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We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven
by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym
derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP) for American option
price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show
that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence
of market volatility on the price of American options.

1. Introduction

Since the pioneering work of Black-Scholes [1] and Merton
[2] on the pricing of options, option pricing has become one
of the predominant concerns in financial market. By relaxing
some of the restrictive assumptions, such as the assumption
of constant volatility and the geometric Brownian motion
for the price of the underlying asset, many option pricing
models have been proposed. Today, an increasing amount of
literature has focused on stochastic volatilitymodels (see, e.g.,
[3]), jump diffusion or Lévy process models [4, 5], which fit
some features of the observed empirical market data. In this
paper, in constructing our price model, we will take account
of both the feature of stochastic volatility as in Heston’s
model and the feature of jump diffusion as in Bates [6]. The
combination of the stochastic volatility and jump diffusion
in the same model enables the model to capture the nature of
the real financial market and yields a challenging and difficult
mathematical problem for analysis.

Because of infrequent trading or by the presence of
additional sources of uncertainty, the completeness of the
market often breaks down. Thus, replicating the payoff of

a contingent claim by a portfolio is possible, and various
equivalent martingale measures (EMM) have been adopted.
The question is that, among the equivalent martingale mea-
sures, one needs to establish certain criterions to determine
the appropriate measure to be adopted. A unique equivalent
martingale measure by using utility maximization has been
identified by many authors including Kallsen [7], Bielecki
and Jeanblanc [8], and Cvitanić et al. [9]. It was also found
that, under the minimal martingale measure, there exists
a unique risk-minimizing strategy hedging of contingent
claims in complete market [10]. The criterion under the
minimal martingale measure is thus referred to as risk-
minimization criterion (see [11]). According to this, it is
possible to price option with risk-minimization criterion.
In this paper, we use the minimal martingale measure and
consider the switch of assets prices with jump diffusion
and stochastic volatility and obtain the Radon-Nikodym
derivative and a linear complementarity problem for the
pricing of American option.

Unlike European options, American options, which can
be exercised any time before the expiring date, have to be
priced usually numerically. Comparing to European options
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which lead to a partial integrodifferential equation, Amer-
ican options lead to inequalities in the form of a linear
complementarity problem (LCP). In the American option
pricing context, several methods have been proposed to
approximate the linear complementarity problems resulting
from American option pricing. These include the finite dif-
ference method, the operator splitting method, the multigrid
method, and the penalty method [12]. Moreover, Tavella
and Randall [13] described a stationary iterative method for
pricing European options, and then Salmi and Toivanen [14]
proposed a generalization of this iterative method to price
American option. But they did not consider any multifactor
jump diffusion models such as stochastic volatility models
with jumps. Our paper aims to further develop previous
numerical method to deal with multifactor jump diffu-
sion models via the employment of the risk-minimization
criterion to obtain the Radon-Nikodym derivative for the
minimal martingale measure.

The rest of the paper is organized as follows. In Section 2,
we discuss the pricing model with stochastic volatility and
jump diffusion under the minimal martingale measure and
then derive the linear complementarity problem under the
risk-minimization criterion. Section 3 presents the discrete
space and time approximation for the LCP problem. The
method of projected successive overrelaxation (projected
SOR) is used to yield our results. Numerical results and
discussion are reported in Section 4.

2. The Model under Minimal
Martingale Measure

Taking into account the jumps in the evolution process of
the underlying asset, we introduce the following stochastic
volatility (1) based on the work in Heston [3]:
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In our model, there are two dimensions of risks from the
Lévy process and the Brownian motion. Thus the financial
market is not complete and such a claim has an intrinsic risk.
In this context, we construct the pricingmodel under the risk-
minimization criterion by employing theminimalmartingale
measure method, and therefore model (1) can be written as
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𝑑𝑋
𝑡

𝑋
𝑡
−

= 𝜇𝑑𝑡 + √𝑉
𝑡
𝑑�̃�
1

𝑡

+ ∫
𝑅

(𝑦 − 1) �̃� (𝑑𝑡, 𝑑𝑦) − 𝜃
𝑡
𝑉
𝑡
𝑑𝑡

− ∫
𝑅

𝜃
𝑡
(𝑦 − 1)

2V (𝑑𝑦) 𝑑𝑡,

𝑑𝑉
𝑡
= 𝛼 (𝜑 − 𝑉

𝑡
) 𝑑𝑡 + 𝜎√𝑉

𝑡
𝑑�̃�
2

𝑡
− 𝜌𝜎𝜃

𝑡
𝑉
𝑡
𝑑𝑡.

(5)

The value of the American put option 𝑃(𝑡,𝑋
𝑡
,𝑉
𝑡
) at time

𝑡, under strike price𝐾 and maturity date 𝑇, is

𝑃 (𝑡, 𝑋
𝑡
, 𝑉
𝑡
) = max
𝜏

E𝑞 [𝑒−∫
𝜏

𝑡

𝑟
𝑢

𝑑𝑢
(𝐾 − 𝑋

𝜏
)
+

| 𝐹
𝑡
] , (6)

where 𝜏, representing the stopping times in [0, 𝑇], is to be
determined to maximize the discounted option payoff.
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Under the minimal martingale measure 𝑞, we obtain
the following partial integrodifferential equation (see
Appendix B for the detailed derivation):
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UnderMerton’s jumpdiffusionmodel, we assume V(𝑑𝑦) =
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Then, the value of the American put option satisfies the
following linear complementarity problem:
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3. Numerical Discretization

We use the uniform grid Δ𝜏 = Γ/𝑛, Δ𝑥 = 𝑋/𝑚, and
ΔV = 𝑉/𝑙 on the domain [0,Γ] × [0,𝑋] × [0,𝑉]. Denoting
�̃�
𝑖,𝑗
= �̃�(𝜏,𝑖Δ𝑥,𝑗ΔV) and using the central difference scheme,

we have

𝜕�̃�

𝜕𝑥
(𝜏, 𝑥
𝑖
, V
𝑗
) =

�̃�
𝑖+1,𝑗
(𝜏) − �̃�

𝑖−1,𝑗
(𝜏)

2Δ𝑥
,

𝜕
2
�̃�

𝜕𝑥2
(𝜏, 𝑥
𝑖
, V
𝑗
) =

�̃�
𝑖+1,𝑗
(𝜏) − 2�̃�

𝑖,𝑗
(𝜏) + �̃�

𝑖−1,𝑗
(𝜏)

(Δ𝑥)
2

,

𝜕�̃�

𝜕V
(𝜏, 𝑥
𝑖
, V
𝑗
) =

�̃�
𝑖,𝑗+1
(𝜏) − �̃�

𝑖,𝑗−1
(𝜏)

2ΔV
,

𝜕
2
�̃�

𝜕V2
(𝜏, 𝑥
𝑖
, V
𝑗
) =

�̃�
𝑖,𝑗+1
(𝜏) − 2�̃�

𝑖,𝑗
(𝜏) + �̃�

𝑖,𝑗−1
(𝜏)

(ΔV)2
,

𝜕
2
�̃�

𝜕𝑥𝜕V
(𝜏, 𝑥
𝑖
, V
𝑗
)

=
�̃�
𝑖+1,𝑗+1

(𝜏) + �̃�
𝑖−1,𝑗−1

(𝜏) − �̃�
𝑖+1,𝑗−1

(𝜏) − �̃�
𝑖−1,𝑗+1

(𝜏)

4Δ𝑥ΔV
.

(14)

Through a long derivation, we obtain from (10) the
following set of discrete equations and inequalities in matrix
form:

𝜕P̃
𝜕𝜏
− CP̃ ≥ 0, P̃ ≥ g,

(
𝜕P̃
𝜕𝜏
− CP̃)

𝑇

(P̃ − g) = 0,
(15)



4 Abstract and Applied Analysis
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∞

0

�̃� (𝜏, 𝑧, 𝑗ΔV) 𝑓 (𝑧/𝑖Δ𝑥)
(𝑖Δ𝑥)

𝑑𝑧 ≈

𝑚−1

∑

𝑘=0

𝐴
𝜏,𝑘

𝑖,𝑗
, (18)

where

𝐴
𝜏,𝑘

𝑖,𝑗
= ∫

(𝑘+1)Δ𝑥

𝑘Δ𝑥

�̃� (𝜏, 𝑧, 𝑗ΔV) 𝑓 (𝑧/𝑖Δ𝑥)
(𝑖Δ𝑥)

𝑑𝑧

= ∫

(𝑘+1)Δ𝑥

𝑘Δ𝑥

[
(𝑘 + 1) Δ𝑥 − 𝑧

Δ𝑥
�̃� (𝜏, 𝑘Δ𝑥, 𝑗ΔV)

+
𝑧 − 𝑘Δ𝑥

Δ𝑥
�̃� (𝜏, (𝑘 + 1) Δ𝑥, 𝑗ΔV)]

×
𝑓 (𝑧/𝑖Δ𝑥)

(𝑖Δ𝑥)
𝑑𝑧

=
1

2
[𝑘�̃� (𝜏, (𝑘 + 1) Δ𝑥, 𝑗ΔV)

− (𝑘 + 1) �̃� (𝜏, 𝑘Δ𝑥, 𝑗ΔV)]

× [erf (
𝜇 − ln ((𝑘 + 1) /𝑖)

√2𝜎
)

− erf (
𝜇 − ln (𝑘/𝑖)
√2𝜎

)]

+
1

2
𝑖 exp(𝜎

2

2
+ 𝜇)

× [�̃� (𝜏, 𝑘Δ𝑥, 𝑗ΔV) − �̃� (𝜏, (𝑘 + 1) Δ𝑥, 𝑗ΔV)]

× [erf (
𝜇 − ln ((𝑘 + 1) /𝑖) + 𝜎2

√2𝜎
)

− erf (
𝜇 − ln (𝑘/𝑖) + 𝜎2

√2𝜎
)] .

(19)

Let 𝑒𝑘
1𝑖
= (1/2)(erf((𝜇 − ln((𝑘 + 1)/𝑖))/√2𝜎) − erf((𝜇 −

ln(𝑘/𝑖))/√2𝜎)), and 𝑒𝑘
2𝑖
= (1/2)𝑖 exp(𝜎2/2+𝜇)(erf((𝜇− ln((𝑘+

1)/𝑖) + 𝜎
2
)/√2𝜎) − erf((𝜇 − ln(𝑘/𝑖) + 𝜎2)/√2𝜎)). Then (19)

becomes

𝐴
𝜏,𝑘

𝑖,𝑗
= (𝑒
𝑘

2𝑖
− (𝑘 + 1) 𝑒

𝑘

1𝑖
) �̃� (𝜏, 𝑘Δ𝑥, 𝑗ΔV)

+ (𝑘𝑒
𝑘

1𝑖
− 𝑒
𝑘

2𝑖
) �̃� (𝜏, (𝑘 + 1) Δ𝑥, 𝑗ΔV) ,

𝐼
𝜏

1(𝑖,𝑗)
≈

𝑚−1

∑

𝑘=0

𝐴
𝜏,𝑘

𝑖,𝑗
= 𝑒
0

2,𝑖
− 2𝑒
0

1,𝑖

+

𝑚−1

∑

𝑘=1

[(𝑘 − 1) 𝑒
𝑘−1

1,𝑖
− 𝑒
𝑘−1

2,𝑖
+ 𝑒
𝑘

2,𝑖
− (𝑘 + 1) 𝑒

𝑘

1,𝑖
]

+ (𝑚 − 1) 𝑒
𝑚−1

1,𝑖
− 𝑒
𝑚−1

2,𝑖
,

(20)
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where

A = (

𝐴
0
0 . . . 0

0 𝐴
0
. . . 0

...
... d

...
0 0 . . . 𝐴

0

),

A
0
=(

𝑎
0,0

𝑎
0,1

𝑎
0,2
. . . 𝑎
0,𝑚−1

𝑎
0,𝑚

𝑎
1,0

𝑎
1,1

𝑎
1,2
. . . 𝑎
1,𝑚−1

𝑎
1,𝑚

𝑎
2,0

𝑎
2,1

𝑎
2,2
. . . 𝑎
2,𝑚−1

𝑎
2,𝑚

...
...

...
...

...
...

𝑎
𝑚,0

𝑎
𝑚,1

𝑎
𝑚,2

. . . 𝑎
𝑚,𝑚−1

𝑎
𝑚,𝑚

)

(21)

in which 𝑎
𝑖,0
= 𝑒
0

2,𝑖
− 𝑒
0

1,𝑖
, 𝑎
𝑖,𝑘
= (𝑘 − 1)𝑒

𝑘−1

1,𝑖
− 𝑒
𝑘−1

2,𝑖
+ 𝑒
𝑘

2,𝑖
− (𝑘 +

1)𝑒
𝑘

1,𝑖
, 𝑘 = 1, 2, . . . , 𝑚 − 1, and 𝑎

𝑖,𝑚
= (𝑚 − 1)𝑒

𝑚−1

1,𝑖
− 𝑒
𝑚−1

2,𝑖
, 𝑖 =

0, 1, . . . , 𝑚. Hence 𝐼𝜏
1
= AP̃.

In a similar way, we obtain 𝐼𝜏
2
= BP̃, where

B = (

𝐵
0
0 . . . 0

0 𝐵
0
. . . 0

...
... d

...
0 0 . . . 𝐵

0

),

B
0
=(

𝑏
00
𝑏
01
𝑏
02
. . . 𝑏
0,𝑚−1

𝑏
1,𝑚

𝑏
10
𝑏
11
𝑏
12
. . . 𝑏
1,𝑚−1

𝑏
1,𝑚

𝑏
20
𝑏
21
𝑏
22
. . . 𝑏
2,𝑚−1

𝑏
2,𝑚

...
...

...
...

...
...

𝑏
𝑚0
𝑏
𝑚1
𝑏
𝑚2
. . . 𝑏
𝑚,𝑚−1

𝑏
𝑚,𝑚

)

(22)

in which 𝑏
𝑖0
= 𝑒
0

4𝑖
− 2𝑒
0

3𝑖
− 𝑒
0

2𝑖
− 2𝑒
0

1𝑖
, 𝑏
𝑖,𝑘
= (𝑘 − 1)𝑒

𝑘−1

3,𝑖
− 𝑒
𝑘−1

4,𝑖
+

𝑒
𝑘

4,𝑖
− (𝑘 + 1)𝑒

𝑘

3,𝑖
− (𝑘 − 1)𝑒

𝑘−1

1,𝑖
+ 𝑒
𝑘−1

2,𝑖
− 𝑒
𝑘

2,𝑖
+ (𝑘 + 1)𝑒

𝑘

1,𝑖
, 𝑘 =

1, 2, . . . , 𝑚 − 1, 𝑏
𝑖𝑚
= (𝑚 − 1)𝑒

𝑚−1

3,𝑖
− 𝑒
𝑚−1

4,𝑖
− (𝑚 − 1)𝑒

𝑚−1

1,𝑖
+

𝑒
𝑚−1

2,𝑖
, 𝑖 = 0, 1, . . . , 𝑚, 𝑒𝑘

3𝑖
= (1/2) exp(𝜎2/2 + 𝜇) × [erf((𝜇 −

ln((𝑘 + 1)/𝑖) + 𝜎2)/√2𝜎) − erf((𝜇 − ln(𝑘/𝑖) + 𝜎2)/√2𝜎)], and
𝑒
𝑘

4𝑖
= (1/2𝑖√1 − 2𝜎2) exp(𝜇2/(1 − 2𝜎2)) × [erf((√1 − 2𝜎2(𝜇 −

ln((𝑘 + 1)/𝑖)))/√2𝜎 − √2𝜇𝜎/√1 − 2𝜎2) − erf((√1 − 2𝜎2(𝜇 −
ln(𝑘/𝑖)))/√2𝜎 − √2𝜇𝜎/√1 − 2𝜎2)].

Hence, the integral part of the operator 𝐿 isR = (A−𝜃
𝜏
B).

Now for American options we obtain a semidiscrete
LCP. The Crank-Nicolson method [15] is then used for time
discretization. Let Δ𝜏 = Γ/𝑛; we obtain

(I − 1
2
Δ𝜏C(𝑛)) P̃(𝑛) ≥ (I + 1

2
Δ𝜏C(𝑛+1)) P̃(𝑛+1),

P̃(𝑛+1) + P̃(𝑛) ≥ 2g,

((I − 1
2
Δ𝜏C(𝑛)) P̃(𝑛) − (I + 1

2
Δ𝜏C(𝑛+1)) P̃(𝑛+1))

𝑇

× (P̃(𝑛+1) + P̃(𝑛) − 2g) = 0

(23)

Table 1:The basic parameter values used in numerical investigation.

𝜇 0.23
𝜅 3.46
𝜑 0.0894

2

𝛿 0.0001
𝑟 0.039
𝜎 0.14
𝜆 0.77
𝛾 −0.086
𝜌 −0.82
𝑇 1
𝑆max 200
Vmax 1
𝐾 100
𝑁 3000
𝐼 30
𝐽 30

which can be denoted by

LCP (M, P̃(𝑛+1),NP̃(𝑛), g) : NP̃(𝑛) ≥ MP̃(𝑛+1),

P̃(𝑛+1) + P̃(𝑛) ≥ 2g,

(NP̃(𝑛) −MP̃(𝑛+1))
𝑇

× (P̃(𝑛+1) + P̃(𝑛) − 2g) = 0,
(24)

whereM = I + (1/2)Δ𝜏C(𝑛+1) and N = I − (1/2)Δ𝜏C(𝑛).
The projected SOR algorithm PSOR(M,P̃(𝑛+1),NP̃(𝑛),g)

can then be used to solve the LCP problem. The algorithm
is as follows.

For 𝑛 = 1, dim(M),

r
𝑛
= NP̃
𝑛
−∑

𝑗

M
𝑖,𝑗
P̃
𝑗
,

P̃
𝑛
= max{P̃

𝑗
+
𝜔r
𝑛

M
𝑖,𝑗

, g
𝑛
} ,

(25)

where the relaxation parameter𝜔 = 2/(1+√1 − 𝜑2), wherein
𝜑 = max

𝑖
{(1/M

𝑖,𝑖
) ∑
𝑗 ̸= 𝑖
|M
𝑖,𝑗
|}.

4. Numerical Results and Discussion

In this section, we present a set of results to demonstrate
the feature of the model and the robustness of the model
for the determination of American put option price and
then investigate the influence of market volatility. The basic
parameter values used in the computation are given inTable 1.
The numerical algorithm is implemented in computer by
using theMATLAB 2012 software package. Figure 1 shows the
payoff as the function of stock price.The numerical solutions
obtained by solving the LCP problem (24) are showed in
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Figure 1:The payoff as a function of stock price (stock price = stock
step ∗ 20/3; volatility = volatility step ∗ 1/30).
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Figure 2: The American option price.

Figure 2.We also compute the value of American option price
under various values of volatility. The results are plotted in
Figure 3.

From the numerical results, we can see that volatility
has no influence on the payoff of American option, but it
plays an important role in American option pricing. From
Figures 2 and 3, we can see that, when the stock price is
relatively low, the influence of volatility is not significant,
while, as the stock price increases, the influence of volatility
becomesmore andmore significant. It can also be found that,
at the same level of stock price, the larger the volatility is,
the more the influence it plays on American option price
is, which is in agreement with the market reality. Thus,
the results show that the model and numerical scheme are
robust in capturing the feature of incomplete finance market,
particularly the influence of market volatility on the price of
American options.
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Figure 3: American option price under different volatilities.

Appendices

A. Derivation of the Radon-Nikodym
Derivative under the Minimal Martingale
Measure 𝑞

This appendix derives the Radon-Nikodym derivative under
the minimal martingale measure 𝑞 and then consequently
obtains (5) for American option pricing model.

According to the Doob-Meyer decomposition, the dis-
counted risky asset price process,𝑋

𝑡
= 𝑒
−∫
𝑡

0

𝑟
𝑠

𝑑𝑠
𝑋
𝑡
, is a special

semimartingale and can be written as

𝑋
𝑡
= 𝑋
0
+𝑀
𝑡
+ 𝐴
𝑡

(A.1)

with

𝑀
𝑡
= ∫

𝑡

0

𝑋
𝑢
√𝑉
𝑢
𝑑𝑊
1

𝑢
+ ∫

𝑡

0

∫
𝑅

𝑋
𝑢
− (𝑦 − 1) �̃� (𝑑𝑢, 𝑑𝑦) ,

(A.2)

𝐴
𝑡
= ∫

𝑡

0

𝑋
𝑢
(𝜇
𝑢
− 𝑟
𝑢
) 𝑑𝑢, (A.3)

where𝑀
𝑡
is the martingale part of𝑋

𝑡
and 𝐴

𝑡
is the predicta-

ble process of finite variation.
The minimal martingale measure 𝑞 is unique [10] if there

exists a predictable process 𝛽
𝑡
that satisfies

𝑍
𝑡
=
𝑑𝑞

𝑑𝑝
= 1 + ∫

𝑡

0

𝛽
𝑢
𝑑𝑀
𝑢
. (A.4)

By using (A.4), we get the theorem below for calculating
the Radon-Nikodym derivative.
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Theorem 1. The Radon-Nikodym derivative under the mini-
mal martingale measure 𝑞 is

𝑍
𝑡
= exp(−∫

𝑡

0

𝜃
𝑢
√𝑉
𝑢
𝑑𝑊
1

𝑢
−
1

2
∫

𝑡

0

𝜃
2

𝑢
𝑉
𝑢
𝑑𝑢

+ ∫

𝑡

0

∫
𝑅

ln (1 − 𝜃
𝑢
(𝑦 − 1))𝑁 (𝑑𝑢, 𝑑𝑦)

+∫

𝑡

0

∫
𝑅

𝜃
𝑢
(𝑦 − 1) V (𝑑𝑦) 𝑑𝑢) .

(A.5)

Proof. According to the Girsanov transformation theory, the
predictable process of bounded variation can be computed in
terms of 𝑍

𝑡
,

−𝑑𝐴
𝑡
=
𝑑⟨𝑀,𝑍⟩

𝑡

𝑍
𝑡
−

, (A.6)

where ⟨𝑀,𝑍⟩
𝑡
is the quadratic variation process between

𝑀 and 𝑍. Under the minimal martingale measure 𝑞, the
predicable process of bounded variation in the Doob-Meyer
decomposition of𝑀 is given by

𝑑⟨𝑀,𝑍⟩
𝑡

𝑍
𝑡
−

= 𝛽
𝑡

𝑑⟨𝑀⟩
𝑡

𝑍
𝑡
−

= −𝑑𝐴
𝑡
. (A.7)

Using (A.4) and (A.7), we have

𝑍
𝑡
= 1 − ∫

𝑡

0

𝑍
𝑢
−

𝑑𝐴
𝑢

𝑑⟨𝑀⟩
𝑢

𝑑𝑀
𝑢
. (A.8)

From (A.2), we get

⟨𝑀⟩
𝑡
= ⟨∫

𝑡

0

𝑋
𝑢
√𝑉
𝑢
𝑑𝑊
1

𝑢
+ ∫

𝑡

0

∫
𝑅

𝑋
𝑢
−𝑦�̃� (𝑑𝑢, 𝑑𝑦)⟩

= ∫

𝑡

0

𝑋
2

𝑢
(√𝑉
𝑢
)

2

𝑑𝑢 + ∫

𝑡

0

∫
𝑅

𝑋
2

𝑢
−

(𝑦 − 1)
2V (𝑑𝑦) 𝑑𝑢

= ∫

𝑡

0

𝑋
2

𝑢
(𝑉
𝑢
+ ∫
𝑅

(𝑦 − 1)
2V (𝑑𝑦)) 𝑑𝑢.

(A.9)

Let 𝑑𝑌
𝑢
= −(𝑑𝐴

𝑢
/𝑑⟨𝑀⟩

𝑢
)𝑑𝑀
𝑢
; then (A.8) can be written as

𝑍
𝑡
= 1 + ∫

𝑡

0
𝑍
𝑢
−𝑑𝑌
𝑢
. Hence,

𝑑𝑌
𝑢
=

𝑋
𝑢
(𝜇
𝑢
− 𝑟
𝑢
) 𝑑𝑢

𝑋2
𝑢
(𝑉
𝑢
+ ∫
𝑅
(𝑦 − 1)

2V (𝑑𝑦)) 𝑑𝑢

× (𝑋
𝑢
√𝑉
𝑢
𝑑𝑊
1

𝑢
+ ∫
𝑅

𝑋
𝑢
− (𝑦 − 1) �̃� (𝑑𝑢, 𝑑𝑦))

=
(𝜇
𝑢
− 𝑟
𝑢
) (√𝑉

𝑢
𝑑𝑊
1

𝑢
+ ∫
𝑅
(𝑦 − 1) �̃� (𝑑𝑢, 𝑑𝑦))

𝑉
𝑢
+ ∫
𝑅
(𝑦 − 1)

2V (𝑑𝑦)
.

(A.10)

Because 𝑍
𝑡
is the Doléans-Dade exponential, we obtain

𝑍
𝑡
= 1 + ∫

𝑡

0

𝑍
𝑢
−𝑑𝑌
𝑢
, 𝑍
0
= 1,

𝑑𝑌
𝑢
= −𝜃
𝑢
(√𝑉
𝑢
𝑑𝑊
1

𝑢
+ ∫
𝑅

(𝑦 − 1) �̃� (𝑑𝑢, 𝑑𝑦)) ,

(A.11)

where

𝜃
𝑢
=

𝜇
𝑢
− 𝑟
𝑢

𝑉
𝑢
+ ∫
𝑅
(𝑦 − 1)

2V (𝑑𝑦)
. (A.12)

Solving equations (A.11), we obtain𝑍
𝑡
as given inTheorem 2.

B. Derivation of the Partial
Integrodifferential Equation (7)

Herewederive the partial integrodifferential equation (PIDE)
(7), which is used in Section 2 to construct the linear
complementarity problem (LCP) for the pricing of American
put option.

Under the measure of minimal martingale 𝑞, the price of
American put option 𝑃(𝑡, 𝑋

𝑡
, 𝑉
𝑡
), having strike price 𝐾 and

maturity date 𝑇, is as follows:

𝑃 (𝑡, 𝑋
𝑡
, 𝑉
𝑡
) = max
𝜏

E𝑞 [𝑒−∫
𝜏

𝑡

𝑟
𝑢

𝑑𝑢
(𝐾 − 𝑋

𝜏
)
+

| 𝐹
𝑡
] , (B.1)

where 𝜏, representing the stopping times in [0,𝑇], is to be
determined to maximize the discounted option payoff.

To derive the LCP problem for the American put option,
we first need to derive the following theorem for fixed 𝜏,
which is for European put option.

Theorem 2. The price of the European option satisfies the
following PIDE:

− 𝑟
𝑡
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
) +
𝜕𝑃

𝜕𝑡
+
𝜕𝑃

𝜕𝑋
𝑟
𝑡
𝑋
𝑡
− +
𝜕𝑃

𝜕𝑉

× (𝛼 (𝜑 − 𝑉
𝑡
) − 𝜌𝜎𝜃

𝑡
𝑉
𝑡
)

+
1

2

𝜕
2
𝑃

𝜕𝑋2
𝑉
𝑡
𝑋
2

𝑡
+
𝜕
2
𝑃

𝜕𝑋𝜕𝑉
𝑋
𝑡
𝑉
𝑡
𝜎𝜌 +

1

2

𝜕
2
𝑃

𝜕𝑋2
𝑉
𝑡
𝑋
2

𝑡

+ ∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
) − 𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
) − (𝑦 − 1)

𝜕𝑃

𝜕𝑋
𝑋
𝑡
−)

× V (𝑑𝑦) = 0.
(B.2)

Proof. Using the Itô formula of semimartingales, we get

𝑑(𝑒
−∫
𝑇

𝑡

𝑟
𝑢

𝑑𝑢
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
))

= −𝑟
𝑡
𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
) 𝑑𝑡 + 𝑒

−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕𝑃

𝜕𝑡
𝑑𝑡

+ 𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕𝑃

𝜕𝑋
𝑑𝑋 + 𝑒

−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕𝑃

𝜕𝑉
𝑑𝑉

+
1

2
𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕
2
𝑃

𝜕𝑋2
𝑑𝑋𝑑𝑋

+ 𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕
2
𝑃

𝜕𝑋𝜕𝑉
𝑑𝑋𝑑𝑉 +

1

2
𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢 𝜕
2
𝑃

𝜕𝑉2
𝑑𝑉𝑑𝑉

+ 𝑒
−∫
𝑇

𝑡

𝑟
𝑢

𝑑𝑢
∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
) − 𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
))𝑁 (𝑑𝑡, 𝑑𝑦) .

(B.3)
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By substituting (5) into the equation above, we obtain

𝑑(𝑒
−∫
𝑇

𝑡

𝑟
𝑢

𝑑𝑢
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
))

= 𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢
(−𝑟
𝑡
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
) 𝑑𝑡 +

𝜕𝑃

𝜕𝑡
𝑑𝑡

+
𝜕𝑃

𝜕𝑋
𝑋
𝑡
− (𝜇𝑑𝑡 + √𝑉

𝑡
𝑑�̃�
1

𝑡
− 𝜃
𝑡
𝑉
𝑡
𝑑𝑡

− ∫
𝑅

𝜃
𝑡
(𝑦 − 1)

2V (𝑑𝑦) 𝑑𝑡

−∫
𝑅

(𝑦 − 1) Ṽ (𝑑𝑦) 𝑑𝑡)

+
𝜕𝑃

𝜕𝑉
(𝛼 (𝜑 − 𝑉

𝑡
) 𝑑𝑡 + 𝜎√𝑉

𝑡
𝑑�̃�
2

𝑡
− 𝜌𝜎𝜃

𝑡
𝑉
𝑡
𝑑𝑡)

+
1

2

𝜕
2
𝑃

𝜕𝑋2
𝑉𝑋
2

𝑡
−

𝑑𝑡

+
𝜕
2
𝑃

𝜕𝑋𝜕𝑉
𝑋𝑉𝜌𝜎𝑑𝑡 +

1

2

𝜕
2
𝑃

𝜕𝑉2
𝑉𝜎
2
𝑑𝑡

+ ∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
) − 𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
)) �̃� (𝑑𝑡, 𝑑𝑦)

+∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
) − 𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
)) Ṽ (𝑑𝑦) 𝑑𝑡) .

(B.4)

By combining the like terms of 𝑑𝑡, we get

𝑑(𝑒
−∫
𝑇

𝑡

𝑟
𝑢

𝑑𝑢
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
))

= 𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢
(−𝑟
𝑡
𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
) +
𝜕𝑃

𝜕𝑡
+
𝜕𝑃

𝜕𝑋
𝑟
𝑡
𝑋
𝑡
−

+
𝜕𝑃

𝜕𝑉
(𝛼 (𝜑 − 𝑉

𝑡
) 𝜌𝜎𝜃
𝑡
) +
1

2

𝜕
2
𝑃

𝜕𝑋2
𝑉𝑋
2

𝑡
−

+
𝜕
2
𝑃

𝜕𝑋𝜕𝑉
𝑋𝑉𝜌𝜎 +

1

2

𝜕
2
𝑃

𝜕𝑉2
𝑉𝜎
2

+ ∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
) − 𝑃 (𝑡, 𝑋

𝑡
, 𝑉
𝑡
)

− (𝑦 − 1)
𝜕𝑃

𝜕𝑋
𝑋
𝑡
−) Ṽ (𝑑𝑦)) 𝑑𝑡

+ 𝑒
−∫
𝑡

0

𝑟
𝑢

𝑑𝑢
(
𝜕𝑃

𝜕𝑋
𝑋
𝑡
−

√𝑉
𝑡
𝑑�̃�
1

𝑡
+
𝜕𝑃

𝜕𝑉
𝜎√𝑉
𝑡
𝑑�̃�
2

𝑡

+ ∫
𝑅

(𝑃 (𝑡, 𝑋
𝑡
𝑦,𝑉
𝑡
)

−𝑃 (𝑡, 𝑋
𝑡
, 𝑉
𝑡
)) �̃� (𝑑𝑡, 𝑑𝑦)) .

(B.5)

Because the discounted price of the European style option
is amartingale, we set the drift term to zero, and consequently
we obtain the equation as given inTheorem 2. By rearranging

and simplifying (B.2), we obtain (7) in Section 2. Conse-
quently, based on the operator 𝐿 derived from this theorem,
the LCP problem (11) is constructed in Section 2 for solving
the American option model.
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