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We discuss a variety of iterative methods that are based on the Arnoldi process for solving large sparse symmetric indefinite linear
systems. We describe the SYMMLQ and SYMMQR methods, as well as generalizations and modifications of them. Then, we cover
the Lanczos/MSYMMLQ and Lanczos/MSYMMOQR methods, which arise from a double linear system. We present pseudocodes

for these algorithms.
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1. Introduction

Frequently, when computing numerical solutions of partial
differential equations, one needs to solve systems of very large
sparse linear algebraic equations of the form

Ax = b, ¢))

where A is an n X n matrix, b is an n x 1 vector, and one
seeks a numerical solution vector x or a good approximation
of it. Particularly for large linear systems arising from par-
tial differential equations in three dimensions, well-known
direct methods, such as Gaussian elimination, may become
prohibitively expensive in terms of both computer storage
and computer time. On the other hand, a variety of iterative
methods may avoid these difficulties.

For linear systems involving symmetric positive definite
(SPD) matrices, the conjugate gradient (CG) method (and
variations of it) may work well. On the other hand, when
solving linear systems, where the coeflicient matrix A is
symmetric indefinite, the choice of a suitable iterative method
is not at all clear. On the other hand, the SYMMLQ and
MINRES methods have been shown to be useful in certain
situations (see Paige and Saunders [1]). For nonsymmetric

teaching, and exceptional life

systems, Saad and Schultz [2] generalized the MINRES
method to obtain the GMRES method.

In Section 2, we review the Arnoldi process. In Sections
3 and 4, we describe the SYMMLQ and SYMMQR methods.
Then we can generalize them, in Section 5, and we outline the
modified SYMMLQ method, in Section 6. Next, in Section 7,
we discuss applying the MSYMMLQ and MSYMMQR meth-
ods applied to a double linear system. Finally, we present
pseudocodes in Sections 8-11.

2. Arnoldi Process

We begin with a review of the Arnoldi process.

Theorem 1. Suppose that A is an nx n symmetric matrix. One
can generate orthonormal vectors w®, W, w2 D
using this short-term recurrence

U+ — () () (-1 :
W = AW —aw - Biw (0<j<n-2)
(WD, DY,

2)

4 1 4
with = (—) w, where Ojy1 =
Oj+1

j+
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where
o) = (Aw?, WY,
o (3)
B = <Aw(1) w(]*1)>
j ’ :
Here, one assumes that w™" = 0 and 0;#0, for all j. Then the
following properties hold, for (0 <i, j<n-1):
<W(i),W(j)> _ 8ij’ ﬁj = 0. (4)
Proof. Ifwelet w® = r® = b — Au'”, then the subspace

Span {w(o), w L wD, w(”_l)} (5)

is equivalent to the Krylov subspace

F, (r(o), A) = Span {r(o), A, AT A"_lr(o)} .
(6)
We obtain
B = (AW W) (by (3))

(w?, w0 D) (AT = A)

(W, (w9 + o w0 1 g w0 )Y (by (@)

J
(7)
since (w?, w?y = 8,-1-. O
From Theorem 1, in matrix form, it follows that
AW, =W, T, +o,w"e’
) (8)
= WnTn+l’
where
W, = [w(o),w(l), ... ,w("_l),w("_z),w("_l)]nxn
T
e, =[0,0,0,...,0,0,1];,,
o P
o, o B
0, a0 P
Tn = . >
an—l ‘Xn—3 Bn—Z
Gn—Z an—Z ﬁn—l (9)
L Gn—l an—l duxn
oy By ]
o a B
0, f"z ﬁa
T = c. . .
mHl 071—3 (xn—3 ﬁn—Z

On-2 %y ﬁn—l
Op1 K1

- Oy (n+1)xn
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Example 2. We illustrate Theorem 1 for the case n = 3.

From (2) and (3), we have
o w® = 70 = Aw® — qw® — gw D,

o, w? = = Aw® _ o wh — B w®, (10)

o, w® = 7 = Aw® — @ w® — g W),
Consequently, we obtain, since w™ = 0,
AW, = A [w(o) w) w(z)]

= [Aw(o) Aw Aw(z)]

T
[a’ow(_l) + ocow(o) + alw(l)

[31w(°) + (xlw(l) + ozw(z)
Bow + a,w

@) 4 W
W W@ O]

o B 0

o a B

0 o, o,
0 0 o

(0) 11)

[
A

4x3

T
W]y § )

So we obtain
AW, = W,T; + o3w(3)ez
(12)

= W3T4

3. SYMMLQ Method

We choose u™, such that u” -u® ¢ % ,,(r(o), A). Hence, we
have

0 = u®@ LW g™
(13)

£ = £O _ AWy,

Imposing the Galerkin condition ¥ 1 %, (r'”, A), we
obtain

(r(”))TWn_l -0,

w! ™ =o, (14)
wl @ =wl Aaw,_ v (by (13)).

We obtain

T,y" = oye, (15)
because

T

Wn—lAwn—l = Tn’
(16)
W;Fflr(o) =oye;, where 0 = "r(o) “
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Instead of solving for y™ directly from the triangular linear
system (15), Paige and Saunders [1] factorize the matrix
T, into a lower triangular matrix with bandwidth three
(resulting in the SYMMLQ method). Also, we have

[ Yo
o n
& §2 }’2

€n-3 6n—3 VYn-3
€n—2 6n—2 Yn—2
€n-1 8n—1 ?n—l_nx”
17)

whereQ,_; = Q,,Q,3 - Q,_,, isan orthogonal matrix, and

- -
1
1
C. S
Q. . = ! ! 5 18
i,i+1 s =6 ( )
1
1
! L
nxn
where ¢’ +s; = 1. Since T, Q,_; = L,,, we have
-1 = A1
TnQn—lQn—ly(n) = LnQn—ly(n) (19)
= 0ye;.
Letting
" =QLy", (20)
then
L,z" = ge,. (21)
Next letting
=+ w,_y", (22)
we have
" = u® + Wn—lQn—lQ:W(n)
(23)
0 ~
=u”+w,_,Q,z".
Defining
Vn = Wn—lQn—l’
o (24)
z, = [CO’ Cl’ tee (n—Z’Cn—l]lxn’

3
we have
55(,,) _ X(0) + Vnin’ (25)
where
V,, = [V(O), V(l), e ,V(n_Z)’V(n_l)]nxn' (26)
We let
T
Zn = [C()’ (1’ et Cn—Z’ Cn—l]lxn’
V,= [V(O)) V(l), e V(niz)’ V(nil)]nxn’ )
L,z" = ope,,
where
[ Yo -
5 n
82 82 yZ
L,=| . .o ’
€n-3 871—3 Yn-3 (28)
En—2 8"_2 Yn-2
i €1 6;171 Vn-1] nxn

_ 52 2 _ )7"*1 _ ﬁn
Yn-1 = \Yn—l + ﬁn—l’ Cn = 4 Sp = .

VYn-1 VYn-1

From (21) and (28), we have {,_; = (Zn—1/cn—1)2n—1 = CnZn_l.
Since

V = [V(O),V(l),...,

n+l1

V(n—l), V(") ]

= WnQn

[Wn—l’ W(n)] Ql,z) Q2,3) s Qn—l,nQn,nJrl (29)

[Vn’ w(n)] Qn,n+1

=[O0, 5, W] Qs
we have
VD g ¢ )
(30)
6(71) — Sn{,(n—l) _ an(n)'

If B, #0, then L, is nonsingular. We can find 2™ by solving

L,z" = o,

(31)

a™ = u@ &+ V,,z(") =u™V 4 n—1V(n_1)-

4. SYMMQR Method

We choose u® such that u®™ - u® e & n(r(o), A). Hence, we
have

0 = u@ LW g™
(32)
£ = r O _ AWy,



Imposing the Galerkin condition ™1 %n(r(o),A), as
before, we obtain

(r(n))TWn—1 =0,
Wfflf(") =0, (33)
WO — W AW, .y (by (32)).
Since
W:—IAWVL—I =T, "
W:—II(O) =o0,e,, where g, = "r(o) “ ;
we have
TnY(n) = 0y€;. (35)

Instead of solving for y™ directly from the triangular system
(35), Paige and Saunders [1] factorized the matrix T,, into a
lower triangular matrix with bandwidth three.

We can use a different factorization of T, to obtain
a slightly different method, which is called the SYMMQR
method. We multiply the matrix T, by an orthogonal matrix
on the left-hand side instead of the right-hand side. We have

Qn—lTn?n = Qn—laoeh (36)
where
rVo 0 & |
N 6 &
- Y2 §3 :'54
Q. T,=R= I . . (37)
Yn—3 8n—2 sn—l
Yn—Z én—l
L n—1 1 yxn
We obtain the matrix Q, ; = Q,_1,Q, 5,1 - - Q> where
1 -
1
1
C. —S.
Qi1 = Sz- Cil , (38)
1
1

i 1

nxn

with ¢ +s7 = 1 being the Givens rotation. Letting ¥, be the
solution of

ﬁ?n = Qn—lGOel’ (39)
then we have

i(m = u(O) + Wn—l?n
(40)
0 =-1
=u®+ W,.1R, Q,_,00¢,
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which satisfies the Galerkin condition ¥, 1 %,(r'”,A),
where £, = b — AX™. We note that J,_, is not always
nonzero and, thus, R, might be singular. We assume that R,
is nonsingular and then we define

f)n—l = Wn—lii;l’ (41)
where
= 0 (1 -2) ~(n-1
Pn—l = [p( )>P< )7---,p(n ):P(n )]nx")
’ (42)
i = Q,-100¢, = [(0)(1""’Cn—2’Cn—1] .
We have
 =u@ 4P, 7", (43)
For the next iterate "+, we need to solve
Tn+1§’(n+1) =00€» (44)
where
—0‘0 B ]
B a B,
B, fxz ﬁ3 )
T, = P - (45)
/3;1—2 “n—z ﬁn—l
n—1 (Xn—l ﬁn

L ﬁ” (Xn_ n+1xn

Applying the Givens rotation Q,,_; to both sides of (45), we
have

Yo 61 & ]
n 6 &
Y2 §3 &
Qn—l Tn+1 - yn—3 8n—2 En-1 ’
Yn—2 (Enfl &
V-1 1!’
- ﬂ n O n+lxn

(46)

where [0,0,0,...,0,0,¢&,, v, a,]" = Q,_,,[0,0,0,...,0,0, B,,
o]’

To eliminate f3,, we compute the nth Given rotation
Qn,n+1 bY

_ 52 2 _ Y
Yn-1 = Vn—l + n’ Cn = >

(47)
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By multiplying Q,, ., times Q,_, T, _; and times Q,,_,0ye,, we
have

Qn,n+1 (Qn—lTn+1) = ﬁn+1

Yo 01 & ]
N 6 &
Y2 f53 &
- Yn-3 6n—2 €n-1 (48)
Yn—Z n—-1 sn
anl (En
- y”‘n+1><n
» ~ T
Qn,n+1 (Qn—laoel) A( = [CO’CI’ o n I’C] >
where
[0,0,0,...,0,0,2,,8,,7,]"
= Q,1[0,0,0,...,0,0,¢, v, a,]",
(49)
Cn 1~ Cn n-1°
Gy =54,
Let
Yo 01 & ]
N 6 &
Y2 65 &
R, - . (50)
Yn 3 6n—2 sn—l
Yn—z 6n—1
L y”_l-nxn
We define z® = [(0,{..»C, 00, )" Since B, =

[lw™]| #0, then y,#0 and R,, is nonsingular. We can solve
for y™ from

Ry =z". (51)

We discuss the case 3, = [w™| later.
Consider solving the least square problem involving y™

minimizing || T,,,y" - ope, |, where

=1

1 = Lo - (52)

L n dn+ixn

5
We have
"anHQn— ( n+1y _erl)"
F g,
G
53
- R, ) _ G (53)
0,0,...,0,0 Y S
n+lxn .
(o
L G
Hence, the solution y™ from R,y = z® minimizes
T,y = ogerll and §,, = 1T,y = opeyl.
Let
0 = u® s W, y®
(54)
=u?+w, R 2",
where
Pn—an = Wn—l’
(0) (n-2) _ (n-1) (55)
n— n—
P, =[p”p",...p" P, p" "]
We have
1
-1 -1 -3 2
p"V = <—> (W — e, " =6, p" ]
Yn—l
u® = u® 4 p_ 2™ (56)
=u"V oy, p"Y.
Since
2D Z 4@ L w y(n+1) (57)
we obtain
£ = u® W R 2
= u© + Bz
(58)

a® + Pn—lz(n) + "nﬁ(n)

=u® + an’(n)

We note that X is the estimated solution vector satisfying
the Galerkin condition, while

u” = 0@+ w, y" (59)

with y" minimizing ||T,,,y" - gy, |-



5. Generalized SYMMLQ and
SYMMQR Methods

Now, we generalize the SYMMLQ and SYMMQR methods.

Theorem 3. Suppose that E is an n x n symmetric positive
definite (SPD) matrix and EA is an nxn symmetric matrix. One

can generate orthonormal vectors w@ wil), w2 el
using this short-term recurrence

U+ — () G-1 ;

Wt = AwV —oc]w -Bw’ (0<j<n-2),

W(ju):(L)W(jﬂ)) where y;,, = /| (BFUD, &),

Vj+1
(60)
where
o; = <EAw(j),w(j)>
' ‘ (61)
= (EAwW?, wU V)
Then the following properties hold, for (0 <i, j<n-—1):
(W BwW) =65, Bi=y; (62)
Proof. We obtain
B;= (EAWY, wU™)  (by (61))
= (w, EAwVU™) ((EA)T =EA)
_ () (j- (j-2)
w E(yw +a_w )y Bjaw
- (RO e D
(by (60))
= (W, pEw )
= y]‘
Since (w®, Ew) = 6,-j. O
As before, we let
W, = [w(l),w(z), e ,w("_l),w(n)]nxn
(64)
=[0,0,0,...,0,0,1];,,-
Moreover, we have
Awn = WnTn + yn+1w(n+1)e:’ (65)
where
—“1 B, ]
oy o P
o3 a3 Py
T, = . (66)

Opa Ons Pu
Gn—l “n—l ﬁn

L On & Jdnxn
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As before, we let

K = x© 4wy

(67)
£ = O _ AWy
Imposing the Galerkin condition again, we have
T
(Ef")'w, =0,
(EW )T (n) — 0’ (68)
(EW,) 1 = (EW,) AW,y"  (by (67)).
We obtain
2= Brey where By = [(EFD.K0)] (69
because

(EW,) AW, - T,
(EW,)'W, = 1 (70)

T
(Ewn) 1.(0) = ﬁlel'

Since T,, is symmetric, we can apply the same techniques as
in the SYMMLQ method. Also, if E = I, the method reduces
to the SYMMQR method.

6. Modified SYMMLQ Method

Next, we outline the modified SYMMLQ method.

Theorem 4. Suppose that E is an n x n symmetric (not
necessary positive definite) matrix and EA is an n X n

symmetric matrix. One can generate orthonormal vectors

w O w, w2 WY ysing this short-term recurrence

—_(j+1)
witD

Aw(J)—ocw - Bw wi o (0<j<n-2),

, 1 4 , :
w‘”l’:(—)w“*”, where y;,; = \||EWUD, &UD)[
Yj+1
(71)
where
(EAWD, w0
%= T EwD, W)

>

() (=1 (72)
<EAw S W >

Then the following properties hold, for (0 < j < n—2):
d, <Ew(j+1),w(j+1)>
{ Loif (BWU,w0) s 0, (73)
“1,if (BRUTD,wUY <o,

and, for (0 <i, j<n-1),
<Ew(i),w(j)> = 8,-]-. (74)
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From Theorem 4, in matrix form, we obtain

where

W

n

= [w(l),w

Awn = WnTn + YW

@

. w(n—Z)’ w(n—l)

>

(n+1) T

€,

w(n)]

>
nxn

el =[0,0,0,...,0,0, 1],

~a1 B,
Y2

x,

Y3

Bs

a3

Moreover, from Theorem 4, we obtain

T
(EW,) W, =

By
Y2 % ﬁn—l
Yn—l X1 ﬁn
Yn (xn_nx,,,
d;
' dn—2 )
dn—l
d"-nxn
—d1“1 d,p,
dyy, dyo, dyf3s
dsys d§“3

=
—
1]

n—-n

We note that D, T, is symmetric, for (1 <i <n-1):

diﬁm =d;

d; (w'*, EAw®?)

<E AwlD, w(i)>
(Ew®, w®)

(Ew®, wi)

(by (72))

((BA)" =EA)

7
Then, we have
(Ewn)TAWn = (EWH)TWHTVI
T T
75) +(EW,) (ynﬂw("“)en) (78)
=D,T, +0.
Here the second term on the right-hand side is the zero
matrix!
In addition, we have
X = O 4 Wy,
(1) (0) (1) (79)
r’=r —AW,y".
Imposing the Galerkin condition, r' 1 %, (r'”, A), as we
did before, we obtain
T
(76) (Er(n)) W, =0,
T_(n)
EW ) r =0,
. ( H)T (80)
(EW,) 't = (Ew,) AW,y (by (79)),
T
(EW,) r” =D,T,y" (by (78)).
In other words, we use
(EWH)TAWn = DnTn’
(81)
(EW,)'W, =D,
We obtain
(Ewn)Tr(O) = pie (82)
n because
D,T,y" = Bie;, where B = \/|(Er@,r®)|.  (83)
(77) Here
dsoy
-, - (84)
dn—z)’n—z dan(xan danﬁnfl
Ay1Vno1 Gp10y g dyi By
d")/n dﬂ“ﬂ
4 nxn
» <w(i+1))E(%+lw(i+1) + oc,w(i) . ﬁiw(i—1)>
- (Ew®), w®)
(by (71))
= diVj-
(85)



7. Lanczos/MSYMMLQ Method

Next, we consider this 21 x 2n double linear system:

(s &[2]= (&)

We obtain the block symmetric matrices &/, &, and &,

(86)

where
a-[b 5]
& = [(1) (I)] (87)
wa-[2 4]

For example, the modified SYMMLQ method and the
modified SYMMQR method can be applied to the double
linear system (86). This leads us to the LAN/MSYMMLQ
method and the LAN/MSYMMQR method. The pseu-
docodes for these methods are given in the following sections.
For additional details, see Li [3]. See the books by Golub and
Van Loan [4] and Saad [5], as well as the papers by Lanczos
[6] and Kincaid et al. [7], among others.

8. MSYMMLQ Pseudocode
0 _p_ Ax®,

=\,

1, if (Er Er?) >0,
e {—1, if (Er® Er?) <o,
&§=6=0, s=0 ¢=-1
o = <d_11> <EAw(1),w(1)> ,
7 = Awl — qw®,
[(Ew®,w2)],

W < 1 >~(2)

if Ew(z) w(2)> >0,
if <Ew(2) ~(2)> <0,
B
o

end for

Abstract and Applied Analysis

_dify

af + % \/“1 ﬁz

(88)
i=2,3,...,N,

o = <di,) <EAw(i),w(i)> ,
e () ),

W(iH)

) _ g (0D
1 bl

EW(HU W(i+1)
[(Bw*D, WD),

= Aw" — oW

/3i+1 =

WwiitD :< 1 >W(i+1),
ﬁi+1

1, if (EwD, %) > o,
diy = -1, if <Ew(i+1),w(i+1)> <0,

& = ( i 1ﬁz)51 2 == (di—lﬁi) )
= (hh) ¢y + (d;o;) 5;15
(d ; ) 1 1>

é=(%)cw£4—6@4x

hh = §;

i

Vi = (hh)s;_; —

¥ =g 90D o W,

i(i) _ X(l'*l) + Ziv(i)’
\/(x +ﬁ1+1’
o .
a(3) weule)
Yi Yi

4=(%)«4”—@40,

v = CIV(i) + siw(m),

@) (i-1)

x® = x4 o y®

(89)
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9. MSYMMQR Pseudocode

r” =b - Ax?,

Br = \[Ex, £,

1
W _ (_) NOY
B

p 1, if <Er(0),Er(0)> >0,
e if (B EA9) <o,
§=6=0, =0, ¢=1,

d%) (EAWD, W),

(1)

w2 = AwV - Guw

/32 - w/|<EVv(2),W(2)>|,

1
W _ ( 1 ) oy
B,

i (B, wP) >0,
L if (Bw2,w?) <o,

¥

Zl = ﬁldl’

~(1) 1 M
= —_— W 5
P <ocld1 )

i(l) _ X(O) + 2113(1))
_ diy _ d,p,
Cl - —) Sl - —’
Vg s
n=(diy) e - (d1/32)51> G = 6121’

1
p = (_) W,
4!

KO = xO 4 g )

for i=23,...,N,
1 @ )
o = EAW"/ , w" ),
' (d,->< >

Bi = (%) <EAw(i),w(H)> ,

i-1

W(i+1) — Aw(i) _ (xiw(i) _ ﬂiw(i_1)7

B = KB, w00)),

wi+D =( 1 >W(i+1))
ﬂiﬂ

(90)

9
1 if <EW(i+1) W(i+1)> >0
dip = ) ) ,
L if (BT <o,
g=—(di1B)sia 0 =—(di1B;)ciys
hh = 8,'7
8; = (hh) iy = (djoq) si_y»
yi=hhys +(dew) s G =5,C 0
5= (1) w0 e -ap )
£ _ x4 550
Vi = VC,Z +ﬁi2+1’
- 1 -
G = ;/Tl»’ Si=- (;) (diﬁiﬂ) v G=aa0
. 1 ; i i
p® = <;> (W — epi? _g,p Y],
1
X = 50D 4 ¢ p0
end for
1)

10. LAN/MSYMMLQ Pseudocode

9 =b-Ax?,

7@ = aw® (xlw(l)’
=) —
= ATwW oclw(l),

—C
B, = |2 w ),‘7\7(2)>|,
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<) _ S(i-1) (@)
w, = (i)w(z), VIESiavy o Gaw,

G Z:;‘V(i),

—2) ( 1 >:(2)
woslz v o /3
P ne e B ama() sma(fe),

1, if 2<%(2),w(2)> >0,

d, = , 1
? -1, if 2<%(2),W(2)> <0, G= <_) (_fi 2~ ‘SiCi—l),
Yi
{, = &) v = 39 4 5w,
o
! X = 5D | g
ONNO) = i
OO 5 end for
X=x"+{v, (93)
o = dyoy s = d\B,
1 — > 1 — >
[ o2+ [ o2t 11. LAN/MSYMMQR Pseudocode
By
"= (dl‘xl)cl + (dlﬁz) s, 0= )/_’ @ =b- AX(O),
1
~0) _ AT (0)
v = 7 4 5, w?, r =b-A'x",
0 = xO 4 ¢y, B, = ]2 GO, x|,
92
02) W= (L)
for i=2,3 ...,N, B >
2> i) (i) () ( 1 )40)
o=(—) (AW, W), w'==]1",
= (F) (awew) 3
1 o ‘ - €5 (=(0) (0)
B, = <_> [(Aw®, 7D + (RO, awi Y], g - 1, if 2(F%, 1) >0,
dia -1, if 2(¢, ) <o,
w7 = Aw? — aw® - gwY, g =6=0, s,=0, ¢=1,
—(i+1 . . .
2 ATRO — @ - gy, o =2 (7D, w®)
1 dl > >
L= o(i+1) g5(i+1)
Bt = (WD, WD), # = aw® _ qw®,
W= <L> w, 2 = ATw® g @@
ﬁi+1
. =(2) _
()5 o T
ﬁi+1
4 . @_ (1o
1, if 2(wD, %) >0, wo = (g) w
diyy = . —(i+1) = 2
-1, if 2<w ,w,»+1> <0,
) ( 1 ):(2)
wl=—|w,
&=difisip 8;=—(diif) Gy hh=3, B,
~(2
8; = (hh) ¢y + (djoy) siy» p 1, if 2<W( ),W(2)> >0
_ 2= _ . =2 _@ >
i = (hh) si_y = (dios) 6o L if 2<w W > <0

~ ) (1 o))
ci:<$>(_€i i = 68i1) P _<‘X'—di>w ’

i



Abstract and Applied Analysis

Z1=&)
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1% _ d,p,

d
Q= —FT— S1= - >
Ve + 3 Ve +
n = (dia) ¢ = (diBy) 515
‘71 = /31771’

1
p()_

<

for

0%
2!

0 1
x© +(1P( ),

i=2,3,...,N,

o <d£> (Aw?, 59,

(94)

= (LA ) (50

#D — AW _ gw® — gD,

—~(i+1 - H i—
W(H ) _ ATW(z) _ cx,-W(l) _ ﬂiw(l 1))

|2<W(i+l), W(i+1)> |’

Bisi =
WD :< 1 )W(Hl)’
ﬂi+1

—(i+1) < 1 ) ~(i+1)
w =\ | W 5
ﬁi+1

i {—1, if 2(w, W) <o,

& = (di—lﬁi) i 0= (di—lﬁi) Ci—2>
8, = (hh) ¢, —d; (s;,),
Vi = (hh) sy +d; (a6,) »

G = Cioisicts

w 1 ) . -
P(l) = (:) [W(l) - 8iP(1) -9 ¢ 1)] >
Yi
£ = x4 F50,

1

Yi = ’72 + ﬁi2+1’

(5 i)
Yi Yi

Eal
Il

K}

Ea

1, if 2<w"‘“),w("+“> >0,

hh =6,

i

1

i 1 i i i
p® = (5) [W® — 0D _ 55001,

NONRNCE

X + (iP(i)

end for
(95)
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