝑛+1
− 𝐿
𝑛+2

+ 4. (14)

Definition 8 (see [29]). Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛matrix. The

maximum column sum matrix norm, the spectral norm, the
Euclidean (or Frobenius) norm, and the maximum row sum
matrix norm of matrix 𝐴 are, respectively,

‖𝐴‖
1
= max
1≤𝑗≤𝑛

𝑛

∑

𝑖=1






𝑎
𝑖𝑗






,

‖𝐴‖
2
= (max
1≤𝑖≤𝑛

𝜆
𝑖
(𝐴
∗

𝐴))

1/2

,

‖𝐴‖
𝐹
= (

𝑛

∑

𝑖,𝑗=1






𝑎
𝑖𝑗







2

)

1/2

,

‖𝐴‖
∞
= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






,

(15)

where 𝐴∗ denotes the conjugate transpose of 𝐴.

Lemma 9 (see [30]). If𝐴 is an 𝑛×𝑛 real symmetric or normal
matrix, then one has

‖𝐴‖
2
= max
1≤𝑖≤𝑛





𝜆
𝑖





, (16)

where 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the eigenvalues of 𝐴.

Definition 10 (see [31, 32]). Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛 matrix

with eigenvalues 𝜆
𝑖
, 𝑖 = 1, 2, . . . 𝑛. The spread of 𝐴 is defined

as

𝑠 (𝐴) = max
𝑖,𝑗






𝜆
𝑖
− 𝜆
𝑗






. (17)

Beginning with Mirsky [31], several authors [32–38] have
obtained bounds for the spread of a matrix.

Lemma 11. Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛matrix. An upper bound

for the spread due to Mirsky [31] states that

𝑠 (𝐴) ⩽ √2‖𝐴‖
2

𝐹
−

2

𝑛

|tr𝐴|2, (18)

where ‖𝐴‖
𝐹
denotes the Frobenius norm of 𝐴 and tr𝐴 is trace

of 𝐴.

Lemma 12 (see [38]). Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛matrix; then

(i) if 𝐴 is real and normal, then

𝑠 (𝐴) ≥

1

𝑛 − 1













∑

𝑖 ̸= 𝑗

𝑎
𝑖𝑗













, (19)

(ii) and if 𝐴 is Hermitian, then

𝑠 (𝐴) ≥ 2max
𝑖 ̸= 𝑗






𝑎
𝑖𝑗






. (20)

2. Determinant and Inverse of Skew Circulant
Matrix with the Lucas Numbers

In this section, let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew

circulant matrix. Firstly, we give a determinant explicit
formula for the matrix 𝐴

𝑟,𝑛
. Afterwards, we prove that 𝐴

𝑟,𝑛

is an invertible matrix for 𝑛 ≥ 2, and then we find the inverse
of the matrix 𝐴

𝑟,𝑛
.

In the following, let𝑥 = −((𝐿
𝑟
+𝐿
𝑟+𝑛
)/(𝐿
𝑟+1
+𝐿
𝑟+𝑛+1

)), 𝑡 =
𝐿
𝑟+2
/𝐿
𝑟+1

, 𝑐 = 𝐿
𝑟+1

+𝐿
𝑟+𝑛+1

, 𝑑 = 𝐿
𝑟
+𝐿
𝑟+𝑛

, 𝑙
𝑛
= 𝐿
𝑟+1

+𝑡𝐿
𝑟+𝑛

+

∑
𝑛−2

𝑘=1
(𝑡𝐿
𝑟+𝑘+1

−𝐿
𝑟+𝑘+2

)⋅𝑥
𝑛−(𝑘+1) and 𝑙

𝑛
= ∑
𝑛−1

𝑘=1
𝐿
𝑟+𝑘+1

⋅𝑥
𝑛−(𝑘+1).

Theorem 13. Let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew circu-

lant matrix; then

det𝐴
𝑟,𝑛
= 𝐿
𝑟+1

[𝐿
𝑟+1

+ 𝑡𝐿
𝑟+𝑛

+

𝑛−2

∑

𝑖=1

(𝑡𝐿
𝑟+𝑖+1

− 𝐿
𝑟+𝑖+2

) 𝑥
𝑛−(𝑖+1)

] ⋅ 𝑐
𝑛−2

,

(21)

where 𝐿
𝑟+𝑛

is the (𝑟+𝑛)th Lucas number. Specially, when 𝑟 = 0,
one gets the result of [23].

Proof. Obviously, det𝐴
𝑟,1
= 𝐿
𝑟+1

satisfies the equation. In the
case 𝑛 > 1, let

Σ =

(

(

(

(

(

(

(

1

𝑡 1

1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)

)

)

)

)

)

)

,

Ω
1
=
(

(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 𝑥
𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 𝑥
𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...
0 𝑥 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)

)

)

(22)

be two 𝑛 × 𝑛matrices; then we have

Σ𝐴
𝑟,𝑛
Ω
1
=
(

(

(

𝐿
𝑟+1

𝑙


𝑛
𝑐
13

⋅ ⋅ ⋅ 𝑐
1,𝑛−1

𝑐
1𝑛

0 𝑙
𝑛
𝑐
23

⋅ ⋅ ⋅ 𝑐
2,𝑛−1

𝑐
2𝑛

0 0 𝑐

0 0 𝑑 d
...

... d 𝑐

0 0 𝑑 𝑐

)

)

)

, (23)
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where

𝑐
1𝑗
= 𝐿
𝑟+𝑛+2−𝑗

, 𝑐
2𝑗
= 𝑡𝐿
𝑟+𝑛+2−𝑗

− 𝐿
𝑟+𝑛+3−𝑗

,

(𝑗 = 3, 4, . . . , 𝑛) .

(24)

So it holds that

detΣ det𝐴
𝑟,𝑛

detΩ
1

= 𝐿
𝑟+1

[𝐿
𝑟+1

+ 𝑡𝐿
𝑟+𝑛

+

𝑛−2

∑

𝑘=1

(𝑡𝐿
𝑟+𝑘+1

− 𝐿
𝑟+𝑘+2

) 𝑥
𝑛−(𝑖+1)

]

⋅ (𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

)
𝑛−2

.

(25)

While taking detΣ = detΩ
1
= (−1)

(𝑛−1)(𝑛−2)/2, we have

det𝐴
𝑟,𝑛

= 𝐿
𝑟+1

[𝐿
𝑟+1

+ 𝑡𝐿
𝑟+𝑛

+

𝑛−2

∑

𝑘=1

(𝑡𝐿
𝑟+𝑘+1

− 𝐿
𝑟+𝑘+2

) 𝑥
𝑛−(𝑖+1)

]

⋅ (𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

)
𝑛−2

.

(26)

This completes the proof.

Theorem 14. Let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew circu-

lant matrix; then 𝐴
𝑟,𝑛

is an invertible matrix. Specially, when
𝑟 = 0, one gets the result of [23].

Proof. Taking 𝑛 = 2 in,Theorem 13, we have det𝐴
𝑟,2
= 𝐿
2

𝑟+1
+

𝐿
2

𝑟+2
̸= 0. Hence 𝐴

𝑟,2
is invertible. In the case 𝑛 > 2, since

𝐿
𝑟+𝑛

= 𝛼
𝑟+𝑛

+ 𝛽
𝑟+𝑛, where 𝛼 + 𝛽 = 1, 𝛼𝛽 = −1, we have

𝑓 (𝜔
𝑘

𝜂) =

𝑛

∑

𝑗=1

𝐿
𝑟+𝑗
(𝜔
𝑘

𝜂)

𝑗−1

=

𝑛

∑

𝑗=1

(𝛼
𝑟+𝑗

+ 𝛽
𝑟+𝑗

) (𝜔
𝑘

𝜂)

𝑗−1

=

𝛼
𝑟+1

(1 + 𝛼
𝑛

)

1 − 𝛼𝜔
𝑘
𝜂

+

𝛽
𝑟+1

(1 + 𝛽
𝑛

)

1 − 𝛽𝜔
𝑘
𝜂

=

𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

+ (𝐿
𝑟
+ 𝐿
𝑟+𝑛
) 𝜔
𝑘

𝜂

1 − 𝜔
𝑘
𝜂 − 𝜔
2𝑘
𝜂
2

(𝑘 = 1, 2, . . . , 𝑛 − 1) ,

(27)

where 𝜔 = exp(2𝜋𝑖/𝑛), 𝜂 = exp(𝜋𝑖/𝑛). If there exists 𝜔𝑙𝜂 (𝑙 =
1, 2, . . . , 𝑛−1) such that𝑓(𝜔𝑙𝜂) = 0, we obtain 𝐿

𝑟+1
+𝐿
𝑟+𝑛+1

+

(𝐿
𝑟
+𝐿
𝑟+𝑛
)𝜔
𝑙

𝜂 = 0, for 1−𝜔𝑙𝜂−𝜔2𝑙𝜂2 ̸= 0, and hence it follows

that 𝜔𝑙𝜂 = −((𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

)/(𝐿
𝑟
+ 𝐿
𝑟+𝑛
)) is a real number.

Since

𝜔
𝑙

𝜂 = exp (2𝑙 + 1) 𝜋𝑖
𝑛

= cos (2𝑙 + 1) 𝜋
𝑛

+ 𝑖 sin (2𝑙 + 1) 𝜋
𝑛

,

(28)

it yields that sin((2𝑙 + 1)𝜋/𝑛) = 0, so we have 𝜔𝑙𝜂 = −1 for
0 < (2𝑙 + 1)𝜋/𝑛 < 2𝜋. Since 𝑥 = −1 is not the root of the
equation 𝐿

𝑟+1
+ 𝐿
𝑟+𝑛+1

+ (𝐿
𝑟
+ 𝐿
𝑟+𝑛
)𝑥 = 0 (𝑛 > 2). We obtain

𝑓(𝜔
𝑘

𝜂) ̸= 0, for any 𝜔𝑘𝜂 (𝑘 = 1, 2, . . . , 𝑛 − 1), while

𝑓 (𝜂) =

𝑛

∑

𝑗=1

𝐿
𝑗
𝜂
𝑗−1

=

𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

+ (𝐿
𝑟
+ 𝐿
𝑟+𝑛
) 𝜂

1 − 𝜂 − 𝜂
2

̸= 0.

(29)

It follows from Lemma 3 that the conclusion holds.

Lemma 15. Let the matrixH = [ℎ
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
be of the form

ℎ
𝑖𝑗
=

{
{

{
{

{

𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

= 𝑐, 𝑖 = 𝑗,

𝐿
𝑟
+ 𝐿
𝑟+𝑛

= 𝑑, 𝑖 = 𝑗 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(30)

Then the inverseH−1 = [ℎ
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrixH is equal to

ℎ


𝑖𝑗
=

{

{

{

(−𝑑)
𝑖−𝑗

𝑐
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(31)

Specially, when 𝑟 = 0, one gets the result of [23].

Proof. Let 𝑒
𝑖𝑗
= ∑
𝑛−2

𝑘=1
ℎ
𝑖𝑘
ℎ


𝑘𝑗
. Obviously, 𝑒

𝑖𝑗
= 0 for 𝑖 < 𝑗. In the

case 𝑖 = 𝑗, we obtain 𝑒
𝑖𝑖
= ℎ
𝑖𝑖
ℎ


𝑖𝑖
= (𝐿
𝑟+1

+ 𝐿
𝑟+𝑛+1

) ⋅ (1/(𝐿
𝑟+1

+

𝐿
𝑟+𝑛+1

)) = 1. For 𝑖 ≥ 𝑗 + 1, we obtain

𝑒
𝑖𝑗
=

𝑛−2

∑

𝑘=1

ℎ
𝑖𝑘
ℎ


𝑘𝑗
= ℎ
𝑖,𝑖−1

ℎ


𝑖−1,𝑗
+ ℎ
𝑖𝑖
ℎ


𝑖𝑗

= 𝑑 ⋅

(−𝑑)
𝑖−𝑗−1

𝑐
𝑖−𝑗

+ 𝑐 ⋅

(−𝑑)
𝑖−𝑗

𝑐
𝑖−𝑗+1

= 0.

(32)

Hence, we get HH−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verify that H−1H = 𝐼

𝑛−2
.

Thus, the proof is completed.

Theorem 16. Let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew circu-

lant matrix; then

(𝐴
𝑟,𝑛
)
−1

=

1

𝑙
𝑛

⋅ SCirc (𝑦
1
, 𝑦


2
, . . . , 𝑦



𝑛
) , (33)
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where

𝑦


1
= 1 − [(𝐿

𝑟+3
− 𝑡𝐿
𝑟+2
) ⋅

(−𝑑)
𝑛−3

𝑐
𝑛−2

+

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝑡𝐿
𝑟+𝑛+1−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

] ,

𝑦


2
= −𝑡 −

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+1−𝑖

− 𝑡𝐿
𝑟+𝑛−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦


3
= − (𝐿

𝑟+3
− 𝑡𝐿
𝑟+2
) ⋅

1

𝑐

,

𝑦


4
= −

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦


𝑘
= −

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑘−5+𝑖

𝑐
𝑘−4+𝑖

(𝑘 = 5, 6, . . . , 𝑛) .

(34)

Specially, when 𝑟 = 0, one gets the result of [23].

Proof. Let

Ω
2
=

(

(

(

(

(

1 −

𝑙


𝑛

𝐿
𝑟+1

𝜔
13

𝜔
14

⋅ ⋅ ⋅ 𝜔
1𝑛

0 1 𝜔
23

𝜔
24

⋅ ⋅ ⋅ 𝜔
2𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)

)

)

)

)

, (35)

where

𝜔
1𝑗
=

1

𝐿
𝑟+1

[

𝑙


𝑛

𝑙
𝑛

(𝑡𝐿
𝑟+𝑛+2−𝑗

− 𝐿
𝑟+𝑛+3−𝑗

) − 𝐿
𝑟+𝑛+2−𝑗

]

𝜔
2𝑗
=

1

𝑙
𝑛

⋅ (𝐿
𝑟+𝑛+3−𝑗

− 𝑡𝐿
𝑟+𝑛+2−𝑗

) (𝑗 = 3, 4, . . . , 𝑛) .

(36)

Then, we have

Σ𝐴
𝑟,𝑛
Ω
1
Ω
2
=
(

(

(

𝐿
𝑟+1

0 0 0 ⋅ ⋅ ⋅ 0

0 𝑙
𝑛
0 0 ⋅ ⋅ ⋅ 0

0 0 𝑐 0 ⋅ ⋅ ⋅ 0

0 0 𝑑 𝑐 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 𝑐

)

)

)

, (37)

so Σ𝐴
𝑟,𝑛
Ω
1
Ω
2
= D ⊕ H, where 𝐷 = diag(𝐿

𝑟+1
, 𝑙
𝑛
) is a

diagonal matrix andD ⊕H is the direct sum ofD andH. If
we denoteΩ = Ω

1
Ω
2
, then we obtain𝐴−1

𝑟,𝑛
= Ω(D−1⊕H−1)Σ.

Since the last row elements of the matrix Ω are
(0, 1, 𝜔

23
, 𝜔
24
, . . . , 𝜔

2,𝑛−1
, 𝜔
2𝑛
), then the last row elements of

thematrixΩ(D−1⊕H−1) are (0, 1/𝑙
𝑛
, 𝑇
23
, 𝑇
24
, . . . , 𝑇

2𝑛
), where

𝑇
23
=

𝑛−2

∑

𝑖=1

𝜔
2,2+𝑖

⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑇
2𝑘
=

𝑛+1−𝑘

∑

𝑖=1

𝜔
2,𝑘−1+𝑖

⋅

(−𝑑)
𝑖−1

𝑐
𝑖

(𝑘 = 3, 4, . . . , 𝑛) .

(38)

Hence, it follows from Lemma 15 that letting 𝐴
−1

𝑟,𝑛
=

SCirc(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), then its last row elements are (−𝑦

2
,

−𝑦
3
, . . . , −𝑦

𝑛
, 𝑦
1
) which are given by the following equations:

− 𝑦
2
=

𝑡

𝑙
𝑛

+ 𝑇
23

=

𝑡

𝑙
𝑛

+

1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+1−𝑖

− 𝑡𝐿
𝑟+𝑛−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

− 𝑦
3
= 𝑇
2,𝑛

=

1

𝑙
𝑛

(𝐿
𝑟+3

− 𝑡𝐿
𝑟+2
) ⋅

1

𝑐

,

− 𝑦
4
= 𝑇
2,𝑛−1

− 𝑇
2𝑛

=

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

− 𝑦
5
= 𝑇
2,𝑛−2

− 𝑇
2𝑛−1

− 𝑇
2𝑛

=

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖

𝑐
𝑖+1

,

− 𝑦
𝑘
= 𝑇
2,𝑛−𝑘+3

− 𝑇
2,𝑛−𝑘+4

− 𝑇
2,𝑛−𝑘+5

=

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑘−5+𝑖

𝑐
𝑘−4+𝑖

,

...

− 𝑦
𝑛
= 𝑇
23
− 𝑇
24
− 𝑇
25

=

𝑛−2

∑

𝑖=1

𝜔
2,2+𝑖

⋅

(−𝑑)
𝑖−1

𝑐
𝑖

−

𝑛−3

∑

𝑖=1

𝜔
2,3+𝑖

⋅

(−𝑑)
𝑖−1

𝑐
𝑖

−

𝑛−4

∑

𝑖=1

𝜔
2,4+𝑖

⋅

(−𝑑)
𝑖−1

𝑐
𝑖

=

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑛−5+𝑖

𝑐
𝑛−4+𝑖

,
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𝑦
1
=

1

𝑙
𝑛

− 𝑇
23
− 𝑇
24

=

1

𝑙
𝑛

−

1

𝑙
𝑛

[(𝐿
𝑟+3

− 𝑡𝐿
𝑟+2
) ⋅

(−𝑑)
𝑛−3

𝑐
𝑛−2

+

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝑡𝐿
𝑟+𝑛+1−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

] .

(39)

Hence, we obtain

𝑦
1
=

1

𝑙
𝑛

−

1

𝑙
𝑛

[ (𝐿
𝑟+3

− 𝑡𝐿
𝑟+2
) ⋅

(−𝑑)
𝑛−3

𝑐
𝑛−2

+

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝑡𝐿
𝑟+𝑛+1−𝑖

)

(−𝑑)
𝑖−1

𝑐
𝑖

] ,

𝑦
2
= −

𝑡

𝑙
𝑛

−

1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+1−𝑖

− 𝑡𝐿
𝑟+𝑛−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦
3
= −

1

𝑙
𝑛

(𝐿
𝑟+3

− 𝑡𝐿
𝑟+2
) ⋅

1

𝑐

,

𝑦
4
= −

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦
5
= −

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖

𝑐
𝑖+1

,

𝑦
𝑘
= −

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑘−5+𝑖

𝑐
𝑘−4+𝑖

,

...

𝑦
𝑛
=

1

𝑙
𝑛

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑛−5+𝑖

𝑐
𝑛−4+𝑖

,

𝐴
−1

𝑟,𝑛
=

1

𝑙
𝑛

⋅ SCirc (𝑦
1
, 𝑦


2
, . . . , 𝑦



𝑛
) ,

(40)

where

𝑦


1
= 1 − [(𝐿

𝑟+3
− 𝑡𝐿
𝑟+2
) ⋅

(−𝑑)
𝑛−3

𝑐
𝑛−2

+

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝑡𝐿
𝑟+𝑛+1−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

] ,

𝑦


2
= −𝑡 −

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+1−𝑖

− 𝑡𝐿
𝑟+𝑛−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦


3
= − (𝐿

𝑟+3
− 𝑡𝐿
𝑟+2
) ⋅

1

𝑐

,

𝑦


4
= −

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

,

𝑦


𝑘
= −

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑘−5+𝑖

𝑐
𝑘−4+𝑖

, (𝑘 = 5, 6, . . . , 𝑛) .

(41)

This completes the proof.

3. Norm and Spread of Skew Circulant Matrix
with the Lucas Numbers

Theorem 17. Let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew

circulant matrix; then three kinds of norms of 𝐴
𝑟,𝑛

are given
by





𝐴
𝑟,𝑛




1
=




𝐴
𝑟,𝑛




∞

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
, (42)





𝐴
𝑟,𝑛




𝐹
= √𝑛 (𝐿

𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟
𝐿
𝑟+1
). (43)

Proof. By Definition 8 and (12), we have





𝐴
𝑟,𝑛




1
=




𝐴
𝑟,𝑛




∞

=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
. (44)

By Definition 8 and (13), we have

(




𝐴
𝑟,𝑛




𝐹
)

2

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1






𝑎
𝑖𝑗







2

= 𝑛

𝑛

∑

𝑖=1

𝐿
2

𝑟+𝑖

= 𝑛(

𝑟+𝑛

∑

𝑖=0

𝐿
2

𝑖
−

𝑟

∑

𝑖=0

𝐿
2

𝑖
)

= 𝑛 (𝐿
𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟
𝐿
𝑟+1
) .

(45)

Thus





𝐴
𝑟,𝑛




𝐹
= √𝑛 (𝐿

𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟
𝐿
𝑟+1
). (46)

Theorem 18. Let

𝐴


𝑟,𝑛
= SCirc (𝐿

𝑟+1
, −𝐿
𝑟+2
, . . . , −𝐿

𝑟+𝑛−1
, 𝐿
𝑟+𝑛
) (47)

be an odd-order alternative skew circulant matrix and let 𝑛 be
odd. Then






𝐴


𝑟,𝑛





2
=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
. (48)

Proof. By Lemma 3, we have

𝜆
𝑗
(𝐴


𝑟,𝑛
) =

𝑛

∑

𝑖=1

(−1)
𝑖−1

𝐿
𝑟+𝑖
(𝜔
𝑗

𝜂)

𝑖−1

. (49)
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So






𝜆
𝑗
(𝐴


𝑟,𝑛
)






≤

𝑛

∑

𝑖=1






(−1)
𝑖−1

𝐿
𝑟+𝑖






⋅








(𝜔
𝑗

𝜂)

𝑖−1





=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖
,

(50)

for all 𝑗 = 0, 1, . . . , 𝑛 − 1.
Since 𝑛 is odd, ∑𝑛

𝑖=1
𝐿
𝑟+𝑖

is an eigenvalue of 𝐴
𝑟,𝑛
; that is,

(

(

𝐿
𝑟+1

−𝐿
𝑟+2

... 𝐿
𝑟+𝑛

−𝐿
𝑟+𝑛

𝐿
𝑟+1

−𝐿
𝑟+𝑛−1

𝐿
𝑟+𝑛−1

−𝐿
𝑟+𝑛

𝐿
𝑟+𝑛−2

...
...

...
...

𝐿
𝑟+2

−𝐿
𝑟+3

𝐿
𝑟+1

)

)

(

(

(

1

−1

1

−1

...
1

)

)

)

=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖

⋅
(

(

(

1

−1

1

−1

...
1

)

)

)

.

(51)

To sum up, we have

max
0≤𝑗≤𝑛−1






𝜆
𝑗
(𝐴


𝑟,𝑛
)






=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖
. (52)

Since all skew circulant matrices are normal, by Lemma 9
and (12), and (52), we have






𝐴


𝑟,𝑛





2
=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
, (53)

which completes the proof.

Theorem 19. Let 𝐴
𝑟,𝑛

= SCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew circu-

lant matrix; then the bounds for the spread of 𝐴
𝑟,𝑛

are

𝑠 (𝐴
𝑟,𝑛
) ⩽ √2𝑛 (𝐿

𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟+1
𝐿
𝑟+2
),

𝑠 (𝐴
𝑟,𝑛
) ≥

1

𝑛 − 1





2𝐿
𝑟+𝑛+3

− (𝑛 − 2) 𝐿
𝑟+𝑛+2

− 𝑛𝐿
𝑟+3

− 2𝐿
𝑟+4





.

(54)

Proof. The trace of 𝐴
𝑟,𝑛
, tr𝐴
𝑟,𝑛
= 𝑛𝐿
𝑟+1

. By (18) and (43), we
have

𝑠 (𝐴
𝑟,𝑛
) ⩽ √2𝑛 (𝐿

𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟+1
𝐿
𝑟+2
). (55)

Since

∑

𝑖 ̸= 𝑗

𝑎
𝑖𝑗
=

𝑛

∑

𝑘=2

(𝑛 − (𝑘 − 1)) 𝐿
𝑟+𝑘

−

𝑛

∑

𝑘=2

(𝑘 − 1) 𝐿
𝑟+𝑘

= (𝑛 + 2)

𝑛

∑

𝑘=2

𝐿
𝑟+𝑘

− 2

𝑛

∑

𝑘=2

𝑘𝐿
𝑟+𝑘

= (𝑛 + 2) (𝐿
𝑟+𝑛+2

− 𝐿
𝑟+3
)

− 2 [

𝑛

∑

𝑘=2

(𝑟 + 𝑘) 𝐿
𝑟+𝑘

−

𝑛

∑

𝑘=2

𝑟𝐿
𝑟+𝑘
] ,

(56)

by (12) and (14),

∑

𝑖 ̸= 𝑗

𝑎
𝑖𝑗
= 2𝐿
𝑟+𝑛+3

− (𝑛 − 2) 𝐿
𝑟+𝑛+2

− 𝑛𝐿
𝑟+3

− 2𝐿
𝑟+4
. (57)

By (19), we have

𝑠 (𝐴
𝑟,𝑛
) ≥

1

𝑛 − 1





2𝐿
𝑟+𝑛+3

− (𝑛 − 2) 𝐿
𝑟+𝑛+2

−𝑛𝐿
𝑟+3

− 2𝐿
𝑟+4





.

(58)

4. Determinant and Inverse of Skew Left
Circulant Matrix with the Lucas Numbers

In this section, let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew

left circulant matrix. By using the obtained conclusions in
Section 2, we give a determinant explicit formula for the
matrix 𝐴

𝑟,𝑛
. Afterwards, we prove that 𝐴

𝑟,𝑛
is an invertible

matrix for any positive interger 𝑛. The inverse of the matrix
𝐴


𝑟,𝑛
is also presented.
According to Lemmas 5 and 6 and Theorems 13, 14, and

16, we can obtain the following theorems.

Theorem 20. Let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew left

circulant matrix; then

det𝐴
𝑟,𝑛
= (−1)

𝑛(𝑛−1)/2

𝐿
𝑟+1

× [𝐿
𝑟+1

+ 𝑡𝐿
𝑟+𝑛

+

𝑛−2

∑

𝑘=1

(𝑡𝐿
𝑟+1+𝑖

− 𝐿
𝑟+2+𝑖

) 𝑥
𝑛−1−𝑖

]

⋅ 𝑐
𝑛−2

,

(59)

where 𝐿
𝑟+𝑛

is the (𝑟 + 𝑛)th Lucas number.

Theorem 21. Let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew left

circulant matrix; then 𝐴
𝑟,𝑛

is an invertible matrix.

Theorem 22. Let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew left

circulant matrix; then

(𝐴


𝑟,𝑛
)

−1

=

1

𝑙
𝑛

SLCirc (𝑦
1
, 𝑦


2
, . . . , 𝑦



𝑛
) , (60)

where

𝑦


1
= 1 − [(𝐿

𝑟+3
− 𝑡𝐿
𝑟+2
)

(−𝑑)
𝑛−3

𝑐
𝑛−2

+

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝑡𝐿
𝑟+𝑛+1−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

] ,
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𝑦


𝑘
= −𝑦


𝑛−𝑘+2

=

2

∑

𝑖=1

(𝐿
𝑟+1+𝑖

− 𝑡𝐿
𝑟+𝑖
) ⋅

(−𝑑)
𝑛−𝑘−3+𝑖

𝑐
𝑛−𝑘−2+𝑖

,

(𝑘 = 2, 3, . . . , 𝑛 − 2) .

𝑦


𝑛−1
= −𝑦


3
= (𝐿
𝑟+3

− 𝑡𝐿
𝑟+2
) ⋅

1

𝑐

,

𝑦


𝑛
= −𝑦


2

= 𝑡 +

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+1−𝑖

− 𝑡𝐿
𝑟+𝑛−𝑖

) ⋅

(−𝑑)
𝑖−1

𝑐
𝑖

.

(61)

5. Norm and Spread of Skew Left Circulant
Matrix with the Lucas Numbers

Theorem 23. Let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew left

circulant matrix. Then three kinds of norms of 𝐴
𝑟,𝑛

are given
by






𝐴


𝑟,𝑛





1
=




𝐴
𝑟,𝑛




∞

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
,






𝐴


𝑟,𝑛





𝐹
= √𝑛 (𝐿

𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟
𝐿
𝑟+1
).

(62)

Proof. Using themethod inTheorem 17 similarly, the conclu-
sion is obtained.

Theorem 24. Let

𝐴


𝑟,𝑛
= SLCirc (𝐿

𝑟+1
, −𝐿
𝑟+2
, . . . , −𝐿

𝑟+𝑛−1
, 𝐿
𝑟+𝑛
) (63)

be an odd-order alternative skew left circulant matrix; then






𝐴


𝑟,𝑛





2
=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖

= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
. (64)

Proof. According to Lemma 4,

𝜆
𝑗
(𝐴


𝑟,𝑛
) = ±












𝑛

∑

𝑖=1

(−1)
𝑖−1

𝐿
𝑟+𝑖
𝜔
(𝑗−(1/2))(𝑘−1)












, (65)

for 𝑗 = 1, 2, . . . , (𝑛 − 1)/2, and

𝜆
(𝑛+1)/2

(𝐴


𝑟,𝑛
) =

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖
. (66)

So






𝜆
𝑗
(𝐴


𝑟,𝑛
)






≤

𝑛

∑

𝑖=1






(−1)
𝑖−1

𝐿
𝑟+𝑖
(−1)
𝑖−1






=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖
, (𝑗 = 1, 2, . . . ,

𝑛 + 1

2

) .

(67)

By (66) and (67), we have

max
0≤𝑖≤(𝑛+1)/2






𝜆
𝑖
(𝐴


𝑟,𝑛
)






=

𝑛

∑

𝑖=1

𝐿
𝑟+𝑖
. (68)

Since all skew left circulant matrices are symmetrical, by
Lemma 9 and (12) and (68), we obtain






𝐴


𝑟,𝑛





2
= 𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2
. (69)

Theorem 25. Let 𝐴
𝑟,𝑛

= SLCirc(𝐿
𝑟+1
, . . . , 𝐿

𝑟+𝑛
) be skew left

circulant matrix; the bounds for the spread of 𝐴
𝑟,𝑛

are

2𝐿
𝑟+𝑛

≤ 𝑠 (𝐴


𝑟,𝑛
) ≤

{

{

{

√𝑀 −

2

𝑛

𝑁
2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

√𝑀, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,
(70)

where

𝑀 = 2𝑛 (𝐿
𝑟+𝑛
𝐿
𝑟+𝑛+1

− 𝐿
𝑟+1
𝐿
𝑟
) ,

𝑁 = 𝐿
𝑟+𝑛−1

+ 𝐿
𝑟−1
.

(71)

Proof. Since 𝐴
𝑟,𝑛

is a symmetric matrix, by (20),

𝑠 (𝐴


𝑟,𝑛
) ≥ 2max

𝑖 ̸= 𝑗






𝑎
𝑖𝑗






= 2𝐿
𝑟+𝑛
. (72)

The trace of 𝐴
𝑟,𝑛

is, if 𝑛 is odd,

tr (𝐴
𝑟,𝑛
)

= 𝐿
𝑟+1

− 𝐿
𝑟+2

+ 𝐿
𝑟+3

− ⋅ ⋅ ⋅ + 𝐿
𝑟+𝑛

= 𝐿
𝑟+1

+ 𝐿
𝑟+1

+ 𝐿
𝑟+3

+ ⋅ ⋅ ⋅ + 𝐿
𝑟+𝑛−2

= 2𝐿
𝑟+1

+ 𝐿
𝑟+1

+ 𝐿
𝑟+2

+ ⋅ ⋅ ⋅ + 𝐿
𝑟+𝑛−3

= 2𝐿
𝑟+1

+

𝑛−3

∑

𝑖=1

𝐿
𝑟+𝑖
.

(73)

By (12), we have

tr (𝐴
𝑟,𝑛
) = 𝐿
𝑟+𝑛−1

+ 𝐿
𝑟−1

= 𝑁. (74)

Let𝑀 = 2𝑛(𝐿
𝑟+𝑛
𝐿
𝑟+𝑛+1

−𝐿
𝑟+1
𝐿
𝑟
); then, by (18), (62), and (74),

we obtain

𝑠 (𝐴


𝑟,𝑛
) ⩽ √𝑀 −

2

𝑛

𝑁
2
. (75)

If 𝑛 is even, then

tr (𝐴
𝑟,𝑛
) = 𝐿
𝑟+1

− 𝐿
𝑟+1

+ 𝐿
𝑟+3

− 𝐿
𝑟+3

⋅ ⋅ ⋅ − 𝐿
𝑟+𝑛−1

= 0.

(76)

By (18), (62), and (76), we have

𝑠 (𝐴


𝑟,𝑛
) ⩽ √𝑀. (77)

So the result follows.
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6. Conclusion

We discuss the invertibility of the skew circulant type
matrices with any continuous Lucas numbers and present
the determinant and the inverse matrices by constructing
the transformation matrices. The four kinds of norms and
bounds for the spread of these matrices are given, respec-
tively. In [3], a new fast algorithm for optimal design of block
digital filters (BDFs) is proposed based on skew circulant
matrix. The reason why we focus our attention on skew
circulant is to explore the application of skew circulant in the
related field in medicine image, image encryption, and real-
time tracking. On the basis of existing application situation
[4], we conjecture that SVD decomposition of skew circulant
matrix will play an important role in CT-perfusion imaging
of human brain. On the basis method of [8] and ideas of
[5], we will exploit real-time tracking with kernel matrix of
skew circulant structure. A novel chaotic image encryption
scheme based on the time-delay Lorenz system is presented
in [6] with the description of circulantmatrix.Wewill exploit
chaotic image encryption algorithm based on skew circulant
operation.
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