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To investigate the variability of HFMD in each county of Wenzhou, a spatial-temporal ARMA model is presented, and a general
Bayesian framework is given for parameter estimation. The proposed model has two advantages: (i) allowing time series to be
correlated, thus it can describe the series both spatially and temporally; (ii) implementing forecast easily. Based on the HFMD data
in Wenzhou, we find that HFMD had positive spatial autocorrelation and the incidence seasonal peak was between May and July.
In the county-level analysis, we find that after first-order difference the spatial-temporal ARMA (0, 0) × (1, 0)

12
model provides an

adequate fit to the data.

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common
infectious disease which usually affects children, particularly
those less than 5 years old and younger. It is characterized
by a distinct clinical presentation of fever or vesicular
exanthema on their hands, feet, mouths, or buttocks [1–5].
The transmission of HFMD occurs from person to person
through direct contact with saliva, faeces, vesicular fluid, or
respiratory droplets of an infected person and indirectly by
contaminated articles [1]. After a susceptible individual is
infected he firstly enters the incubation period of HFMD,
which is about 3 to 7 days. After the incubation period,
the infected will show some clinical symptoms, such as
having a fever, poor appetite, malaise, and sore throat,
and few people may develop dehydration, febrile seizures,
encephalitis, meningitis, cardiomyopathy, and so forth. And
the infected people will fully recover after 7 to 10 days [1].
At present, there are still no available effective vaccines or
drugs against HFMD human use, but such vaccines are
being developed [6]. In 2012, for instance, an epidemic in
mainland China involved 2,168,737 cases and 567 deaths [2].
Particularly, in 2012, there were 147,941 HFMD cases and 17
deaths in Zhejiang province, and it ranks the first in the ”Ten

legal infectious disease” [7]. HFMD has become an emerging
public health concern in the affected countries and a focus of
increasing amounts of research [4]. Therefore, it is important
to usemathematical models to improve our understanding of
infectious disease dynamics of HFMD and to help us develop
preventive measures to control infection spread qualitatively
and quantitatively.

There are several types of analytical models that are
valuable to understand and predict the transmission of
HFMD. One is compartmental differential equation model
[8–15], which is important to understand the spread dynam-
ics of HFMD among the susceptible populations and to
enable policy makers to take effective measures to curb the
disease spread and reduce the adverse impact of the disease
[9, 10]. The other is statistical models which can help us
find novel information concerning pathogen detection and
some probable coinfection factors in HFMD and have been
applied to understand HFMD’s spatiotemporal transmission
and discover the relationship between HFMD occurrence
and climate [3, 16–29]. Of them, Hu et al. [4] explored the
spatial association of HFMD incidence with several potential
determinants and found that child population density and
climate factors are potential determinants of the HFMD
incidence in most areas in China. Liu et al. [5] conducted
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a spatial and space-time scan statistics analysis in Shandong
province to explore the distribution characteristics and detect
spatial and spatial-temporal clusters (hotspots) of HFMD
cases and found that the incidence seasonal peakwas between
April and July. Deng et al. [28] analyzed the epidemic
characteristic ofHFMD inGuangdong province and detected
spatial-temporal clusters and found that climate factors and
demographic changes might be contributors affecting the
epidemic situation of HFMD. All these studies increase
our understanding of the distribution and severity of the
disease. However, potential factors influencing the incidence
of HFMD remain little understood.

Wenzhou is a prefecture-level city in southeastern Zhe-
jiang province in China. At the time of the 2010 Chinese
census, 9,122,100 people lived in Wenzhou [30]. It includes
3 municipal districts (Lucheng, Longwan, and Ouhai) and
8 counties (Cangnan, Dongtou, Pingyang, Ruian, Taishun,
Wencheng, Yongjia, and Yueqing) with a total land area
of 11,784 square kilometers (Figure 1). Since Wenzhou has
a humid subtropical climate zone with an annual average
18.08
∘C (64.5∘F), it is of particular public health significance

to update molecular epidemiology of HFMD in Wenzhou. It
is reported that, in 2012, there were 41,438 HFMD cases and
17 deaths in Wenzhou [7].

In [15], the authors established an SEIQRS epidemic
model with periodic transmission rate to investigate the
spread of seasonal HFMD in Wenzhou and found that the
HFMD becomes an endemic disease in Wenzhou and for
controlling the HFMD spread, it is beneficial to increase the
quarantined rate or decrease the treatment cycle. However,
spatial effect has not been considered in [15]. And in [4, 5, 28],
the authors utilized spatial models to determine the risk
factors of the incidence of HFMD and found that monthly
average temperature, relative humidity, and total sunshine
were important factors to affect the incidence of HFMD.
However, their models have low power of prediction because
future incidence rate is dependent on future risk factors.

The goal of this paper is to explore a model that could
describe spatial-temporal effects and that has the ability to
forecast. Unlike [4, 5, 28], we do not take the risk factors into
account. Based on the monthly observed data of HFMD in
each county of Wenzhou [7], we present a spatial-temporal
autoregressive moving average (ARMA) model and give a
general Bayesian framework for parameter estimation.

The paper is organized as follows. In Section 2, we give a
method to preprocess the original data and propose a spatial-
temporal ARMA model. In Section 3, the HFMD data from
the Wenzhou Center for Disease Control and Prevention is
analyzed based on descriptive statistics and spatial-temporal
ARMAmodel. Finally, we give a brief discussion.

2. Model Derivation

2.1. Data Collection and Preprocessing. Data of HFMD in
Wenzhou during 2010 to 2012 were collected by Wen-
zhou Center for Disease Control and Prevention, including
the basic demographic characteristics of HFMD cases, the
pathogen type (EV71, CoxA16, and other EV) of someHFMD

cases, and incident child cases in each county per month.
According to the records obtained, all the cases were children
aged between 0 years and 14 years, with county-specific case
numbers varying from 0 to 1852 incident child cases.

The HFMD dataset lists the number of incident cases
in each county per month. It reflects the occurrence of the
disease in different regions. However, it cannot reflect the risk
of infecting the disease because of the different population
sizes among counties or municipal districts. To reduce the
influence of population size, cumulative incidence (CI) is
utilized to reflect the risks of infecting HFMD in each county.
It measures the disease frequency during a period of time
[31]. We denote 𝑃

𝑡𝑗
, 𝑌
𝑡𝑗
, and 𝑁

𝑡𝑗
as the CI of HFMD, the

number of cases, and the child population size at the time
𝑡 in the 𝑗th county, respectively. Then 𝑃

𝑡𝑗
= 𝑌
𝑡𝑗
/𝑁
𝑡𝑗
. In our

case, 𝑡 = 1, 2, . . . , 36, 𝑗 = 1, 2, . . . , 11. However, 𝑃
𝑡𝑗
cannot be

used to compare the disease risk between different counties
directly because of random effects. Some counties reported
0 HFMD cases in some months; however, it could not say
that there is no risk of HFMD in these counties. In fact, they
hadHFMDcases in othermonths.Thus, we use a hierarchical
Bayesmodel to adjust CI [32].The spirit of the idea to improve
accuracy in themodel is smoothing strength among counties.
The model is as follow:

𝑃
𝑡𝑗
= 𝛼
𝑡
+ 𝜇
𝑡𝑗
+ ]
𝑡𝑗
, 𝑡 = 1, 2, . . . , 36, 𝑗 = 1, 2, . . . , 11, (1)

where 𝛼
𝑡
is the overall level of the disease risk at time 𝑡, ]

𝑡𝑗
is

the uncorrelated heterogeneity following normal distribution
with mean 0 and variance 𝜎2] , and 𝜇𝑡𝑗 is the component to
describe spatial correlation, which is defined by the intrinsic
Gaussian autoregression distribution [33, 34]. That is,

]
𝑡𝑗
| 𝜎
2

] ∼ 𝑁(0, 𝜎
2

]) ,

𝜇
𝑡𝑗
| 𝜇
𝑡𝑖
, 𝑖 ̸= 𝑗, 𝜎

2

𝜇
∼ 𝑁(

∑
𝑖
𝜇
𝑡𝑖
𝑤
𝑖𝑗

∑
𝑖
𝑤
𝑖𝑗

,
𝜎2
𝜇

∑
𝑖
𝑤
𝑖𝑗

) ,

(2)

where𝑊 = (𝑤
𝑖𝑗
) is the spatial adjacent matrix defining the

connectivity between counties. 𝑤
𝑖𝑗
= 1 if the 𝑖th county and

the 𝑗th county are adjacent; otherwise 𝑤
𝑖𝑗
= 0. To perform

Bayesian analysis, we assign gamma distributions with a large
variance as the priors for the parameters 𝜎2] and 𝜎

2

𝜇
, and the

trick ismostly used in Bayesian spatial analysis [34].Thus, the
priors for 𝜎2] and 𝜎

2

𝜇
are given by

1

𝜎2]
∼ Gamma (0.01, 0.01) ,

1

𝜎2
𝜇

∼ Gamma (0.1, 0.0001) .
(3)

The estimation of the parameters can be obtained byMCMC,
and we use �̂�

𝑡𝑗
= �̂�
𝑡
+ 𝜇
𝑡𝑗
as the adjusted CI, where �̂�

𝑡
and 𝜇

𝑡𝑗

are the posterior mean of the parameters 𝛼
𝑡
and 𝜇
𝑡𝑗
. Since 0 <

�̂�
𝑡𝑗
< 1, modeling such data is unstable and the fitted values

may exceed the interval (0,1). We make the transformation
𝑆
𝑡𝑗
= log(�̂�

𝑡𝑗
/(1 − �̂�

𝑡𝑗
)); then −∞ < 𝑆

𝑡𝑗
< ∞. The data 𝑆

𝑡𝑗
will

be utilized to model the risk of HFMD in Wenzhou.
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Figure 1: The location of Wenzhou in China.

2.2. Spatial-Temporal ARMA Model. Let 𝑓
𝑡𝑗

= 𝑓(𝑆
𝑡𝑗
),

where 𝑓(⋅) is an known function, and we assume {𝑓
𝑡𝑗
, 𝑡 =

1, 2, . . . , 36} is a stationary time series. For fixed 𝑗, we
assume {𝑓

𝑡𝑗
, 𝑡 = 1, 2, . . . , 36} follows a multiplicative seasonal

ARMA(𝑝, 𝑞)×(𝑃, 𝑄)
𝑠
modelwith seasonal period 𝑠 as amodel

with autoregressive characteristic polynomial 𝜙
𝑗
(𝑥)Φ
𝑗
(𝑥)

and moving average characteristic polynomial 𝜃
𝑗
(𝑥)Θ
𝑗
(𝑥),

where
𝜙
𝑗
(𝑥) = 1 − 𝜙
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2
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𝑝
,

Φ
𝑗
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𝑥
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,
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2
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,

Θ
𝑗
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1𝑗
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− Θ
2𝑗
𝑥
2𝑠
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𝑄𝑗
𝑥
𝑄𝑠
.

(4)

For better expressing the model, the backshift operator,
denoted 𝐵, is needed. 𝐵 operates on the time index of a series
and shifts time back one time unit to form a new series. In
particular, 𝐵𝑓

𝑡𝑗
= 𝑓
(𝑡−1)𝑗

. Thus, the model can be formulated
as
𝜙
𝑗
(𝐵)Φ
𝑗
(𝐵) 𝑓
𝑡𝑗
= 𝜃
𝑗
(𝐵)Θ
𝑗
(𝐵) 𝑒
𝑡𝑗
, 𝑗 = 1, 2, . . . , 11, (5)

where {𝑒
𝑡𝑗
, 𝑡 = 1, 2, . . . , 36} is a white noise process with

variance 𝜎2
𝑗
. However, model (5) does not introduce spatial

correlation among different regions. Thus, we modify the
model as follows:
𝜙
𝑗
(𝐵)Φ
𝑗
(𝐵) 𝑓
𝑡𝑗
= 𝜃
𝑗
(𝐵)Θ
𝑗
(𝐵) 𝑒
𝑡𝑗
+ 𝜇
𝑡𝑗
, 𝑗 = 1, 2, . . . , 11,

(6)

where 𝜇
𝑡𝑗

is defined in (2). Model (6) is much different
from [35, 36]. We introduce 𝜇

𝑡𝑗
to describe spatial variability

rather than correlated 𝑒
𝑡𝑗
. The advantage of this is that we

can estimate the parameters in the model easily. Let 𝜙
.𝑗
=

(𝜙
1𝑗
, . . . , 𝜙

𝑝𝑗
, Φ
1𝑗
, . . . , Φ

𝑃𝑗
), 𝜃
.𝑗
= (𝜃
1𝑗
, . . . , 𝜃

𝑝𝑗
, Θ
1𝑗
, . . . , Θ

𝑃𝑗
),

𝜙 = (𝜙
.1
, . . . ,𝜙

.11
), 𝜃 = (𝜃

.1
, . . . , 𝜃

.11
), and 𝜎2 = (𝜎2

1
, . . . , 𝜎2

11
).

Then the parameters in the model (6) are 𝜔 = (𝜙, 𝜃,𝜎2).
Denote f

𝑗
= (𝑓
1𝑗
, . . . , 𝑓

36𝑗
), 𝜇
1
= (𝜇
11
, 𝜇
12
, . . . , 𝜇

111
), f =

(f
1
, . . . , f

11
), and 𝜇 = (𝜇

1
,𝜇
2
, . . . ,𝜇

36
). We denote that the

likelihood function of f given 𝜔 and 𝜇 is 𝐿(f | 𝜔,𝜇).
𝐿(f | 𝜔,𝜇) can be obtained by several methods. One of the
most used methods is Kalman filter. The overall strategy for
computing the likelihood for a given set of parameter values
is to use the Kalman filter equations to generate recursively
the prediction errors and their variances and then use the
prediction error decomposition of the likelihood function
[37].

Prior distribution of 𝜔 can be elicited from the experts’
opinions or historical data. When the historical data is
available, power prior is a good choice, which has emerged
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as a useful class of informative priors for historical data [38].
Assume that the joint prior distribution of 𝜔 is

𝜋 (𝜔) ∝ 𝜋
𝜙
(𝜙) 𝜋
𝜃
(𝜃) 𝜋
𝜎
(𝜎
2
) . (7)

𝜇
𝑡
is following the intrinsic Gaussian autoregression distribu-

tion. Then the density function of 𝜇
𝑡
is defined as

𝑝 (𝜇
𝑡
| 𝜎
2

𝜇
) ∝

1

𝜎1
𝜇
1
exp

{

{

{

−
1

𝜎2
𝜇

∑
𝑖

∑
𝑗∈𝛿𝑖

(𝜇
𝑡𝑖
− 𝜇
𝑡𝑗
)
2}

}

}

, (8)

where 𝛿
𝑖
is a neighborhood of the 𝑖th county. Thus the joint

density of 𝜇 is

𝑝 (𝜇 | 𝜎
2

𝜇
) ∝

36

∏
𝑡=1

𝑝 (𝜇
𝑡
| 𝜎
2

𝜇
) . (9)

Based on the likelihood function 𝐿(f | 𝜔,𝜇), (7), and (9), the
posterior distribution of 𝜔 is

𝑝 (𝜔 | f ,𝜇, 𝜎2
𝜇
) ∝ 𝐿 (f | 𝜔,𝜇) 𝜋

𝜙
(𝜙) 𝜋
𝜃
(𝜃) 𝜋
𝜎
(𝜎
2
)

×

36

∏
𝑡=1

𝑝 (𝜇
𝑡
| 𝜎
2

𝜇
) .

(10)

With specific priors of 𝜙, 𝜃, and 𝜎2, we can use the corre-
sponding method to generate the posterior samples of 𝜔. In
the case study, we use the normal distributions as the priors
for 𝜙 and 𝜃, and the Gamma distributions as the prior for
𝜎2. Then the full conditional posterior distributions of 𝜙, 𝜃,
and 𝜎2 are all log-concave densities. Thus adaptive rejection
sampling can be used for posterior sampling [39]. In general,
Metropolis-Hastings algorithm can be used to implement
the Markov chain sampling. After running Markov chain
sampling procedure 𝑀 times and discarding the initial 𝐴
burn-in iterations, then we have (𝑀 − 𝐴) iterations kept.
Since the generated sample is not independent, we need to
monitor the autocorrelations of the generated values and
select a sampling lag 𝐿 > 1 after which the corresponding
autocorrelation is low; that is, the length of the thinning
interval is 𝐿. Considering the length of the thinning interval,
the final number of iterations kept is𝑀 = (𝑀 − 𝐴)/𝐿, and
these independent samples will be used for posterior analysis.
Assume the generated sample is

(𝜔
(1)
,𝜔
(2)
, . . . ,𝜔

(𝑀

)
) . (11)

Then for any function𝐺(𝜔) of the parameters of interest𝜔we
can

(1) obtain a sample of the desired parameters 𝐺(𝜔) by
simply considering

(𝐺 (𝜔
(1)
) , 𝐺 (𝜔

(2)
) , . . . , 𝐺 (𝜔

(𝑀

)
)) , (12)

(2) estimate the posterior mean of 𝐺(𝜔) by 𝐺(𝜔) = (1/
𝑀) ∑

𝑀


𝑠=1
𝐺(𝜔(𝑡)). And the posterior
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Figure 2: Monthly reported cases of HFMD in Wenzhou, 2010–
2012.

standard deviation is estimated by
√(1/(𝑀−1))∑

𝑁


𝑠=1
[𝐺(𝜔(𝑡))−𝐺(𝜔)]

2

. Other measures
of interest might be the posterior median or quantiles
(e.g., 2.5% and 97.5% percentiles will provide a 95%
credible interval).

3. Results and Interpretation

3.1. Prevalence of HFMD. Table 1 lists the demographic char-
acteristics of HFMD cases and the pathogen types of some
cases from 2010 to 2012. There are a total of 103,671 HFMD
cases reported inWenzhou.The incidence rates are 2,111.1 per
100,000 (18 years old or younger) in 2010, 1,872.0 per 100,000
(18 years old or younger) in 2011, and 2,702.3 per 100,000 (18
years old or younger) in 2012. The majority of the reported
HFMD cases are less than 5 years old (about 89.4%), which
means that younger children are more vulnerable to HFMD.

Most of HFMD cases (approximately 62.3%) were boys
and the male-to-female incidence ratio was 1.638 : 1 in 2010,
1.691 : 1 in 2011, and 1.633 : 1 in 2012, respectively. The 𝑃 values
of testing the difference between incidence in male and that
in female were smaller than 0.001. Thus, the incidence in
male was higher than that in female. Among 2,401 pathogen
study between 2010 and 2012, CoxA16, EV71, and other
EV accounted for 10.08%, 73.26%, and 16.66%, respectively.
Clearly, the majority of HFMD pathogens were EV71.

Figure 2 shows monthly reported cases of HFMD in
Wenzhou from 2010 to 2012. From Figure 2, we can see
that incidence of HFMD is periodic and that a peak attains
betweenMay and July, because the temperature will affect the
incidence of HFMD as studied in [4, 5, 28].

3.2. Spatial Autocorrelation of HFMD Cases. Figure 3 shows
the annual incidence rate per county accounting for the
spatial variability of population size. It clearly indicates that
the distribution of HFMD is heterogeneous at county level,
and Ouhai municipal district is the most severe region.
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Table 1: Demographic characteristics of HFMD cases and the pathogen types of some cases in Wenzhou, 2010–2012.

Year 2010 2011 2012 Total
Case number 32608 28980 42083 103671
Age (years old)

0-1 2810 2647 3916 9373
1-2 9267 6374 8904 24545
2-3 7830 8226 11340 27396
3-4 5807 6173 9327 21307
4-5 3180 2666 4227 10073
5–10 3207 2476 3828 9511
>10 507 418 541 1466

Gender
Male 20250 18212 26101 64563
Female 12358 10768 15982 39108
Sex ratio 1.638 : 1 1.691 : 1 1.633 : 1

Pathogen
CoxA16 41 79 122 242
EV71 648 574 537 1759
Other EV 121 67 212 400

Table 2: The results of the spatial autocorrelation test on HFMD
cases in Wenzhou, 2010–2012.

Year Moran’s 𝐼 𝑃 values
2010 0.5182 <0.001
2011 0.4256 <0.001
2012 0.5813 <0.001

Table 3: Adjusted Dickey-Fuller test of the monthly incidence rate
of each county in Wenzhou, 2010–2012.

County Statistics 𝑃 value
Dongtou −5.213 <0.01
Cangnan −4.106 0.017
Ruian −4.115 0.016
Pingyang −4.580 <0.01
Yongjia −3.627 0.045
Wencheng −3.500 0.059
Taishun −3.433 0.068
Yueqing −3.382 0.076
Ouhai −3.804 0.031
Longwan −3.888 0.025
Lucheng −3.852 0.028

Table 2 lists the results of the spatial autocorrelation test,
which demonstrates that high global spatial autocorrelation
of HFMDwas detected at county level inWenzhou from 2010
to 2012 (Moran’s 𝐼 > 0.4, 𝑃 values < 0.001).

3.3. Spatial-Temporal ARMA Model of HFMD. For each
county, we test the stationarity of {𝑆

𝑡𝑗
, 𝑡 = 1, 2, . . . , 36} and

find that all the series are nonstationary. Then first-order

Table 4: Estimates of the parameters in the model (13).

County 𝛼
𝑗

𝜎
𝑗

Dongtou 0.574 0.332
(0.133) (0.066)

Cangnan 0.582 0.274
(0.138) (0.058)

Ruian 0.655 0.254
(0.119) (0.052)

Pingyang 0.447 0.322
(0.154) (0.054)

Yongjia 0.559 0.306
(0.137) (0.061)

Wencheng 0.491 0.652
(0.200) (0.141)

Taishun 0.314 0.395
(0.224) (0.054)

Yueqing 0.629 0.228
(0.118) (0.044)

Ouhai 0.517 0.393
(0.145) (0.075)

Longwan 0.502 0.404
(0.137) (0.072)

Lucheng 0.785 0.156
(0.085) (0.032)

difference is taken and the adjusted Dickey-Fuller test shows
that the time series is stationary when the significant level is
0.1 (Table 3). Thus 𝑓

𝑡𝑗
= 𝑆
𝑡𝑗
− 𝑆
(𝑡−1)𝑗

, where 𝑓
1𝑗
= 0. As shown

in Figure 2, we can specify the seasonal period 𝑠 = 12. Then
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Figure 3: Annual incidence rates (per 100,000 (18 years old or younger)) of HFMD per county in Wenzhou, 2010–2012.

autocorrelation function and partial autocorrelation function
are used to determine the values of 𝑝, 𝑞, 𝑃, and 𝑄 initially.
That is, 𝑝 = 3, 𝑞 = 2, 𝑃 = 2, and 𝑄 = 1. We compared all
the submodels by AIC criteria [40] and chose the best model
with the smallest AIC. The optimal model with the smallest

AIC is 𝑝 = 0, 𝑞 = 0, 𝑃 = 1, and 𝑄 = 0. Thus the model used
in the data analysis is

𝑓
𝑡𝑗
= 𝛼
𝑗
𝑓
(𝑡−12)𝑗

+ 𝑒
𝑡
+ 𝜇
𝑡𝑗
, (13)

where 𝑒
𝑡
∼ 𝑁(0, 𝜎2

𝑗
).
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Figure 4: Comparison between data and the fitted values based on model (13).

Table 4 lists the estimates of 𝛼
𝑗
and 𝜎

𝑗
in each county,

where the numbers in the parentheses are the posterior
standard deviations of the parameters. Figure 4 shows the
comparison between the data and the fitted values, where “O”
means the observed data and “F” is the fitted values.

4. Conclusions and Discussions

In our study, we observed that children ≤5 years old
accounted for most of the HFMD cases during the study
period inWenzhou, with an average male-to-female sex ratio

1.65 and the incidence single peak season was between May
and July (see Table 1 and Figure 2), which was similar to
other studies [3–5, 26, 28]. The dominant pathogen was
EV71 (73.26%), which was significantly higher than other
districts of China.The differencemight be partly attributed to
climatic, geographic, social factors, and so forth [24, 41, 42].

In Wenzhou, HFMD had positive spatial autocorrelation
at county level with high Morans I with 𝑃 value < 0.001.
The highest incidence area is Ouhai, which is located in the
middle of Wenzhou, and the second highest group areas are
Lucheng, Longwan, and Ruian that are adjacent to Ouhai
(see Figure 3). To investigate the spatial variability, we present
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a spatial-temporal ARMA model, in which we describe the
spatial effects by introducing correlated random effects. The
model provides an adequate fit to the data of HFMD in
Wenzhou. Other models can also be considered, for example,

𝜙
𝑗
(𝐵)Φ
𝑗
(𝐵) 𝑓
𝑡𝑗
= 𝜃
𝑗
(𝐵)Θ
𝑗
(𝐵) 𝑒
𝑡𝑗
, 𝑗 = 1, 2, . . . , 11, (14)

where {𝑒
𝑡𝑗
, 𝑗 = 1, 2, . . . , 11} is intrinsic Gaussian autoregres-

sion distribution. Model (14) introduces the spatial effects by
{𝑒
𝑡𝑗
} directly. However, it will make the parameter estima-

tion much more difficult, since the number of parameters
increases. How to analyze model (14) needs further study.
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