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We introduce a hybrid iterative scheme for finding a common element of the set of common fixed points for a family of infinitely
nonexpansive mappings, the set of solutions of the varitional inequality problem and the equilibrium problem in Hilbert space.
Under suitable conditions, some strong convergence theorems are obtained. Our results improve and extend the corresponding
results in (Chang et al. (2009), Min and Chang (2012), Plubtieng and Punpaeng (2007), S. Takahashi andW. Takahashi (2007), Tada
and Takahashi (2007), Gang and Changsong (2009), Ying (2013), Y. Yao and J. C. Yao (2007), and Yong-Cho and Kang (2012)).

1. Introduction

Let𝐻 be a real Hilbert space, whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐶 be a nonempty
closed convex subset of𝐻 and 𝑃

𝐶
the metric projection of𝐻

onto 𝐶. Let 𝜙 : 𝐶 × 𝐶 → 𝑅 be a bifunction. We consider the
equilibrium problem EP which is to find 𝑧 ∈ 𝐶 such that

𝜙 (𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

Let EP(𝜙) be the set of solutions. Some methods have been
proposed to solve the equilibrium problem.

Amapping𝐴 is said to be 𝛼-inverse strongly monotone if
there exists a real number 𝛼 > 0 such that ⟨𝐴𝑥−𝐴𝑦, 𝑥−𝑦⟩ ≥
𝛼‖𝐴𝑥 − 𝐴𝑦‖

2, for all 𝑥, 𝑦 ∈ 𝐶.
The classical variational inequality problem is to find an

element 𝑢 ∈ 𝐶 such that

⟨𝐴𝑢, V − 𝑢⟩ ≥ 0, ∀V ∈ 𝐶. (2)

The solution set of inequality (2) is denoted by VI(𝐶, 𝐴). For
given elements 𝑧 ∈ 𝐻 and 𝑢 ∈ 𝐶, we have the following
inequality:

⟨𝑢 − 𝑧, V − 𝑢⟩ ≥ 0, ∀V ∈ 𝐶, (3)

if and only if 𝑢 = 𝑃
𝐶
𝑧. It is known that the projection

operator 𝑃
𝐶
is nonexpansive. One can see that the variational

inequality problem (2) is equivalent to a fixed point problem.
Since an element u ∈ C is the solution of variational
inequality (2) if and only if u ∈ C is a fixed point
of the mapping PC(I − 𝜆A). Recently, many researchers
studied various iterative algorithms for finding an element
of VI(𝐶, 𝐴)⋂𝐹(𝑆). Takahashi and Toyoda [1] introduced the
following iterative scheme:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑆𝑃
𝐶
(𝐼 − 𝜆

𝑛
𝐵) 𝑥
𝑛
, ∀𝑛 ≥ 0. (4)

They proved that the sequence {𝑥
𝑛
} converges weakly to a

point 𝑞 ∈ VI(𝐶, 𝐵)⋂𝐹(𝑆). Y. Yao and J. C. Yao [2] introduced
the following iterative scheme:

𝑥1 = 𝑢 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
𝐴) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑆𝑃
𝐶
(𝐼 − 𝜆

𝑛
𝐴)𝑦
𝑛
.

(5)
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Chang et al. [3] introduced the following iterative scheme:

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ , ∀𝑦 ∈ 𝐶,

𝑥𝑛+1 = 𝛼𝑛𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛 + 𝛾𝑛𝑊𝑛𝑘𝑛,

𝑘
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
𝐵) 𝑦
𝑛
,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
𝐵) 𝑢
𝑛
,

(6)

and obtained some strong convergence theorems.
In this paper, we will introduce a new hybrid iterative

scheme for finding a common element of the set of com-
mon fixed points for a family of infinitely nonexpansive
mappings, the set of solutions of the variational inequality
problem, and the equilibrium problem. Further, we obtain
some strong convergence theorems and extend the results in
[2–10].

2. Preliminaries

Let 𝑥
𝑛

⇀ 𝑥 and 𝑥
𝑛

→ 𝑥 be the weak convergence and
strong convergence of the sequence {𝑥𝑛} in 𝐻. Let 𝐶 be a
nonempty closed convex subset of a Hilbert space 𝐻. Let
{𝑆𝑛}
∞

𝑛=1
: 𝐶 → 𝐶 be a family of infinitely nonexpansive

mappings and let {𝜆𝑛}
∞

𝑛=1
be a sequence of positive numbers

in [0, 1]. For 𝑛 ≥ 1, we define a mapping 𝑊𝑛 : 𝐶 → 𝐶 as
follows:

𝑈
𝑛,𝑛+1

= 𝐼

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑆
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑆
𝑛−1

𝑈
𝑛,𝑛

+ (1 − 𝜆
𝑛−1

) 𝐼

...

𝑈𝑛,𝑘 = 𝜆
𝑘
𝑆
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑆
𝑘−1

𝑈
𝑛,𝑘

+ (1 − 𝜆
𝑘−1

) 𝐼

...

𝑈𝑛,2 = 𝜆
2
𝑆
2
𝑈
𝑛,3

+ (1 − 𝜆
2
) 𝐼

𝑊
𝑛
= 𝑈
𝑛,1

= 𝜆
1
𝑆
1
𝑈
𝑛,2

+ (1 − 𝜆
1
) 𝐼.

(7)

𝑊𝑛 is the 𝑊-mapping of 𝐶 into itself which is generated by
𝑆𝑛, 𝑆𝑛−1, . . ., 𝑆1 and 𝜆𝑛, 𝜆𝑛−1, . . ., 𝜆1.

In order to prove our main results, the following Lemmas
are needed.

Lemma 1 (see [11]). Let 𝐶 be a nonempty closed convex subset
of a Banach space 𝐸, let {𝑆𝑛}

∞

𝑛=1
: 𝐶 → 𝐶 be a family

of infinitely nonexpansive mappings, such that ⋂∞
𝑛=1

𝐹(𝑆𝑛) ̸= 0,
and let {𝜆

𝑛
}
∞

𝑛=1
be a sequence of positive numbers in [0, 𝑏] for

some 𝑏 ∈ (0, 1). For any 𝑛 ≥ 1, let {𝑊
𝑛
} be the 𝑊-mapping of

𝐶 into itself generated by 𝑆
𝑛
, 𝑆
𝑛−1

, . . ., 𝑆
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . ., 𝜆
1
.

Then𝑊
𝑛
is asymptotically regular and nonexpansive. Further,

if 𝐸 is strictly convex, then 𝐹(𝑊
𝑛
) = ⋂

𝑛

𝑖=1
𝐹(𝑆
𝑖
).

Lemma 2 (see [4]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝐸. Let {𝑆

𝑛
}
∞

𝑛=1
:

𝐶 → 𝐶 be a family of infinitely nonexpansive mappings, such
that ⋂∞

𝑛=1
𝐹(𝑆
𝑛
) ̸= 0, and let {𝜆

𝑛
}
∞

𝑛=1
be a sequence of positive

numbers in [0, 𝑏] for some 𝑏 ∈ (0, 1). Then for every 𝑥 ∈ 𝐶 and
𝑘 ≥ 1lim

𝑘→∞
𝑈
𝑛,𝑘
𝑥 exists.

Using Lemma 2, we can define a mapping𝑊 : 𝐶 → 𝐶 as
follows:

𝑊𝑥 = lim
𝑛→∞

𝑊
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,1
𝑥, ∀𝑥 ∈ 𝐶. (8)

Such a 𝑊 is called the W-mapping generated by the sequence
{𝑆
𝑛
}
∞

𝑛=1
and {𝜆

𝑛
}
∞

𝑛=1
. Throughout this paper, we always assume

that {𝜆
𝑛
}
∞

𝑛=1
is a sequence of positive numbers in [0, 𝑏] for an

element 𝑏 ∈ (0, 1).

Lemma 3 (see [4]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝐸. Let {𝑆

𝑛
}
∞

𝑛=1
:

𝐶 → 𝐶 be a family of infinitely nonexpansive mappings
such that ⋂

∞

𝑛=1
𝐹(𝑆𝑛) ̸= 0 and let {𝜆𝑛}

∞

𝑛=1
be a sequence of

positive numbers in [0, 𝑏] for some 𝑏 ∈ (0, 1). Then, 𝑊 is a
nonexpansive mapping and 𝐹(𝑊) = ⋂

∞

𝑛=1
𝐹(𝑆𝑛).

Lemma 4 (see [4]). Let 𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻, let {𝑆𝑛}

∞

𝑛=1
: 𝐶 → 𝐶 be a family

of infinitely nonexpansive mappings, such that⋂∞
𝑛=1

𝐹(𝑆
𝑛
) ̸= 0,

and let {𝜆𝑛}
∞

𝑛=1
be a sequence of positive numbers in [0, 𝑏]

for some 𝑏 ∈ (0, 1). If 𝐾 is any bounded subset of 𝐶, then
lim
𝑛→∞

sup
𝑥∈𝐾

‖𝑊𝑥 −W
𝑛
𝑥‖ = 0.

Lemma 5 (see [10]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be bounded sequences

in a Banach space 𝐸 and let {𝛽
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose that𝑥

𝑛+1
=

(1−𝛽
𝑛
)𝑧
𝑛
+𝛽
𝑛
𝑥
𝑛
for all integers 𝑛 ≥ 1 and lim sup

𝑛→∞
(‖𝑧
𝑛+1

−

𝑧
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then, lim

𝑛→∞
‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 6 (see [10]). Assume that 𝑎
𝑛
is a sequence of nonneg-

ative real numbers, such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛) 𝑎𝑛 + 𝛿

𝑛
, ∀𝑛 ≥ 𝑛

0
, (9)

where 𝑛
0
is some nonnegative integer, 𝛾n ∈ (0, 1), and 𝛿

𝑛
are

sequences satisfying

(1) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(2) lim sup
𝑛→∞

(𝛿
𝑛
/𝛾
𝑛
) ≤ 0 or ∑

∞

𝑛=1
|𝛿
𝑛
| = ∞; then,

lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 7 (see [10]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻. Let {𝑇

𝑚
: 1 ≤ 𝑚 ≤ 𝑟} be a sequence

of nonexpansive mappings on 𝐶. Suppose that ⋂𝑟
𝑚=1

𝐹(𝑇
𝑚
) is

nonempty. Let {𝜆
𝑚
} be a sequence of positive numbers with

∑
𝑟

𝑚=1
𝜆
𝑚

= 1. Then, a mapping 𝑆 on 𝐶 defined by 𝑆𝑥 =

∑
𝑟

𝑚=1
𝜆
𝑚
𝑇
𝑚
𝑥 for all 𝑥 ∈ 𝐶 is well defined and nonexpansive

and 𝐹(𝑆) = ⋂
𝑟

𝑚=1
𝐹(𝑇
𝑚
) holds.

For solving the equilibrium problem for bifunction 𝐹 :

𝐶 ×𝐶 → 𝑅, assume that 𝐹 satisfies the following conditions:

(𝐴
1
) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
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(𝐴
2
) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for all
𝑥, 𝑦 ∈ 𝐶;

(𝐴3) lim𝑡→0𝐹(𝑡𝑧+(1−𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦), for any𝑥, 𝑦, 𝑧 ∈ 𝐶;
(𝐴
4
) for each 𝑥 ∈ 𝐶, 𝑦 → 𝐹(𝑥, 𝑦) is convex and lower
semicontinuous.

If an equilibrium bifunction 𝐹 : 𝐶 × 𝐶 → 𝑅

satisfies conditions (𝐴1)–(𝐴4), then we have the following
two important results.

Lemma 8 (see [4]). Let 𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻 and let 𝐹 be an equilibrium bifunction
𝐹 : 𝐶 × 𝐶 → 𝑅 that satisfies conditions (𝐴1)–(𝐴4). Let 𝑟 > 0

and 𝑥 ∈ 𝐶; then, there exists𝑦 ∈ 𝐶 such that𝐹(𝑦, 𝑧)+(1/𝑟)⟨𝑧−
𝑦, 𝑦 − 𝑥⟩ ≥ 0, for all 𝑧 ∈ 𝐶.

Lemma 9 (see [4]). Let 𝐹 be an equilibrium bifunction𝐹 : 𝐶×

𝐶 → 𝑅 that satisfies conditions (𝐴
1
)–(𝐴
4
). For given 𝑟 > 0

and 𝑥 ∈ 𝐶, define a mapping 𝑉
𝑟
: 𝐻 → 𝐶 as follows:

𝑉𝑟 (𝑥) = {𝑦 ∈ 𝐶 : 𝐹 (𝑦, 𝑧) +
1

𝑟
⟨𝑧 − 𝑦, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(10)

Then, the following conclusions hold:

(1) 𝑉
𝑟
is single-valued;

(2) 𝑉𝑟 is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,
‖𝑉
𝑟𝑥 − 𝑉𝑟𝑦‖

2
≤ ⟨𝑉𝑟𝑥 − 𝑉𝑟𝑦, 𝑥 − 𝑦⟩;

(3) 𝐹(𝑉
𝑟
) = EP(𝐹)

(4) EP(𝐹) is a closed and convex set.

3. The Main Results

Theorem 10. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let 𝐵

𝑚
: 𝐶 → 𝐻 be a 𝑙

𝑚
-inverse strongly

monotonemapping for each 1 ≤ 𝑚 ≤ 𝑟, where 𝑟 is some positive
integer. Let 𝐷 : 𝐶 → 𝐻 be a 𝛼-inverse strongly monotone
mapping. Let 𝐹 be an equilibrium bifunction 𝐹 : 𝐶 × 𝐶 →

𝑅 that satisfies conditions (𝐴
1
)–(𝐴
4
). Let {𝑇

𝑛
}
∞

𝑛=1
: 𝐶 → 𝐶

be a family of infinite 𝑘
𝑛
-strict pseudocontractive mappings

with 0 ≤ 𝑘
𝑛
< 1 and let {𝜆

𝑛
}
∞

𝑛=1
be a sequence of positive

numbers in [0, 𝑏] for some 𝑏 ∈ (0, 1). {𝑆
𝑛
}
∞

𝑛=1
: 𝐶 → 𝐶 is

a family of infinitely nonexpansive mappings such that F =

𝐹(𝑊)⋂VI(𝐶, 𝐵
𝑚
)⋂EP ̸= 0, where 𝐹(𝑊) := ⋂

∞

𝑛=1
𝐹(𝑆
𝑛
). Let

𝐴 be a strongly positive linear bounded operator with coefficient
𝛾 > 0 and let 𝑓 : 𝐻 → 𝐻 be a contraction with contraction
constant ℎ (0 < ℎ < 1) and 0 < 𝛾 < (𝛾/ℎ). Let {𝑥

𝑛
}, {𝑦
𝑛
}, {𝜌
𝑛
}

be sequence generated by 𝑥
1
∈ 𝐻 and

𝐹 (𝑦
𝑛
, 𝜂) + ⟨𝐷𝑦

𝑛
, 𝜂 − 𝑦

𝑛
⟩ +

1

𝑟𝑛

⟨𝜂 − 𝑦
𝑛
, 𝑦
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝜂 ∈ 𝐶,

𝜌
𝑛
=

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝜌
𝑛
,

(11)

where 𝜇
𝑚
∈ (0, 2𝑙

𝑚
), {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1], and {𝑟

𝑛
} ⊂ [0,∞]. If

the following conditions are satisfied:

(𝐶
1) lim𝑛→∞𝛼𝑛 = 0 and ∑∞

𝑛=1
𝛼𝑛 = ∞;

(𝐶
2
) lim
𝑛→∞

𝜂
𝑚

𝑛
= 𝜂
𝑚
∈ (0, 1);

(𝐶
3
) ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞;

(𝐶
4
) lim inf

𝑛→∞
𝑟
𝑛

> 0, 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛
< 1;

(𝐶
5
) ∑
∞

𝑛=1
𝜂
𝑚

𝑛
= 1, for all 𝑛 ≥ 1,

then {𝑥
𝑛
} converges strongly to 𝑞 ∈ F, where 𝑞 = 𝑃F(𝛾𝑓 + (𝐼 −

𝐴))𝑞.

Proof. We define a bifunction 𝜙 : 𝐶 × 𝐶 → 𝑅 by 𝜙(𝑧, 𝑦) =
𝐹(𝑧, 𝑦) + ⟨𝐷𝑧, 𝑦 − 𝑧⟩, for all 𝑦, 𝑧 ∈ 𝐶, so the equilibrium
problem is equivalent to the following equilibrium problem:
find an element 𝑧 ∈ 𝐶 such that 𝜙(𝑧, 𝑦) ≥ 0, for all 𝑦 ∈ 𝐶 and
(11) can be written as

𝜙 (𝑦𝑛, 𝜂) +
1

𝑟
𝑛

⟨𝜂 − 𝑦𝑛, 𝑦𝑛 − 𝑥𝑛⟩ ≥ 0, ∀𝜂 ∈ 𝐶,

𝜌
𝑛
=

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝜌
𝑛
.

(12)

Step 1. First, we prove the sequences {𝑥𝑛}, {𝑦𝑛}, {𝜌𝑛} are
bounded.

Let 𝑝 ∈ F; as 𝑦
𝑛
= 𝑉
𝑟
𝑛

𝑥
𝑛
, we have ‖𝑦

𝑛
− 𝑝‖ = ‖𝑉

𝑟
𝑛

𝑥
𝑛
−

𝑝‖ ≤ ‖𝑥
𝑛
− 𝑝‖. Next we show that the mapping 𝐼 − 𝜇

𝑚
𝐵
𝑚
is

nonexpansive for each𝑚. Consider

(𝐼 − 𝜇
𝑚
𝐵
𝑚
)𝑥 − (𝐼 − 𝜇

𝑚
𝐵
𝑚
)𝑦


2

=
(𝑥 − 𝑦) − 𝜇

𝑚 (𝐵𝑚𝑥 − 𝐵𝑚𝑦)


2

=
𝑥 − 𝑦



2
+ 𝜇
2

𝑚

𝐵𝑚𝑥 − 𝐵
𝑚
𝑦


2

− 2𝜇
𝑚
⟨𝐵
𝑚
𝑥 − 𝐵
𝑚
𝑦, 𝑥 − 𝑦⟩

≤
𝑥 − 𝑦



2
+ 𝜇
2

𝑚

𝐵𝑚𝑥 − 𝐵
𝑚
𝑦


2
− 2𝜇
𝑚
𝑙
𝑚

𝐵𝑚𝑥 − 𝐵
𝑚
𝑦


2

=
𝑥 − 𝑦



2
− 𝜇𝑚 (2𝑙𝑚 − 𝜇𝑚)

𝐵𝑚𝑥 − 𝐵𝑚𝑦


2

≤
𝑥 − 𝑦



2
,

𝜌𝑛 − 𝑝
 =



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛
− 𝑝



≤

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛

𝑦𝑛 − 𝑝
 ≤

𝑥𝑛 − 𝑝
 .

(13)
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Since 𝐴 is a strongly positive linear bounded operator, then
‖𝐴‖ = sup{|⟨𝐴𝑢, 𝑢⟩| : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}, ⟨((1 − 𝛽

𝑛
)𝐼 −

𝛼
𝑛
𝐴)𝑢, 𝑢⟩ = 1 − 𝛽

𝑛
− 𝛼
𝑛
⟨𝐴𝑢, 𝑢⟩ ≥ 1 − 𝛽

𝑛
− 𝛼
𝑛
‖𝐴‖ ≥ 0, so

(1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴


= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) 𝑢, 𝑢⟩

 : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾,

(14)

(1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴


= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) 𝑢, 𝑢⟩

 : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛 − 𝛼𝑛𝛾

𝑥𝑛+1 − 𝑝


=
𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴)𝑊𝑛𝜌𝑛 − 𝑝



=
𝛼𝑛𝛾 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝑊

𝑛
𝜌
𝑛
− 𝑝)

+𝛼
𝑛
(𝛾𝑓 (𝑝) − 𝐴𝑝)



≤ 𝛼
𝑛
𝛾ℎ

𝑥𝑛 − 𝑝
 + 𝛽
𝑛

𝑥𝑛 − 𝑝


+ ((1 − 𝛽
𝑛) 𝐼 − 𝛼𝑛𝐴)

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝛾𝑓 (𝑝) − 𝐴𝑝


≤ 𝛼
𝑛
𝛾ℎ

𝑥𝑛 − 𝑝
 + 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑝



− 𝛼
𝑛𝛾

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝛾𝑓 (𝑝) − 𝐴𝑝


= (1 − 𝛼
𝑛
(𝛾 − 𝛾ℎ))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝛾𝑓 (𝑝) − 𝐴𝑝


≤ max{𝑥𝑛 − 𝑝
 ,

1

𝛾 − 𝛾ℎ

𝛾𝑓 (𝑝) − 𝐴𝑝
}

...

≤ max{𝑥1 − 𝑝
 ,

1

𝛾 − 𝛾ℎ

𝛾𝑓 (𝑝) − 𝐴𝑝
} .

(15)

This implies that {𝑥
𝑛
} is bounded sequence in 𝐻. Therefore

{𝑦
𝑛
}, {𝜌
𝑛
}, {𝛾𝑓(𝑥

𝑛
)}, {𝑊

𝑛
𝜌
𝑛
} are all bounded.

Step 2. Next, we prove that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 and

lim
𝑛→∞

‖𝜌
𝑛+1

− 𝜌
𝑛
‖ = 0.

In fact, let us define a sequence {𝑧
𝑛
} by 𝑥
𝑛+1

= (1−𝛽
𝑛
)𝑧
𝑛
+

𝛽
𝑛
𝑥
𝑛
, for all 𝑛 ≥ 1; then, we have

𝑧
𝑛+1

− 𝑧
𝑛

=
𝑥
𝑛+2

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

=
𝛼𝑛+1𝛾𝑓 (𝑥𝑛+1) + ((1 − 𝛽𝑛+1) 𝐼 − 𝛼𝑛+1𝐴)𝑊𝑛+1𝜌𝑛+1

1 − 𝛽
𝑛+1

−
𝛼𝑛𝛾𝑓 (𝑥𝑛) + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴)𝑊𝑛𝜌𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝛽
𝑛+1

[𝛾𝑓 (𝑥
𝑛+1

) − 𝐴𝑊
𝑛+1

𝜌
𝑛+1

]

−
𝛼
𝑛

1 − 𝛽𝑛

[𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑊

𝑛
𝜌
𝑛
] + 𝑊
𝑛+1

𝜌
𝑛+1

−𝑊
𝑛
𝜌
𝑛

=
𝛼
𝑛+1

1 − 𝛽𝑛+1

[𝛾𝑓 (𝑥
𝑛+1

) − 𝐴𝑊
𝑛+1

𝜌
𝑛+1

]

−
𝛼
𝑛

1 − 𝛽𝑛

[𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑊

𝑛
𝜌
𝑛
]

+ (𝑊
𝑛+1

𝜌
𝑛+1

−𝑊
𝑛+1

𝜌
𝑛
) + (𝑊

𝑛+1
𝜌
𝑛
−𝑊
𝑛
𝜌
𝑛
) ,

𝑧𝑛+1 − 𝑧𝑛
 −

𝑥𝑛+1 − 𝑥𝑛


≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
𝛾𝑓 (𝑥

𝑛+1)
 +

𝐴𝑊𝑛+1𝜌𝑛+1
)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
𝛾𝑓 (𝑥

𝑛)
 +

𝐴𝑊𝑛𝜌𝑛
)

+
𝜌𝑛+1 − 𝜌

𝑛

 +
𝑊𝑛+1𝜌𝑛 −𝑊

𝑛
𝜌
𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

 .

(16)

Because 𝜌
𝑛
= ∑
𝑟

𝑚=1
𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
)𝑦
𝑛
, we have

𝜌𝑛+1 − 𝜌
𝑛



=



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛+1

−

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛



=



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛+1

−

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛

+

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛
−

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛



≤
𝑦𝑛+1 − 𝑦

𝑛

 +𝑀

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
− 𝜂
𝑚

𝑛

 ,

(17)

where𝑀 = max {sup{‖𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
)𝑦
𝑛
‖ : 𝑛 ≥ 1} : 1 ≤ 𝑚 ≤

𝑟}, so

𝑧𝑛+1 − 𝑧𝑛
 −

𝑥𝑛+1 − 𝑥𝑛


≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
𝛾𝑓 (𝑥

𝑛+1)
 +

𝐴𝑊𝑛+1𝜌𝑛+1
)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
𝛾𝑓 (𝑥

𝑛)
 +

𝐴𝑊𝑛𝜌𝑛
)

+
𝑦𝑛+1 − 𝑦

𝑛

 +𝑀

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
− 𝜂
𝑚

𝑛



+
𝑊𝑛+1𝜌𝑛 −𝑊

𝑛
𝜌
𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

 .

(18)
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Observing 𝑦
𝑛
= 𝑉
𝑟
𝑛

𝑥
𝑛
, 𝑦
𝑛+1

= 𝑉
𝑟
𝑛+1

𝑥
𝑛+1

, we have

𝜙 (𝑦𝑛, 𝜂) +
1

𝑟
𝑛

⟨𝜂 − 𝑦𝑛, 𝑦𝑛 − 𝑥𝑛⟩ ≥ 0, ∀𝜂 ∈ 𝐶, (19)

𝜙 (𝑦
𝑛+1

, 𝜂) +
1

𝑟𝑛+1

⟨𝜂 − 𝑦
𝑛+1

, 𝑦
𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0, ∀𝜂 ∈ 𝐶.

(20)

Putting 𝜂 = 𝑦
𝑛+1

in (19), 𝜂 = 𝑦
𝑛
in (20), adding up these two

inequalities, and using condition (𝐴
2
) to simplify, we have

⟨𝑦𝑛+1 − 𝑦𝑛, 𝑦𝑛 − 𝑦𝑛+1 + 𝑦𝑛+1

− 𝑥
𝑛
−

𝑟
𝑛

𝑟
𝑛+1

(𝑦
𝑛+1

− 𝑥
𝑛+1

)⟩ ≥ 0.

(21)

By condition (𝐶
4
), without loss of generality, we can assume

that there exists a real number𝑚 such that 𝑟
𝑛
> 𝑚 > 0, so

𝑦𝑛+1 − 𝑦
𝑛



2
≤
𝑦𝑛+1 − 𝑦

𝑛



× (
𝑥𝑛+1 − 𝑥

𝑛

 +



1 −
𝑟
𝑛

𝑟𝑛+1



(𝑦
𝑛+1

− 𝑥
𝑛+1

))

𝑦𝑛+1 − 𝑦
𝑛

 ≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑀
1

𝑚

𝑟𝑛+1 − 𝑟
𝑛

 ,

(22)

where𝑀
1
= sup

𝑛≥1
‖𝑦
𝑛
− 𝑥
𝑛
‖.

Since 𝑆
𝑖
, 𝑈
𝑛,𝑖

are nonexpansive, so ‖𝑊
𝑛+1

𝜌
𝑛
− 𝑊
𝑛
𝜌
𝑛
‖ ≤

∏
𝑛+1

𝑖=1
𝜆
𝑖
‖𝑆
𝑛+1

𝜌
𝑛
−𝜌
𝑛
‖ ≤ 𝐿(∏

𝑛+1

𝑖=1
𝜆
𝑖
), where 𝐿 = sup

𝑛≥1
‖𝑆
𝑛+1

𝜌
𝑛
−

𝜌
𝑛
‖. Consider

𝑧𝑛+1 − 𝑧
𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛



≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
𝛾𝑓 (𝑥

𝑛+1
)
 +

𝐴𝑊𝑛+1𝜌𝑛+1
)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
𝛾𝑓 (𝑥

𝑛
)
 +

𝐴𝑊𝑛𝜌𝑛
)

+
𝑀
1

𝑚

𝑟𝑛+1 − 𝑟
𝑛

 + 𝐿(

𝑛+1

∏

𝑖=1

𝜆
𝑖
) .

(23)

Using 0 < 𝜆
𝑖
≤ 𝑏 < 1 (𝑖 ≥ 1) and the conditions (𝐶

1
)–(𝐶
3
),

lim sup
𝑛→∞

(‖𝑧
𝑛+1

− 𝑧
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. By Lemma 5, we

conclude that lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0, lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ =

lim
𝑛→∞

(1 − 𝛽
𝑛
)‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0. Consider

𝜌𝑛+1 − 𝜌
𝑛

 ≤
𝑦𝑛+1 − 𝑦

𝑛

 + 𝑀

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
− 𝜂
𝑚

𝑛



≤
𝑥𝑛+1 − 𝑥𝑛



𝑀
1

𝑚

𝑟𝑛+1 − 𝑟𝑛
 + 𝑀

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛+1
− 𝜂
𝑚

𝑛

 .

(24)

So lim
𝑛→∞

‖𝜌
𝑛+1

− 𝜌
𝑛
‖ = 0.

Step 3. Consider

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛

 =
𝑥𝑛 − 𝑥

𝑛+1
+ 𝑥
𝑛+1

−𝑊
𝑛
𝜌
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1



+
𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴)𝑊𝑛𝜌𝑛 −𝑊𝑛𝜌𝑛


≤
𝑥𝑛+1 − 𝑥

𝑛

 + 𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑊

𝑛
𝜌
𝑛



+ 𝛽
𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛


𝑥𝑛 −𝑊𝑛𝜌𝑛
 ≤

1

1 − 𝛽
𝑛

𝑥𝑛+1 − 𝑥𝑛


+
𝛼
𝑛

1 − 𝛽
𝑛

𝛾𝑓 (𝑥
𝑛) − 𝐴𝑊𝑛𝜌𝑛

 .

(25)

So we have lim
𝑛→∞‖𝑥𝑛 −𝑊𝑛𝜌𝑛‖ = 0.

Step 4. For any given 𝑝 ∈ F,

𝑦𝑛 − 𝑝


2
=

𝑉
𝑟
𝑛

𝑥
𝑛
− 𝑝



2

= ⟨𝑉
𝑟
𝑛

𝑥
𝑛
− 𝑉
𝑟
𝑛

𝑝, 𝑥
𝑛
− 𝑝⟩

= ⟨𝑦
𝑛 − 𝑝, 𝑥𝑛 − 𝑝⟩

=
1

2
(
𝑦𝑛 − 𝑝



2
+
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑦𝑛



2
) ,

(26)

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝜌
𝑛
− 𝑝



2

=
[(𝐼 − 𝛼

𝑛𝐴) (𝑊𝑛𝜌𝑛 − 𝑝) + 𝛽𝑛 (𝑥𝑛 −𝑊𝑛𝜌𝑛)]

+𝛼
𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑝)



≤
(𝐼 − 𝛼

𝑛
𝐴)(𝑊
𝑛
𝜌
𝑛
− 𝑝) + 𝛽

𝑛
(𝑥
𝑛
−𝑊
𝑛
𝜌
𝑛
)


2

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ [(1 − 𝛼𝑛𝛾)
𝜌𝑛 − 𝑝

 + 𝛽
𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛
]
2

+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



= (1 − 𝛼
𝑛
𝛾)
2𝜌𝑛 − 𝑝



2
+ 𝛽
2

𝑛

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



2

+ 2 (1 − 𝛼𝑛𝛾) 𝛽𝑛
𝜌𝑛 − 𝑝

 ⋅
𝑥𝑛 −𝑊𝑛𝜌𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



≤ (1 − 𝛼
𝑛𝛾)
2
[
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑦𝑛



2
]

+ 𝛽
2

𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛


2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝

 .

(27)
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Simplifying it, we have

(1 − 𝛼
𝑛
𝛾)
2𝑥𝑛 − 𝑦

𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 𝛼
2

𝑛
𝛾
2𝑥𝑛 − 𝑝



2
+ 𝛽
2

𝑛

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ 𝛼
2

𝑛
𝛾
2𝑥𝑛 − 𝑝



2
+ 𝛽
2

𝑛

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝

 .

(28)

So lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Step 5. Consider
𝜌𝑛 − 𝑝



2

=



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛
− 𝑝



2

≤
(𝑦𝑛 − 𝑝) − 𝜇

𝑚
(𝐵
𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝)


2

=
𝑦𝑛 − 𝑝



2
+ 𝜇
2

𝑚

𝐵𝑚𝑦𝑛 − 𝐵𝑚𝑝


2

− 2𝜇
𝑚
⟨𝑦
𝑛
− 𝑝, 𝐵

𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝⟩

≤
𝑦𝑛 − 𝑝



2
+ 𝜇
2

𝑚

𝐵𝑚𝑦𝑛 − 𝐵
𝑚
𝑝


2

− 2𝜇
𝑚
𝑙
𝑚

𝐵𝑚𝑦𝑛 − 𝐵
𝑚
𝑝


2

≤
𝑥𝑛 − 𝑝



2
+ 𝜇𝑚 (𝜇𝑚 − 2𝑙𝑚)

𝐵𝑚𝑦𝑛 − 𝐵𝑚𝑝


2

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
𝛾)
2𝑥𝑛 − 𝑝



2

+ (1 − 𝛼
𝑛
𝛾)
2
𝜇
𝑚
(𝜇
𝑚
− 2𝑙
𝑚
)
𝐵𝑚𝑦𝑛 − 𝐵

𝑚
𝑝


2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



(2𝑙
𝑚
− 𝜇
𝑚
) (1 − 𝛼

𝑛
𝛾)
2
𝜇
𝑚

𝐵𝑚𝑦𝑛 − 𝐵
𝑚
𝑝


2

≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥𝑛+1



+ 𝛼
2

𝑛
𝛾
2𝑥𝑛 − 𝑝



2

+ 2 (1 − 𝛼𝑛𝛾) 𝛽𝑛
𝜌𝑛 − 𝑝

 ⋅
𝑥𝑛 −𝑊𝑛𝜌𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝

 .

(29)

So lim
𝑛→∞

‖𝐵
𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝‖ = 0.

Step 6. Consider

𝜌𝑛 − 𝑝


2
=



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃𝐶 (𝐼 − 𝜇𝑚𝐵𝑚) 𝑦𝑛 − 𝑝



2

≤ ⟨(𝑦
𝑛
− 𝜇
𝑚
𝐵
𝑚
𝑦
𝑛
) − (𝑝 − 𝜇

𝑚
𝐵
𝑚
𝑝) , 𝜌
𝑛
− 𝑝⟩

=
1

2
{
𝐼 − 𝜇

𝑚
𝐵
𝑚
𝑦
𝑛
− 𝐼 − 𝜇

𝑚
𝐵
𝑚
𝑝


2
+
𝜌𝑛 − 𝑝



2

−
(𝑦𝑛 − 𝜌

𝑛
) − 𝜇
𝑚
(𝐵
𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝)


2
}

≤
1

2
{
𝑦𝑛 − 𝑝



2
+
𝜌𝑛 − 𝑝



2
−
𝑦𝑛 − 𝜌𝑛



2

− 𝜇
2

𝑚

𝐵𝑚𝑦𝑛 − 𝐵𝑚𝑝


2

+2𝜇
𝑚
⟨𝑦
𝑛
− 𝜌
𝑛
, 𝐵
𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝⟩ }

𝜌𝑛 − 𝑝


2
≤
𝑦𝑛 − 𝑝



2
−
𝑦𝑛 − 𝜌

𝑛



2
− 𝜇
2

𝑚

𝐵𝑚𝑦𝑛 − 𝐵
𝑚
𝑝


2

+ 2𝜇𝑚 ⟨𝑦𝑛 − 𝜌𝑛, 𝐵𝑚𝑦𝑛 − 𝐵𝑚𝑝⟩

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼𝑛𝛾)
2𝜌𝑛 − 𝑝



2
+ 𝛽
2

𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛


2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



≤ (1 − 𝛼
𝑛𝛾)
2
[
𝑦𝑛 − 𝑝



2
−
𝑦𝑛 − 𝜌𝑛



2

− 𝜇
2

𝑚

𝐵𝑚𝑦𝑛 − 𝐵
𝑚
𝑝


2

+2𝜇
𝑚
⟨𝑦
𝑛
− 𝜌
𝑛
, 𝐵
𝑚
𝑦
𝑛
− 𝐵
𝑚
𝑝⟩ ]

+ 𝛽
2

𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛


2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



≤
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛
𝛾
2𝑥𝑛 − 𝑝



2

+ 2𝜇
𝑚
(1 − 𝛼

𝑛
𝛾)
2 𝑦𝑛 − 𝜌

𝑛

 ⋅
𝐵𝑚𝑦𝑛 − 𝐵

𝑚
𝑝


− (1 − 𝛼
𝑛𝛾)
2𝑦𝑛 − 𝜌𝑛



2
+ 𝛽
2

𝑛

𝑥𝑛 −𝑊𝑛𝜌𝑛


2

+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝



(1 − 𝛼
𝑛
𝛾)
2𝑦𝑛 − 𝜌

𝑛



2

≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ 2𝜇
𝑚(1 − 𝛼𝑛𝛾)

2 𝑦𝑛 − 𝜌𝑛
 ⋅

𝐵𝑚𝑦𝑛 − 𝐵𝑚𝑝


+ 𝛽
2

𝑛

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



2
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+ 2 (1 − 𝛼
𝑛
𝛾) 𝛽
𝑛

𝜌𝑛 − 𝑝
 ⋅

𝑥𝑛 −𝑊
𝑛
𝜌
𝑛



+ 2𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑝

 ⋅
𝑥𝑛+1 − 𝑝

 .

(30)

So lim
𝑛→∞

‖𝑦
𝑛
− 𝜌
𝑛
‖ = 0.

Step 7. Consider
𝑦𝑛 −𝑊𝑛𝑦𝑛

 ≤
𝑊𝑛𝑦𝑛 −𝑊𝑛𝜌𝑛



+
𝑊𝑛𝜌𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑦

𝑛



≤
𝑦𝑛 − 𝜌𝑛

 +
𝑊𝑛𝜌𝑛 − 𝑥𝑛

 +
𝑥𝑛 − 𝑦𝑛

 .

(31)

So lim
𝑛→∞

‖𝑦
𝑛
−𝑊
𝑛
𝑦
𝑛
‖ = 0.

Step 8. Next, we prove that lim sup
𝑛→∞

⟨𝛾𝑓(𝑞)−𝐴𝑞, 𝑥
𝑛
−𝑞⟩ ≤

0, where 𝑞 = 𝑃F(𝛾𝑓 + (𝐼 − 𝐴𝑞)).
To show it, we can choose a subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
} such

that

lim sup
𝑛→∞

⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥
𝑛
− 𝑞⟩

= lim
𝑖→∞

⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥
𝑛
𝑖

− 𝑞⟩ .

(32)

Since {𝑦
𝑛
𝑖

} is bounded, so there exists a subsequence {𝑦
𝑛
𝑖
𝑗

} of
{𝑦
𝑛
𝑖

}which converges weakly to𝜔. Without loss of generality,
we can assume that𝑦

𝑛
𝑖

⇀ 𝜔; then,𝜙(𝑦
𝑛
, 𝜂)+(1/𝑟

𝑛
)⟨𝜂−𝑦

𝑛
, 𝑦
𝑛
−

𝑥
𝑛
⟩ ≥ 0, for all 𝜂 ∈ 𝐶, ⟨𝜂 − 𝑦

𝑛
, (𝑦
𝑛
− 𝑥
𝑛
)/𝑟
𝑛
⟩ ≥ 𝜙(𝜂, 𝑦

𝑛
),

⟨𝜂 − 𝑦
𝑛
𝑖

, (𝑦
𝑛
𝑖

− 𝑥
𝑛
𝑖

)/𝑟
𝑛
𝑖

⟩ ≥ 𝜙(𝜂, 𝑦
𝑛
𝑖

). So 𝜙(𝜂, 𝜔) ≤ 0.
For any 𝑡 with 0 ≤ 𝑡 ≤ 1 and 𝜂 ∈ 𝐶, let 𝜂

𝑡
= 𝑡𝜂 + (1 − 𝑡)𝜔.

Since 𝜂 ∈ 𝐶 and 𝜙(𝜂
𝑡
, 𝜔) ≤ 0, from conditions (𝐴

1
) and (𝐴

4
),

we have

0 = 𝜙 (𝜂
𝑡
, 𝜂
𝑡
) ≤ 𝑡𝜙 (𝜂

𝑡
, 𝜂) + (1 − 𝑡) 𝜙 (𝜂𝑡, 𝜔) ≤ 𝑡𝜙 (𝜂

𝑡
, 𝜂) .

(33)

This implies that 𝜙(𝜂
𝑡
, 𝜂) ≥ 0. From condition (𝐴

3
), we have

𝜙(𝜔, 𝜂) ≥ 0. So 𝜔 ∈ EP(𝜙).
Define a mapping 𝐽 : 𝐶 → 𝐶 by 𝐽𝑥 = ∑

𝑟

𝑚=1
𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 −

𝜇𝑚𝐵𝑚)𝑥, for all 𝑥 ∈ 𝐶, where lim𝑛→∞𝜂
𝑚

𝑛
= 𝜂
𝑚. From

Lemma 7 we see that 𝐽 is nonexpansive such that

𝐹 (𝐽) =

𝑟

⋂

𝑚=1

𝐹 (𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
)) =

𝑟

⋂

𝑚=1

VI (𝐶, 𝐵
𝑚
) .

𝑦𝑛 − 𝐽𝑦
𝑛

 ≤
𝑦𝑛 − 𝜌

𝑛

 +
𝜌𝑛 − 𝐽𝑦

𝑛



=
𝑦𝑛 − 𝜌

𝑛

 +



𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛

−

𝑟

∑

𝑚=1

𝜂
𝑚
𝑃
𝐶
(𝐼 − 𝜇

𝑚
𝐵
𝑚
) 𝑦
𝑛



≤
𝑦𝑛 − 𝜌

𝑛

 +𝑀

𝑟

∑

𝑚=1

𝜂
𝑚

𝑛
− 𝜂
𝑚 → 0

(𝑛 → ∞) ;

(34)

Since every nonexpansive mapping is strictly pseudocontrac-
tive, so 𝜔 ∈ 𝐹(𝐽) = ⋂

𝑟

𝑚=1
VI(𝐶, 𝐵

𝑚
).

Now we prove that 𝜔 ∈ 𝐹(𝜔), and if not, we have
𝜔 ̸=𝑊(𝜔). From Opial’s condition, we have

lim inf
𝑖→∞


𝑦
𝑛
𝑖

− 𝜔

< lim inf
𝑖→∞


𝑦
𝑛
𝑖

−𝑊𝜔


≤ lim inf
𝑖→∞

(

𝑦
𝑛
𝑖

−𝑊𝑦
𝑛
𝑖


+

𝑊𝑦
𝑛
𝑖

−𝑊𝜔

)

≤ lim inf
𝑖→∞

(

𝑦
𝑛
𝑖

−𝑊𝑦𝑛
𝑖


+

𝑦
𝑛
𝑖

− 𝜔

) ,

lim
𝑖→∞


𝑊𝑦
𝑛
𝑖

− 𝑦
𝑛
𝑖


≤ lim
𝑖→∞

(

𝑊𝑦
𝑛
𝑖

−𝑊
𝑛
𝑖

𝑦
𝑛
𝑖


+

𝑊
𝑛
𝑖

𝑦
𝑛
𝑖

− 𝑦
𝑛
𝑖


)

≤ lim
𝑖→∞

{sup
𝑥∈𝐶


𝑊𝜔 −𝑊

𝑛
𝑖

𝜔

}

+ lim
𝑖→∞


𝑊
𝑛
𝑖

𝑦𝑛
𝑖

− 𝑦𝑛
𝑖


= 0.

(35)

Therefore, lim inf
𝑖→∞‖𝑦𝑛

𝑖

− 𝜔‖ < lim inf 𝑖→∞‖𝑦𝑛
𝑖

− 𝜔‖, so
𝜔 ∈ 𝐹(𝜔).

Step 9. Finally, we prove that 𝑥𝑛 → 𝑞 = 𝑃F(𝛾𝑓 + (𝐼 − 𝐴)𝑞).
Since 𝑞 = 𝑃F(𝛾𝑓 + (𝐼 − 𝐴)𝑞), so

lim sup
𝑛→∞

⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥
𝑛
− 𝑞⟩

= lim
𝑖→∞

⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥
𝑛
𝑖

− 𝑞⟩

= lim
𝑖→∞

⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥𝑛
𝑖

− 𝑦𝑛
𝑖

+ 𝑦𝑛
𝑖

− 𝑞⟩

= ⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝜔 − 𝑞⟩ ≤ 0,

𝑥𝑛+1 − 𝑞


2

=
𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐴𝑞)

+ [(1 − 𝛽
𝑛
𝐼 − 𝛼
𝑛
𝐴) (𝑊

𝑛
𝜌
𝑛
− 𝑞) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞)]



2

≤
(1 − 𝛽

𝑛
𝐼 − 𝛼
𝑛
𝐴) (𝑊

𝑛
𝜌
𝑛
− 𝑞) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞)]



2

+ 2𝛼𝑛𝛾 ⟨𝑓 (𝑥𝑛) − 𝑓 (𝑞) , 𝑥𝑛+1 − 𝑞⟩

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ [(1 − 𝛽𝑛 − 𝛼𝑛𝛾)
𝜌𝑛 − 𝑝

 + 𝛽
𝑛

𝑥𝑛 − 𝑞
]
2

+ 2𝛼
𝑛
𝛾ℎ

𝑥𝑛 − 𝑞
 ⋅

𝑥𝑛+1 − 𝑞


+ 2𝛼
𝑛 ⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥𝑛+1 − 𝑞⟩

≤ (1 − 𝛼
𝑛
𝛾)
2𝑥𝑛 − 𝑞



2

+ 𝛼𝑛𝛾ℎ (
𝑥𝑛 − 𝑞



2
+
𝑥𝑛+1 − 𝑞



2
)

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥

𝑛+1
− 𝑞⟩ .

(36)
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This implies that

𝑥𝑛+1 − 𝑞


2

≤ [1 −
2 (𝛾 − 𝛾ℎ) 𝛼

𝑛

1 − 𝛼
𝑛
𝛾ℎ

]
𝑥𝑛 − 𝑞



2

+
2 (𝛾 − 𝛾ℎ) 𝛼

𝑛

1 − 𝛼𝑛𝛾ℎ
{

𝛼
𝑛
𝛾
2

2 (𝛾 − 𝛾ℎ)

𝑥𝑛 − 𝑞


2

+
1

𝛾 − 𝛾ℎ
⟨𝛾𝑓 (𝑞) − 𝐴𝑞, 𝑥𝑛+1 − 𝑞⟩} .

(37)

From Lemma 6, {𝑥𝑛} converges strongly to 𝑞.
Taking 𝐹(𝑥, 𝑦) = 0,𝐷 = 0 for all 𝑥, 𝑦 ∈ 𝐻, 𝑟𝑛 = 1,𝑚 = 1

in Theorem 10, thenTheorem 10 is reduced to the following.

Corollary 11. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝐵 : 𝐶 → 𝐻 be a 𝜆-inverse strongly
monotone mapping and 𝐷 : 𝐶 → 𝐻 a 𝛼-inverse strongly
monotone mapping. Let {𝑇𝑛}

∞

𝑛=1
: 𝐶 → 𝐶 be a family of

infinite 𝑘
𝑛
-strict pseudocontractive mappings with 0 ≤ 𝑘

𝑛
< 1

and let {𝜆
𝑛
}
∞

𝑛=1
be a sequence of positive numbers in [0, 𝑏] for

some 𝑏 ∈ (0, 1). {𝑆
𝑛
}
∞

𝑛=1
: 𝐶 → 𝐶 is a family of infinitely

nonexpansive mappings such that F = 𝐹(𝑊)⋂VI(𝐶, 𝐵) ̸= 0,
where 𝐹(𝑊) := ⋂

∞

𝑛=1
𝐹(𝑆
𝑛
). Let 𝐴 be a strongly positive linear

bounded operator with coefficient 𝛾 > 0 and let 𝑓 : 𝐻 → 𝐻

be a contraction with contraction constant ℎ (0 < ℎ < 1) and
0 < 𝛾 < (𝛾/ℎ). Let {𝑥

𝑛
} and {𝑦

𝑛
} be generated in sequence by

𝑥
1
∈ 𝐻 and

𝑦
𝑛
= 𝑃
𝐶 (𝐼 − 𝜆𝐵) 𝑥𝑛,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝑊
𝑛
𝑦
𝑛
,

(38)

where 𝜆 ∈ (0, 2𝛼], {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1]. If the following

conditions are satisfied:

(𝐶1) lim𝑛→∞𝛼𝑛 = 0, ∑∞
𝑛=1

𝛼𝑛 = ∞;
(𝐶
2
) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1,

then {𝑥
𝑛
} converges strongly to 𝑞 ∈ F, where 𝑞 = 𝑃F(𝛾𝑓 + (𝐼 −

𝐴))𝑞.
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