
Research Article
Existence of Weak Solutions for Nonlinear
Time-Fractional 𝑝-Laplace Problems

Meilan Qiu1 and Liquan Mei1,2

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary,
Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to Liquan Mei; lqmei@mail.xjtu.edu.cn

Received 9 March 2014; Revised 5 June 2014; Accepted 10 June 2014; Published 2 July 2014

Academic Editor: Yansheng Liu

Copyright © 2014 M. Qiu and L. Mei. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence of weak solution for 𝑝-Laplace problem is studied in the paper. By exploiting the relationship between the Nehari
manifold and fibering maps and combining the compact imbedding theorem and the behavior of Palais-Smale sequences in the
Nehari manifold, the existence of weak solutions is established. By means of the Arzela-Ascoli fixed point theorem, some existence
results of the corresponding time-fractional equations of the 𝑝-Laplace problem are obtained.

1. Introduction

Fractional calculus is a generalization of ordinary differen-
tiation and integration on an arbitrary order that can be
noninteger. The increasing interest of fractional equations is
motivated by their applications in various fields of science
such as physics, fluid mechanics, heat conduction with
memory, chemistry, and engineering [1]. In consequence, the
subject of fractional differential equations is gaining diverse
and continuous attention. For example, for fractional initial
value problems, the existence andmultiplicity of solutions (or
positive solutions) were discussed in [2–4].

In this paper, we consider the following semilinear
boundary value problem:

− div (𝑎 (𝑥) |∇𝑢 (𝑥)|
𝑝−2

∇𝑢 (𝑥))

= 𝜆|𝑢 (𝑥)|
𝑝−2

𝑢 (𝑥) + 𝑏 (𝑥) |𝑢 (𝑥)|
𝛼−1

𝑢 (𝑥) ,

in Ω,

𝑢 (𝑥) = 0, on 𝜕Ω,

(1)

where Ω is a bounded region with smooth boundary in R𝑁
and 𝑎(𝑥) is a positive weight function with positive measure
of the Sobolev space 𝑊

1,𝑝

0
(𝑎(𝑥), Ω), 𝑢(𝑥) ∈ 𝑊

1,𝑝

0
(𝑎(𝑥), Ω),

𝑏(𝑥) : Ω → 𝑅 is a smooth function which may change sign,
and 𝜆 is a real positive parameter and assume throughout that
𝛼 is a fixed number such that 1 < 𝛼 < 𝑝−1 (2 < 𝑝 ≤ 𝑝

∗
(𝑝
∗
=

𝑛𝑝/(𝑛 − 𝑝))). Thus, we will study a sublinear perturbation of
a linear problem.

The problem (1) is an important and basic mathematical
model, widely used in many fields. As for the specific
theoretical implicity of the above model, one can see Drábek
et al. [5], Adams and Fournier [6], and so on.

Similar problems have been studied by Brown and Zhang
[7, 8] (when 𝑎(𝑥) ≡ 1, 𝑝 ≡ 2, with 𝛼 > 2) and by Brown
[9] (when 𝑎(𝑥) ≡ 1, 𝑝 ≡ 2, but with 1 < 𝛼 < 2) by using
variational viewpoint of the Nehari manifold. When 𝑎(𝑥) ≡

1, 𝑝 = 2, Amann and Lopez-Gomez [10] have studied the
existence of the equation by using global bifurcation theory
and Binding et al. [11, 12] used variational methods. Huang
and Pu in [13] have studied the following problem:

− div (𝑎 (𝑥) |∇𝑢 (𝑥)|
𝑝−2

∇𝑢 (𝑥))

= 𝜆𝑏 (𝑥) |𝑢 (𝑥)|
𝑝−2

𝑢 (𝑥) + 𝑐 (𝑥) |𝑢 (𝑥)|
𝛼−1

,

𝑥 ∈ Ω,

𝑢 (𝑥) = 0, 𝑥 ∈ 𝜕Ω,

(2)
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where Ω is a bounded region with smooth boundary in R𝑁,
𝜆 is a real positive parameter, 𝑏(𝑥) is a nonnegative function
and satisfies 𝑏(𝑥) ∈ 𝐿

𝑞/(𝑞−𝑝)
(𝑝 < 𝑞) or 𝑏(𝑥) ∈ 𝐿

∞
(Ω), and

𝑐(𝑥) is a smooth function which may change sign in Ω, and
the existence of multiple positive solutions and the properties
on Nehari manifold for (2) have been established under the
assumption that 𝑝 − 1 < 𝛼 < 𝑝

∗

𝑠
− 1, where 𝑝𝑠 = 𝑝𝑠/(𝑠 + 1),

𝑝
∗

𝑠
= 𝑁𝑝𝑠/(𝑁 − 𝑝𝑠), 𝑠 ∈ (𝑁/𝑝,∞) ∩ [1/(𝑝 − 1),∞), 𝑝𝑠 <

𝑁(𝑠 + 1).
In the above, we investigated the 𝑝-Laplace Dirichlet

problem. Next, we will switch our viewpoint to consider the
existence of weak solutions for the corresponding nonlinear
time-fractional differential equation of the problem (1). Con-
sider

𝐷
𝛽
𝑢 (𝑥, 𝑡)

= div (𝑎 (𝑥) |∇𝑢 (𝑥, 𝑡)|
𝑝−2

∇𝑢 (𝑥, 𝑡))

+ 𝜆|𝑢 (𝑥, 𝑡)|
𝑝−2

𝑢 (𝑥, 𝑡)

+ 𝑏 (𝑥) |𝑢 (𝑥, 𝑡)|
𝛼−1

𝑢 (𝑥, 𝑡) , inΩ𝑇,

𝑢 (𝑥, 𝑡) = 0, on 𝜕Ω𝑇,

𝑢 (𝑥, 0) = 𝜙 (𝑥) , inΩ,

𝑢𝑡 (𝑥, 0) = 𝜓 (𝑥) , inΩ,

(𝐸𝜆,𝑏,𝑡)

where Ω𝑇 = Ω × [0, 𝑇], 𝐷𝛽 denotes the Caputo fractional
derivatives [14], 0 < 𝛽 ≤ 1 is a parameter describing the order
of the fractional time, and 𝜙(𝑥),𝜓(𝑥) ∈ 𝐻

1

0
(Ω) are given real-

valued functions.
Recently, the subject of fractional differential equations

has emerged as an important area of investigation. Indeed,
we can find numerous applications in viscoelasticity, elec-
trochemistry, control, electromagnetic, porous media, engi-
neering, and so forth. For some recent developments on the
subject, one can see [14–21]. As far as we know, no contribu-
tions exist concerning the existence of weak solutions for the
problems as we stated above.

2. Notations and Preliminary Results

Let𝑊1,𝑝
0

(𝑎(𝑥), Ω) be a weighted Sobolev space with a positive
measurable weight function 𝑎(𝑥); its norm is defined as
‖𝑢‖ = (∫

Ω
(𝑎(𝑥)|∇𝑢(𝑥)|

𝑝
)𝑑𝑥)
1/𝑝, and the function 𝑎(𝑥)

satisfies ](𝑥)/𝑐 ≤ 𝑎(𝑥) ≤ 𝑐](𝑥), 𝑥 ∈ Ω, where 𝑐 ≥ 1,
](𝑥) is also a weight function (see [5, 6, 13]) and satisfies
](𝑥) ∈ 𝐿

1

loc(Ω), ](𝑥)−1/(𝑝−1) ∈ 𝐿
1

loc(Ω), ](𝑥)−𝑠 ∈ 𝐿
1
(Ω); here,

𝑠 ∈ (𝑁/𝑝,∞) ∩ [1/(𝑝 − 1),∞). Throughout this paper, we
denote by 𝑆𝑝 the best Sobolev constant for the imbedding
of 𝑊
1,𝑝

0
(𝑎(𝑥), Ω) in 𝐿

𝑝
(Ω). In particular, ‖𝑢‖𝐿𝑝(Ω) ≤ 𝑆𝑝‖𝑢‖,

for all 𝑢 ∈ 𝑊
1,𝑝

0
(𝑎(𝑥), Ω). For simplicity, we will denote

𝑊
1,𝑝

0
(𝑎(𝑥), Ω) by 𝑋 and denote ‖ ⋅ ‖𝑋 by ‖ ⋅ ‖, and unless

otherwise stated, integrals are over Ω.

Let 𝜆1 denote the positive principal eigenvalue of the
problem:

− div (𝑎 (𝑥) |∇𝑢 (𝑥)|
𝑝−2

∇𝑢 (𝑥))

= 𝜆|𝑢 (𝑥)|
𝑝−2

𝑢 (𝑥) , for𝑥 ∈ Ω,

𝑢 (𝑥) = 0, for𝑥 ∈ 𝜕Ω,

(3)

with corresponding positive principal eigenfunction 𝜙1. The
Euler functional associated with (1) is

𝐽𝜆 (𝑢) =
1

𝑝
∫ 𝑎|∇𝑢|

𝑝
𝑑𝑥 −

𝜆

𝑝
∫ |𝑢|
𝑝
𝑑𝑥

−
1

𝛼 + 1
∫ 𝑏 (𝑥) |𝑢|

𝛼+1
𝑑𝑥, for 𝑢 ∈ 𝑋.

(4)

The next lemma shows the behavior of functional 𝐽𝜆 on
𝑋.

Lemma 1. (i) Suppose that 𝜆 < 𝜆1; then 𝐽𝜆 is bounded below
on 𝑋.

(ii) If 𝜆 > 𝜆1, then 𝐽𝜆 is no longer bounded below on 𝑋.

Proof. (i) By the spectral theorem, we have

∫𝑎|∇𝑢|
𝑝
𝑑𝑥 − 𝜆∫ |𝑢|

𝑝
𝑑𝑥 ≥ (𝜆1 − 𝜆)∫ |𝑢|

𝑝
𝑑𝑥, ∀𝑢 ∈ 𝑋,

(5)

and so

𝐽𝜆 (𝑢) ≥
1

𝑝
(𝜆1 − 𝜆)∫ |𝑢|

𝑝
𝑑𝑥 −

𝑏

𝛼 + 1
∫ |𝑢|
𝛼+1

𝑑𝑥

≥
1

𝑝
(𝜆1 − 𝜆)∫ |𝑢|

𝑝
𝑑𝑥

−
𝑏

𝛼 + 1
|Ω|
1−(𝛼+1)/𝑝

(∫ |𝑢|
𝑝
𝑑𝑥)

(𝛼+1)/𝑝

,

(6)

where 𝑏 = sup
𝑥∈Ω

𝑏(𝑥). Hence, 𝐽𝜆 is bounded below on 𝑋

when 𝜆 < 𝜆1.
(ii) If 𝜆 > 𝜆1, then lim𝑡→∞𝐽𝜆(𝑡𝜙1) = −∞, so 𝐽𝜆 is

unbounded below on 𝑋.

In order to obtain existence results in the case of 𝜆 < 𝜆1,
we introduce the Nehari manifold:

𝑁𝜆 = {𝑢 ∈ 𝑋 : ⟨𝐽
󸀠

𝜆
(𝑢) , 𝑢⟩ = 0} , (7)

where ⟨⋅, ⋅⟩ denotes the usual duality.Thus, 𝑢 ∈ 𝑁𝜆 if and only
if

∫𝑎|∇𝑢|
𝑝
𝑑𝑥 − 𝜆∫ |𝑢|

𝑝
𝑑𝑥 − ∫ 𝑏 (𝑥) |𝑢|

𝛼+1
𝑑𝑥 = 0. (8)

Obviously, 𝑁𝜆 is a much smaller set than 𝑋 and so it is
easier to study 𝐽𝜆 on 𝑁𝜆.
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On 𝑁𝜆, we have

𝐽𝜆 (𝑢) = (
1

𝑝
−

1

𝛼 + 1
)∫ (𝑎|∇𝑢|

𝑝
− 𝜆|𝑢|

𝑝
) 𝑑𝑥

= (
1

𝑝
−

1

𝛼 + 1
)∫ (𝑏|𝑢|

𝛼+1
) 𝑑𝑥.

(9)

The Nehari manifold is closely linked to the behavior of
functions of the form 𝜙𝑢(𝑡) : 𝑡 → 𝐽𝜆(𝑡𝑢) (𝑡 > 0). Such
maps are known as fibering maps and were introduced by
Drabek and Pohozaev [22] and are also discussed in Brown
and Zhang [7]. If 𝑢 ∈ 𝑋, we have

𝜙𝑢 (𝑡) =
𝑡
𝑝

𝑝
∫𝑎|∇𝑢|

𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥 −

𝑡
𝛼+1

𝛼 + 1
∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥, (10)

𝜙
󸀠

𝑢
(𝑡) = 𝑡

𝑝−1
∫𝑎|∇𝑢|

𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥 − 𝑡

𝛼
∫𝑏|𝑢|

𝛼+1
𝑑𝑥, (11)

𝜙
󸀠󸀠

𝑢
(𝑡) = (𝑝 − 1) 𝑡

𝑝−2
∫𝑎|∇𝑢|

𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥

− 𝛼𝑡
𝛼−1

∫𝑏|𝑢|
𝛼+1

𝑑𝑥.

(12)

We can see that 𝑢 ∈ 𝑁𝜆 if and only if 𝜙󸀠
𝑢
(1) = 0 and more

generally that 𝜙
󸀠

𝑢
(𝑡) = 0 if and only if 𝑡𝑢 ∈ 𝑁𝜆; that is,

elements in 𝑁𝜆 correspond to stationary points of fibering
maps. It follows from (11) and (12) that if 𝜙

󸀠

𝑢
(𝑡) = 0, then

𝜙
󸀠󸀠

𝑢
(𝑡) = 𝑡

𝛼−1
[(𝑝 − 1) − 𝛼] ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥. Thus, it is natural to

subdivide𝑁𝜆 into three parts corresponding to local minima,
local maxima, and points of inflection. Consider

𝑁
+

𝜆
= {𝑢 ∈ 𝑁𝜆 : ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 > 0} ,

𝑁
−

𝜆
= {𝑢 ∈ 𝑁𝜆 : ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 < 0} ,

𝑁
0

𝜆
= {𝑢 ∈ 𝑁𝜆 : ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 = 0} .

(13)

So 𝑁
+

𝜆
, 𝑁
−

𝜆
, and 𝑁

0

𝜆
correspond to minima, maxima, and

points of inflection, respectively.
Let 𝑢 ∈ 𝑋, then

(i) if ∫ 𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥 and ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 have the same

sign, then 𝜙𝑢(𝑡) has a unique turning point at

𝑡 (𝑢) = [
∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥

∫ (𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
) 𝑑𝑥

]

1/((𝑝−1)−𝛼)

. (14)

This turning point is a local minimum (maximum) so
that 𝑡(𝑢)𝑢 ∈ 𝑁

+

𝜆
(𝑁
−

𝜆
) if and only if ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 > 0

(< 0).

(ii) If ∫ 𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥 and ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 have different

signs, then 𝜙𝑢(𝑡) has no turning points and so no
multiples of 𝑢 lie in 𝑁𝜆.

Thus, if we define

𝐿+ (𝜆) = {𝑢 ∈ 𝑋 : ‖𝑢‖ = 1, ∫ 𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
𝑑𝑥 > 0} ,

𝐵+ (𝜆) = {𝑢 ∈ 𝑋 : ‖𝑢‖ = 1, ∫ 𝑏|𝑢|
𝛼+1

𝑑𝑥 > 0} .

(15)

Analogously, we can define 𝐿−(𝜆), 𝐿0(𝜆), 𝐵−(𝜆), and 𝐵0(𝜆) by
replacing “> 0” by “< 0” or “= 0.” As appropriate, we have the
following:

(i) if 𝑢 ∈ 𝐿+(𝜆) ∩ 𝐵+(𝜆), then 𝑡 → 𝜙𝑢(𝑡) has a local
minimum at 𝑡 = 𝑡(𝑢) and 𝑡(𝑢)𝑢 ∈ 𝑁

+

𝜆
,

(ii) if 𝑢 ∈ 𝐿−(𝜆) ∩ 𝐵−(𝜆), then 𝑡 → 𝜙𝑢(𝑡) has a local
maximum at 𝑡 = 𝑡(𝑢) and 𝑡(𝑢)𝑢 ∈ 𝑁

−

𝜆
,

(iii) if 𝑢 ∈ 𝐿+(𝜆) ∩ 𝐵−(𝜆), then 𝑡 → 𝜙𝑢(𝑡) is strictly
increasing and no multiple of 𝑢 lies in 𝑁𝜆,

(iv) if 𝑢 ∈ 𝐿−(𝜆) ∩ 𝐵+(𝜆), then 𝑡 → 𝜙𝑢(𝑡) is strictly
decreasing and no multiple of 𝑢 lies in 𝑁𝜆.

Next, we will prove the existence of solutions of (1)
by investigating the existence of minimizers on 𝑁𝜆. The
following lemma proved that minimizers on𝑁𝜆 are “usually”
critical points for 𝐽𝜆.

Lemma 2. Suppose that 𝑢0 ∈ 𝑁𝜆 is a local maximum or
minimum point for 𝐽𝜆 on 𝑁𝜆, 𝑢0 ∉ 𝑁

0

𝜆
; then 𝐽

󸀠

𝜆
(𝑢0) = 0 in

𝑋
−1

(Ω).

Proof. If 𝑢0 is a local minimizer point for 𝐽𝜆 on𝑁𝜆, then 𝑢0 is
a solution of the optimization problem:

Minimize 𝐽𝜆 (𝑢) subject to 𝑟 (𝑢) = ⟨𝐽
󸀠

𝜆
(𝑢) , 𝑢⟩ = 0. (16)

Hence, by the theory of Lagrange multipliers, there exists
𝜇 ∈ R such that

𝐽
󸀠

𝜆
(𝑢0) = 𝜇𝑟

󸀠

𝜆
(𝑢0) , in 𝑋

−1
(Ω) . (17)

Thus,

⟨𝐽
󸀠

𝜆
(𝑢0) , 𝑢0⟩𝑋

= 𝜇⟨𝑟
󸀠

𝜆
(𝑢0) , 𝑢0⟩𝑋

. (18)

Since 𝑢0 ∈ 𝑁𝜆, ⟨𝐽
󸀠

𝜆
(𝑢0), 𝑢0⟩ = 0 and so

∫(𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = ∫ 𝑏

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥. (19)

Hence,

⟨𝑟
󸀠

𝜆
(𝑢0) , 𝑢0⟩𝑋

= 𝑝∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

− (𝛼 + 1) ∫ 𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥

= [(𝑝 − 1) − 𝛼]∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥.

(20)

Thus, if 𝑢0 ∉ 𝑁
0

𝜆
, ⟨𝑟󸀠
𝜆
(𝑢0), 𝑢0⟩𝑋 ̸= 0 and so by (18) 𝜇 = 0. This

completes the proof.
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3. Properties of the Nehari Manifold

In this section, we will discuss the vital role played by the
condition 𝐿−(𝜆) ⊆ 𝐵−(𝜆) in determining the nature of the
Nehari manifold. When 𝜆 < 𝜆1, ∫(𝑎|∇𝑢|

𝑝
− 𝜆|𝑢|

𝑝
)𝑑𝑥 > 0,

for all 𝑢 ∈ 𝑋, and so 𝐿+(𝜆) = {𝑢 ∈ 𝑋 : ‖𝑢‖ = 1} and
𝐿−(𝜆), 𝐿0(𝜆) = 0. When 𝜆 = 𝜆1, we have 𝐿−(𝜆) = 0 and
𝐿0(𝜆) = {𝜙1} and when 𝜆 is greater than 𝜆1, 𝐿−(𝜆) becomes
nonempty and gets bigger as 𝜆 increases.

Theorem 3. Suppose there exists 𝜆̃ such that, for all 𝜆 < 𝜆̃,
𝐿−(𝜆) ⊆ 𝐵−(𝜆). Then, for ∀𝜆 < 𝜆̃,

(i) 𝐿0(𝜆) ⊆ 𝐵−(𝜆) and so 𝐿0(𝜆) ∩ 𝐵0(𝜆) = 0,
(ii) 𝑁

+

𝜆
is bounded,

(iii) 0 ∉ 𝑁−
𝜆
and 𝑁

−

𝜆
is closed,

(iv) 𝑁+
𝜆
∩ 𝑁
−

𝜆
= 0.

Proof. (i) Suppose that the result is false.Then there exists 𝑢 ∈

𝐿0(𝜆) such that 𝑢 ∉ 𝐵−(𝜆); if 𝜆 < 𝜇 < 𝜆̃, then 𝑢 ∈ 𝐿−(𝜇), and
so 𝐿−(𝜇) ̸⊆ 𝐵−(𝜆) which is a contradiction.

(ii) Suppose that 𝑁
+

𝜆
is unbounded. Then there exists

{𝑢𝑛} ⊆ 𝑁
+

𝜆
such that ‖𝑢𝑛‖ → ∞ as 𝑛 → ∞. Let V𝑛 =

𝑢𝑛/‖𝑢𝑛‖; without loss of generality, we may assume that V𝑛 ⇀
V0 in 𝑋 and so V𝑛 → V0 in 𝐿

𝑝
(Ω) and in 𝐿

𝛼+1
(Ω). Since

𝑢𝑛 ∈ 𝑁
+

𝜆
, ∫(𝑏|V𝑛|

𝛼+1
)𝑑𝑥 > 0 and so ∫(𝑏|V0|

𝛼+1
)𝑑𝑥 ≥ 0. Since

𝑢𝑛 ∈ 𝑁
+

𝜆
⊆ 𝑁𝜆, so, by (8), we have

∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = ∫ 𝑏

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥, (21)

and divide by ‖𝑢𝑛‖
𝑝, so

∫(𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = ∫(𝑏

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝛼+1󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
(𝛼+1)−𝑝

) 𝑑𝑥 󳨀→ 0.

(22)

Suppose V𝑛 󴀀󴀂󴀠 V0 in 𝑋. Then ∫(𝑎|∇V0|
𝑝
)𝑑𝑥 <

lim
𝑛→∞

∫(𝑎|∇V𝑛|
𝑝
)𝑑𝑥, and so ∫(𝑎|∇V0|

𝑝
− 𝜆|V0|

𝑝
)𝑑𝑥 <

lim𝑛→∞ ∫(𝑎|∇V𝑛|
𝑝
− 𝜆|V𝑛|

𝑝
)𝑑𝑥 = 0. Thus, V0/‖V0‖ ∈ 𝐿−(𝜆) ⊆

𝐵−(𝜆) which is impossible as ∫(𝑏|V0|
𝛼+1

)𝑑𝑥 ≥ 0. Hence,
V𝑛 → V0 in 𝑋. Thus, ‖V0‖ = 1 and

∫ (𝑎
󵄨󵄨󵄨󵄨∇V0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

= lim
𝑛→∞

∫ (𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = 0.

(23)

Thus, V0 ∈ 𝐿0(𝜆) ⊆ 𝐵−(𝜆) which is impossible as
∫(𝑏|V0|

𝛼+1
)𝑑𝑥 ≥ 0. Therefore, 𝑁+

𝜆
is bounded.

(iii) Suppose 0 ∈ 𝑁−
𝜆
. Then there exists {𝑢𝑛} ⊆ 𝑁

−

𝜆
such

that lim𝑛→∞𝑢𝑛 = 0; let V𝑛 = 𝑢𝑛/‖𝑢𝑛‖ and then we may
assume that V𝑛 ⇀ V0 in 𝑋 and so V𝑛 → V0 in 𝐿

𝑝
(Ω) and

in 𝐿
𝛼+1

(Ω). Since 𝑢𝑛 ∈ 𝑁
−

𝜆
, we have

∫ (𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 =

1

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
(𝑝−1)−𝛼

∫(𝑏
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥 ≤ 0;

(24)

since the {V𝑛} is bounded, it follows that
lim𝑛→∞ ∫(𝑏|V𝑛|

𝛼+1
)𝑑𝑥 = 0 and so ∫(𝑏|V0|

𝛼+1
)𝑑𝑥 = 0.

Suppose V𝑛 → V0 in 𝑋; then ‖V0‖ = 1 and so V0 ∈ 𝐵0(𝜆).
Moreover

∫ (𝑎
󵄨󵄨󵄨󵄨∇V0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

= lim
𝑛→∞

∫ (𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 ≤ 0,

(25)

and so V0 ∈ 𝐿0(𝜆) or 𝐿−(𝜆). Hence, V0 ∈ 𝐵−(𝜆) and this is
impossible as ∫(𝑏|V0|

𝛼+1
)𝑑𝑥 = 0. Thus, we must have that

V𝑛 󴀀󴀂󴀠 V0 in 𝑋; then

∫ (𝑎
󵄨󵄨󵄨󵄨∇V0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

< lim
𝑛→∞

∫ (𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 ≤ 0.

(26)

Hence V0/‖V0‖ ∈ 𝐿−(𝜆) ∩ 𝐵0(𝜆) which is impossible and so
0 ∉ 𝑁−

𝜆
. We now prove that 𝑁−

𝜆
is closed. Suppose {𝑢𝑛} ⊆ 𝑁

−

𝜆

and 𝑢𝑛 → 𝑢 in 𝑋. Then 𝑢 ∈ 𝑁−
𝜆
and so 𝑢 ̸≡ 0. Moreover,

∫ (𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
) 𝑑𝑥 = ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 ≤ 0. (27)

If both integrals equal 0, then 𝑢/‖𝑢‖ ∈ 𝐿0(𝜆) ∩ 𝐵0(𝜆) which
contradicts (i). Hence both integrals must be negative and so
𝑢 ∈ 𝑁

−

𝜆
. Thus 𝑁−

𝜆
is closed.

(iv) Let 𝑢 ∈ 𝑁+
𝜆

∩ 𝑁
−

𝜆
, as 𝑢 ∈ 𝑁

−

𝜆
, 𝑢 ̸≡ 0. Moreover, it is

clear that

∫ (𝑎|∇𝑢|
𝑝
− 𝜆|𝑢|

𝑝
) 𝑑𝑥 = ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥 = 0, (28)

and so 𝑢/‖𝑢‖ ∈ 𝐿0(𝜆)∩𝐵0(𝜆)which is impossible.Thus,𝑁+
𝜆
∩

𝑁
−

𝜆
= 0.

The following theorem presents 𝐽𝜆(𝑢) > 0 on 𝑁
−

𝜆
and the

behavior of 𝐽𝜆(𝑢) on 𝑁
+

𝜆
.

Theorem 4. Suppose the same hypotheses are satisfied as in
Theorem 3; then

(i) 𝐽𝜆 is bounded below on 𝑁
+

𝜆
,

(ii) inf𝑢∈𝑁−
𝜆

𝐽𝜆(𝑢) > 0 provided 𝑁
−

𝜆
is nonempty.

Proof. The proof of (i) is an immediate consequence of the
boundedness of 𝑁+

𝜆
.

(ii) Suppose inf𝑢∈𝑁−
𝜆

𝐽𝜆(𝑢) = 0. Then there exists {𝑢𝑛} ⊆

𝑁
−

𝜆
such that lim𝑛→∞𝐽𝜆(𝑢𝑛) = 0. And it is clear from (9)

that ∫(𝑎|∇𝑢𝑛|
𝑝
− 𝜆|𝑢𝑛|

𝑝
)𝑑𝑥 → 0 and ∫ 𝑏|𝑢𝑛|

𝛼+1
𝑑𝑥 → 0 as

𝑛 → ∞. Let V𝑛 = 𝑢𝑛/‖𝑢𝑛‖; since 0 ∉ 𝑁−
𝜆
, {‖𝑢𝑛‖} is bounded

away from 0. Hence lim𝑛→∞ ∫(𝑎|∇V𝑛|
𝑝
− 𝜆|V𝑛|

𝑝
)𝑑𝑥 = 0, and

lim𝑛→∞ ∫ 𝑏|V𝑛|
𝛼+1

𝑑𝑥 = 0; we may assume that V𝑛 ⇀ V0 in 𝑋

and V𝑛 → V0 in 𝐿
𝑝
(Ω) and in 𝐿

𝛼+1
(Ω). Then ∫ 𝑏|V0|

𝛼+1
𝑑𝑥 =

0. If V𝑛 → V0 in 𝑋, we have ‖V0‖ = 1 and ∫(𝑎|∇V0|
𝑝

−

𝜆|V0|
𝑝
)𝑑𝑥 = 0; that is, V0 ∈ 𝐿0(𝜆), whereas if V𝑛 󴀀󴀂󴀠 V0 in

𝑋, ∫(𝑎|∇V0|
𝑝

− 𝜆|V0|
𝑝
)𝑑𝑥 < 0; that is, V0/‖V0‖ ∈ 𝐿−(𝜆). In

both cases, however, we must also have V0/‖V0‖ ∈ 𝐵0(𝜆) and
this is a contradiction. Thus, inf𝑢∈𝑁−

𝜆

𝐽𝜆(𝑢) > 0.
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4. The Existence of Weak Solution

Wenow show that there exists aminimizer on𝑁
+

𝜆
(𝑁
−

𝜆
)which

is a critical point of 𝐽𝜆(𝑢) and so a nontrivial positive solution
of (1).

Theorem 5. Suppose 𝐿−(𝜆) ⊆ 𝐵−(𝜆) for all 𝜆 < 𝜆̃; then, for
∀𝜆 < 𝜆̃,

(i) there exists a minimizer point for 𝐽𝜆 on 𝑁
+

𝜆
,

(ii) there exists a minimizer point for 𝐽𝜆 on 𝑁
−

𝜆
provided

that 𝐿−(𝜆) is nonempty.

Proof. (i) By Theorem 4, 𝐽𝜆 is bounded below on 𝑁
+

𝜆
. Let

{𝑢𝑛} ⊆ 𝑁
+

𝜆
be a minimizing sequence; that is,

lim
𝑛→∞

𝐽𝜆 (𝑢𝑛) = inf
𝑢∈𝑁+
𝜆

𝐽𝜆 (𝑢) < 0. (29)

Since 𝑁
+

𝜆
is bounded, we may assume that 𝑢𝑛 ⇀ 𝑢0 in 𝑋 and

𝑢𝑛 → 𝑢0 in 𝐿
𝑃
(Ω) and in 𝐿

𝛼+1
(Ω). Since 𝐽𝜆(𝑢𝑛) = (1/𝑝 −

1/(𝛼 + 1)) ∫ 𝑏|𝑢𝑛|
𝛼+1

𝑑𝑥, it follows that

∫𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥 = lim
𝑛→∞

∫𝑏
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥 > 0, (30)

and so 𝑢0/‖𝑢0‖ ∈ 𝐵+(𝜆). Hence, by Theorem 3, 𝑢0/‖𝑢0‖ ∈

𝐿+(𝜆) and so the fibering map 𝜙𝑢0
has a unique minimum

at 𝑡(𝑢0), such that 𝑡(𝑢0)𝑢0 ∈ 𝑁
+

𝜆
. Suppose 𝑢𝑛 󴀀󴀂󴀠 𝑢0 in𝑋; then

∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

< lim
𝑛→∞

∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

= lim
𝑛→∞

∫𝑏
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥 = ∫ 𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

𝑑𝑥,

(31)

and so 𝑡(𝑢0) > 1. Hence

𝐽𝜆 (𝑡 (𝑢0) 𝑢0) < 𝐽𝜆 (𝑢0) < lim
𝑛→∞

𝐽𝜆 (𝑢𝑛) = inf
𝑢∈𝑁+
𝜆

𝐽𝜆 (𝑢) , (32)

which is impossible.
Hence𝑢𝑛 → 𝑢0 in𝑋 and so𝑢0 ∈ 𝑁𝜆. It now follows easily

that 𝑢0 is aminimizer point for 𝐽𝜆 on𝑁
+

𝜆
, since 𝐽𝜆(𝑢) = 𝐽𝜆(|𝑢|)

and we may assume that 𝑢0 is a nonnegative in Ω, since
𝐽𝜆(𝑢0) < 0, 𝑢0 is a local minimum point for 𝐽𝜆 on 𝑁𝜆. It
follows from Lemma 2 that 𝑢0 is a critical point of 𝐽𝜆 and so
is a weak solution of (1).

(ii) Let {𝑢𝑛} ⊆ 𝑁
−

𝜆
be a minimizing sequence. Then by

Theorem 4, wemust have lim𝑛→∞𝐽𝜆(𝑢𝑛) = inf𝑢∈𝑁−
𝜆

𝐽𝜆(𝑢) > 0.
Suppose that {𝑢𝑛} is unbounded; we may suppose that

‖𝑢𝑛‖ → ∞ as 𝑛 → ∞. Let V𝑛 = 𝑢𝑛/‖𝑢𝑛‖; since
{𝐽𝜆(𝑢𝑛)} is bounded, it follows that {∫(𝑎|∇𝑢𝑛|

𝑝
− 𝜆|𝑢𝑛|

𝑝
)𝑑𝑥}

and {∫(𝑏|𝑢𝑛|
𝛼+1

)𝑑𝑥} are bounded and so

lim
𝑛→∞

∫(𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = lim

𝑛→∞
∫(𝑏

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥 = 0;

(33)

since {V𝑛} is bounded, we may assume that V𝑛 ⇀ V0 in 𝑋 and
V𝑛 → V0 in 𝐿

𝑝
(Ω) and in 𝐿

𝛼+1
(Ω), so that ∫(𝑏|V0|

𝛼+1
)𝑑𝑥 = 0.

If V𝑛 → V0 in𝑋, it is easy to see that V0 ∈ 𝐿0(𝜆)∩𝐵0(𝜆)which
is impossible because of Theorem 3(i). Hence, V𝑛 󴀀󴀂󴀠 V0 in 𝑋

and so

∫ (𝑎
󵄨󵄨󵄨󵄨∇V0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

< lim
𝑛→∞

∫ (𝑎
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 = 0;

(34)

hence, V0 ̸= 0 and V0/‖V0‖ ∈ 𝐿−(𝜆) ∩ 𝐵0(𝜆), which is again
impossible.Thus, {𝑢𝑛} is bounded and so wemay assume that
𝑢𝑛 ⇀ 𝑢0 in𝑋 and𝑢𝑛 → 𝑢0 in𝐿

𝑝
(Ω) and in𝐿

𝛼+1
(Ω). Suppose

𝑢𝑛 󴀀󴀂󴀠 𝑢0 in 𝑋. Then

∫ (𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥 = lim
𝑛→∞

∫ (𝑏
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥

= (
1

𝑝
−

1

𝛼 + 1
)

−1

lim
𝑛→∞

𝐽𝜆 (𝑢𝑛) < 0,

∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥 < lim

𝑛→∞
∫ (𝑎

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

= lim
𝑛→∞

∫ (𝑏
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥

= ∫ (𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥.

(35)

Hence 𝑢0/‖𝑢0‖ ∈ 𝐿−(𝜆) ∩ 𝐵−(𝜆), and so 𝑡(𝑢0)𝑢0 ∈ 𝑁
−

𝜆
, where

𝑡 (𝑢0) = [

[

∫ (𝑏
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
𝛼+1

) 𝑑𝑥

∫ (𝑎
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
𝑝
− 𝜆

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨
𝑝
) 𝑑𝑥

]

]

1/((𝑝−1)−𝛼)

< 1. (36)

Moreover, 𝑡(𝑢0)𝑢𝑛 ⇀ 𝑡(𝑢0)𝑢0 but 𝑡(𝑢0)𝑢𝑛 󴀀󴀂󴀠 𝑡(𝑢0)𝑢0 and so

𝐽𝜆 (𝑡 (𝑢0) 𝑢0) < lim
𝑛→∞

𝐽𝜆 (𝑡 (𝑢0) 𝑢𝑛) ; (37)

since the map 𝑡 → 𝐽𝜆(𝑡𝑢𝑛) attains its maximum at 𝑡 = 1,

lim
𝑛→∞

𝐽𝜆 (𝑡 (𝑢0) 𝑢𝑛) ≤ lim
𝑛→∞

𝐽𝜆 (𝑢𝑛) = inf
𝑢∈𝑁−
𝜆

𝐽𝜆 (𝑢) . (38)

Hence, 𝐽𝜆(𝑡(𝑢0)𝑢0) < inf𝑢∈𝑁−
𝜆

𝐽𝜆(𝑢)which is impossible.Thus,
𝑢𝑛 → 𝑢0 in 𝑋 and it follows that 𝑢0 is a minimizer point for
𝐽𝜆(𝑢) on 𝑁

−

𝜆
. Since 𝐽𝜆(𝑢) = 𝐽𝜆(|𝑢|), we may assume that 𝑢0 is

a nonnegative inΩ; since𝑁
+

𝜆
is closed, 𝑢0 is a local minimum

point for 𝐽𝜆 on𝑁𝜆. It follows fromLemma 2 that𝑢0 is a critical
point of 𝐽𝜆 and so is a weak solution of (1).

5. The Corresponding
Time-Fractional Equation

In this section, we switch our viewpoint to the fractional
order equation (𝐸𝜆,𝑏,𝑡) in Sobolev space 𝐻

1

0
(Ω).

To discuss the existence of the positive solution for the
equation (𝐸𝜆,𝑏,𝑡), we present some basic notations, defini-
tions, and preliminary results which will be used throughout
this section.
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Definition 6 (see [23]). The Caputo fractional derivative of
order 𝛼 of a function 𝑓(𝑡), 𝑡 > 0, is defined as

𝐷
𝛼
𝑓 (𝑡) =

1

Γ (1 − {𝛼})
∫

𝑡

0

1

(𝑡 − 𝑠)
{𝛼}

𝑓
([𝛼]+1)

𝑑𝑠, (39)

where {𝛼} and [𝛼] denote the fractional and the integer part
of the real number 𝛼, respectively, and Γ(⋅) is the Gamma
function.

Definition 7 (see [23]). The Riemann-Liouville fractional
integral of order 𝛼 of a function 𝑓(𝑡), 𝑡 > 0, is defined as

𝐼
𝛼

0+
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (40)

provided that the right side is pointwise defined on (0,∞).

Lemma 8 (see [23]). Assume 𝑦 ∈ 𝐶[0, 𝑇], 0 < 𝑇 < 1, and
0 < 𝛼 ≤ 1; then the problem

𝐷
𝛼
𝑢 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇] , (41)

has the unique solution

𝑢 (𝑡) = 𝑢 (0) + 𝑢
󸀠
(0) 𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠. (42)

Now, we establish some results of the existence of weak
solution for (𝐸𝜆,𝑏,𝑡).

By Lemma 8, we may reduce (𝐸𝜆,𝑏,𝑡) to an equivalent
integral equation as follows:

− 𝜙 (𝑥) − 𝜓 (𝑥) 𝑡 + 𝑢 (𝑥, 𝑡)

=
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

× (div (𝑎 (𝑥) |∇𝑢 (𝑥, 𝑠)|
𝑝−2

∇𝑢 (𝑥, 𝑠))

+ 𝜆|𝑢 (𝑥, 𝑠)|
𝑝−2

𝑢 (𝑥, 𝑠)

+𝑏 (𝑥) |𝑢 (𝑥, 𝑠)|
𝛼−1

𝑢 (𝑥, 𝑠)) 𝑑𝑠,

inΩ𝑇,

𝑢 (𝑥, 𝑡) = 0, on 𝜕Ω𝑇.

(𝐸𝜆,𝑏,integral)

Now we define

Φ (𝑢)

= 𝜙 (𝑥) + 𝜓 (𝑥) 𝑡

+
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

× (div (𝑎 (𝑥) |∇𝑢 (𝑥, 𝑠)|
𝑝−2

∇𝑢 (𝑥, 𝑠))

+ 𝜆|𝑢 (𝑥, 𝑠)|
𝑝−2

𝑢 (𝑥, 𝑠)

+ 𝑏 (𝑥) |𝑢 (𝑥, 𝑠)|
𝛼−1

𝑢 (𝑥, 𝑠)) 𝑑𝑠,

inΩ𝑇,

𝑢 (𝑥, 𝑡) = 0, on 𝜕Ω𝑇.

(𝐸𝜆,𝑏,fixed)

Definition 9. One calls 𝑢 ∈ 𝐶([0, 𝑇];𝐻
1

0
(Ω)), 0 < 𝑇 < 1 to

be a weak solution of the fractional order equation (𝐸𝜆,𝑏,𝑡), if
∫
Ω
(𝑢 − Φ(𝑢))V 𝑑𝑥 = 0, ∀𝑡 ∈ [0, 𝑇] for every V ∈ 𝐻

1

0
(Ω).

Lemma 10. Let ‖𝑎(𝑥)‖𝐿∞(Ω) and ‖𝑏(𝑥)‖𝐿∞(Ω) be bounded;
then the operator Φ(𝑢) : 𝐻

1

0
(Ω) → 𝐻

1
(Ω) is completely

continuous.

Proof. Put

𝐹 (𝑢) = div (𝑎 (𝑥) |∇𝑢 (𝑥, 𝑠)|
𝑝−2

∇𝑢 (𝑥, 𝑠))

+ 𝜆|𝑢 (𝑥, 𝑠)|
𝑝−2

𝑢 (𝑥, 𝑠) + 𝑏 (𝑥) |𝑢 (𝑥, 𝑠)|
𝛼−1

𝑢 (𝑥, 𝑠) .

(43)

We can rewrite

Φ (𝑢) = 𝜙 (𝑥) + 𝜓 (𝑥) 𝑡 +
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝐹 (𝑢) 𝑑𝑠. (44)

For each V ∈ 𝐻
1

0
(Ω) and ‖V‖𝐻1

0
(Ω) = 1 integration by parts, we

can get

|⟨𝐹 (𝑢) , V⟩|

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ (𝑎 (𝑥) |∇𝑢|

𝑝−1
∇V

+𝜆|𝑢|
𝑝−2

𝑢V + 𝑏 (𝑥) |𝑢|
𝛼−1

𝑢V) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(45)

By Lemma 2, we know 𝑟(𝑢) = ⟨𝐽
󸀠

𝜆
(𝑢), 𝑢⟩ = 0; that is,

∫ (𝑎|∇𝑢|
𝑝
) 𝑑𝑥 = ∫𝜆|𝑢|

𝑝
𝑑𝑥 + ∫ 𝑏|𝑢|

𝛼+1
𝑑𝑥. (46)

Since ‖𝑢‖𝐿𝑝(Ω) ≤ 𝑆𝑝‖𝑢‖, so

∫𝜆|𝑢|
𝑝
𝑑𝑥 ≤ |𝜆| ∫ |𝑢|

𝑝
𝑑𝑥 = |𝜆| ‖𝑢‖

𝑝

𝐿𝑝(Ω)
≤ |𝜆| 𝑆

𝑝

𝑝‖𝑢‖
𝑝
. (47)

And using the same proof as above, we can get ∫ 𝑏|𝑢|
𝛼+1

𝑑𝑥 ≤

‖𝑏‖𝐿∞(Ω)𝑆
𝛼+1

𝛼+1
‖𝑢‖
𝛼+1. Thus, we deduce

‖𝑢‖
𝑝
≤ |𝜆| 𝑆

𝑝

𝑝‖𝑢‖
𝑝
+ ‖𝑏‖𝐿∞(Ω)𝑆

𝛼+1

𝛼+1‖𝑢‖
𝛼+1

. (48)

So

‖𝑢‖ ≤ (
‖𝑏‖𝐿∞(Ω)𝑆

𝛼+1

𝛼+1

1 − |𝜆| 𝑆
𝑝

𝑝

)

1/((𝑝−1)−𝛼)

. (49)
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And since 2 < 𝑝 ≤ 𝑝
∗
(𝑝
∗
= 𝑛𝑝/(𝑛−𝑝)), and 𝑎(𝑥) is a positive

sufficiently smooth function, there exists a positive constant
𝐶, such that ‖𝑎(𝑥)‖𝐿2(Ω) ≥ ‖𝑎(𝑥)‖𝐿1(Ω) ≥ 𝐶. Hence

∫
Ω

(𝑎 (𝑥) |∇𝑢|
𝑝
) 𝑑𝑥

≥ ∫
Ω

(𝑎 (𝑥) |∇𝑢|
2
) 𝑑𝑥 = ‖𝑎(𝑥)‖𝐿1(Ω) ∫

Ω

|∇𝑢|
2
𝑑𝑥

≥ 𝐶∫
Ω

|∇𝑢|
2
𝑑𝑥

≥ 𝐶∫
Ω

|𝑢|
2
𝑑𝑥, ∀𝑥 ∈ Ω, and a.e. time 0 ≤ 𝑡 ≤ 𝑇.

(50)

We used Poincare’s inequality in the last inequality above.
Thus, by Sobolev imbedding theorem [11], we have

𝑊
1,𝑝

0
(𝑎 (𝑥) , Ω) 󳨅→ 𝐻

1

0
(𝑎 (𝑥) , Ω) 󳨅→ 𝐻

1

0
(Ω) 󳨅→ 𝐿

2
(Ω) ,

(51)
and thus,

‖𝑢‖𝐻1
0
(Ω) ≤ 𝐶‖𝑢‖

𝑊
1,𝑝

0
(𝑎(𝑥),Ω)

= 𝐶 ‖𝑢‖ . (52)
In the following, we denote ‖𝑢‖𝐻1

0
(Ω) and ‖𝑢‖𝐻−1(Ω) by ‖𝑢‖𝐻1

0

and ‖𝑢‖𝐻−1 , respectively. Hence, by Cauchy-Schwarz inequal-
ities, Poincare inequalities, Hölder inequalities, Sobolev
imbedding theorem, and (49), for 1 < 𝛼 < 𝑝 − 1, we can
get
|⟨𝐹 (𝑢) , V⟩|

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ (𝑎 (𝑥) |∇𝑢|

𝑝−1
∇V

+𝜆|𝑢|
𝑝−2

𝑢V + 𝑏 (𝑥) |𝑢|
𝛼−1

𝑢V) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∫
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑥) |∇𝑢|

𝑝−1󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |∇V|2𝑑𝑥)
1/2

+ (∫
󵄨󵄨󵄨󵄨󵄨
𝜆|𝑢|
𝑝−2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |V|2𝑑𝑥)
1/2

+ (∫
󵄨󵄨󵄨󵄨󵄨
𝑏(𝑥)|𝑢|

𝛼−1
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |V|2𝑑𝑥)
1/2

≤ ‖𝑎(𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|∇𝑢|
𝑝−1󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |∇V|2𝑑𝑥)
1/2

+ |𝜆| (∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝑝−2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |∇V|2𝑑𝑥)
1/2

+ ‖𝑏(𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝛼−1

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫ |∇V|2𝑑𝑥)
1/2

≤ [‖𝑎 (𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|∇𝑢|
𝑝−1󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

+ |𝜆| (∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝑝−2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

+‖𝑏 (𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝛼−1

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

] ‖V‖𝐻1
0

≤ ‖𝑎 (𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|∇𝑢|
𝑝−1󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

+ |𝜆| (∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝑝−2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

+ ‖𝑏 (𝑥)‖𝐿∞(Ω)(∫
󵄨󵄨󵄨󵄨󵄨
|𝑢|
𝛼−1

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

≤ ‖𝑎 (𝑥)‖𝐿∞(Ω)(∫ |∇𝑢|
2(𝑝−1)

𝑑𝑥)

(1/2(𝑝−1))(𝑝−1)

+ |𝜆| (∫ |𝑢|
2(𝑝−1)

𝑑𝑥)

(1/2(𝑝−1))(𝑝−1)

+ ‖𝑏 (𝑥)‖𝐿∞(Ω)(∫ |𝑢|
2𝛼

𝑑𝑥)

(1/2𝛼)𝛼

≤ ‖𝑎 (𝑥)‖𝐿∞(Ω)(∫ |∇𝑢|
2(𝑝−1)

𝑑𝑥)

(1/2(𝑝−1))(𝑝−1)

+ |𝜆| (∫ |∇𝑢|
2(𝑝−1)

𝑑𝑥)

(1/2(𝑝−1))(𝑝−1)

+ ‖𝑏 (𝑥)‖𝐿∞(Ω)(∫ |∇𝑢|
2𝛼

𝑑𝑥)

(1/2𝛼)𝛼

= ‖𝑎 (𝑥)‖𝐿∞(Ω)‖∇𝑢‖
𝑝−1

𝐿2(𝑝−1)(Ω)
+ |𝜆| ‖∇𝑢‖

𝑝−1

𝐿2(𝑝−1)(Ω)

+ ‖𝑏 (𝑥)‖𝐿∞(Ω)‖∇𝑢‖
𝛼

𝐿2(𝛼)(Ω)

≤ 𝐶‖𝑢‖
𝑝−1

𝐻1
0

+ ‖𝑏 (𝑥)‖𝐿∞(Ω)‖𝑢‖
𝛼

𝐻1
0

≤ 𝐶1‖𝑢‖
𝑝−1

+ 𝐶2‖𝑏 (𝑥)‖𝐿∞(Ω)‖𝑢‖
𝛼

≤ 𝐶1(
‖𝑏 (𝑥)‖𝐿∞(Ω)𝑆

𝛼+1

𝛼+1

1 − |𝜆| 𝑆
𝑝

𝑝

)

(𝑝−1)/((𝑝−1)−𝛼)

+ 𝐶2‖𝑏 (𝑥)‖𝐿∞(Ω)(
‖𝑏 (𝑥)‖𝐿∞(Ω)𝑆

𝛼+1

𝛼+1

1 − |𝜆| 𝑆
𝑝

𝑝

)

𝛼/((𝑝−1)−𝛼)

= 𝑀.

(53)

Here,𝐶 = max{‖𝑎(𝑥)‖𝐿∞(Ω), |𝜆|} and𝐶1,𝐶2 from the Sobolev
imbedding theorem.

Thus, by Cauchy-Schwarz inequalities, we obtain

‖Φ(𝑢)‖𝐻−1 = sup
‖V‖
𝐻1
0

≤1

|⟨Φ (𝑢) , V⟩|

= sup
‖V‖
𝐻1
0

≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝜙 (𝑥) , V⟩ + ⟨𝜓 (𝑥) , V⟩ 𝑡

+
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

⟨𝐹 (𝑢) , V⟩ 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨⟨𝜙 (𝑥) , V⟩󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨⟨𝜓 (𝑥) , V⟩ 𝑡
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

⟨𝐹 (𝑢) , V⟩ 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤
󵄩󵄩󵄩󵄩𝜙 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖V‖𝐻10 +
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖V‖𝐻10𝑇

+ |⟨𝐹 (𝑢) , V⟩|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝑇

+
𝑀

Γ (𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝑇 +
𝑀

𝛽Γ (𝛽)
𝑡
𝛽

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝑇 +
𝑀

𝛽Γ (𝛽)
𝑇
𝛽
.

(54)

Hence, Φ(𝑢) is bounded.
On the other hand, given 𝜖 > 0, setting

𝛿 = {(
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
𝑀

Γ (𝛽)
)

−1

𝜖}

1/𝛽

, (55)

then, for every V ∈ 𝐻
1

0
(Ω), 𝑡1 < 𝑡2, 𝑡1, 𝑡2 ∈ [0, 𝑇], 0 <

𝑇 < 1, and 𝑡2 − 𝑡1 < 𝛿, one has ‖Φ𝑢(𝑡2) − Φ𝑢(𝑡1)‖𝐻−1 =

sup
‖V‖
𝐻1
0

≤1
|⟨Φ𝑢(𝑡2) − Φ𝑢(𝑡1), V⟩| ≤ 𝜖. That is to say, Φ(𝑢) is

equicontinuity. In fact,

󵄩󵄩󵄩󵄩Φ𝑢(𝑡2) − Φ𝑢 (𝑡1)
󵄩󵄩󵄩󵄩𝐻−1

= sup
‖V‖
𝐻1
0

≤1

󵄨󵄨󵄨󵄨⟨Φ𝑢 (𝑡2) − Φ𝑢 (𝑡1) , V⟩
󵄨󵄨󵄨󵄨

= sup
‖V‖
𝐻1
0

≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑥) , V⟩ (𝑡2 − 𝑡1)

+
1

Γ (𝛽)
∫

𝑡2

0

(𝑡2 − 𝑠)
𝛽−1

⟨𝐹 (𝑢) , V⟩ 𝑑𝑠

−
1

Γ (𝛽)
∫

𝑡1

0

(𝑡1 − 𝑠)
𝛽−1

⟨𝐹 (𝑢) , V⟩ 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖V‖𝐻10
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨

+
1

Γ (𝛽)
|⟨𝐹 (𝑢) , V⟩| ∫

𝑡2

0

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝛽−1󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+
1

Γ (𝛽)
|⟨𝐹 (𝑢) , V⟩| ∫

𝑡1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝛽−1
− (𝑡1 − 𝑠)

𝛽−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

𝛽Γ (𝛽)
𝑡
𝛽

2
−

𝑀

𝛽Γ (𝛽)
𝑡
𝛽

1

=
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

𝛽Γ (𝛽)
(𝑡
𝛽

2
− 𝑡
𝛽

1
) .

(56)

In the following, we divide the proof into two cases.

Case 1. 𝛿 ≤ 𝑡1 < 𝑡2 < 𝑇 < 1; since 0 < 𝛽 ≤ 1, we get

󵄩󵄩󵄩󵄩Φ𝑢(𝑡2) − Φ𝑢(𝑡1)
󵄩󵄩󵄩󵄩𝐻−1

= sup
‖V‖
𝐻1
0

≤1

󵄨󵄨󵄨󵄨⟨Φ𝑢 (𝑡2) − Φ𝑢 (𝑡1) , V⟩
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

𝛽Γ (𝛽)
(𝑡
𝛽

2
− 𝑡
𝛽

1
)

=
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

𝛽Γ (𝛽)
𝛽𝑡
𝛽−1

(𝑡2 − 𝑡1)

≤
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

Γ (𝛽) 𝛿1−𝛽
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨

=
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝛿 +
𝑀

Γ (𝛽)
𝛿
𝛽

≤
󵄩󵄩󵄩󵄩𝜓(𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝛿
𝛽
+

𝑀

Γ (𝛽)
𝛿
𝛽

= (
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
𝑀

Γ (𝛽)
) 𝛿
𝛽
≤ 𝜖;

(57)

here, 𝑡1 < 𝑡 < 𝑡2, and we apply the mean theorem 𝑡
𝛽

2
− 𝑡
𝛽

1
=

𝛽𝑡
𝛽−1

(𝑡2 − 𝑡1).

Case 2. 0 ≤ 𝑡1 < 𝛿, 𝑡2 < 𝛽
1/𝛽

𝛿,

󵄩󵄩󵄩󵄩Φ𝑢 (𝑡2) − Φ𝑢 (𝑡1)
󵄩󵄩󵄩󵄩𝐻−1

= sup
‖V‖
𝐻1
0

≤1

󵄨󵄨󵄨󵄨⟨Φ𝑢 (𝑡2) − Φ𝑢 (𝑡1) , V⟩
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 +
𝑀

𝛽Γ (𝛽)
(𝑡
𝛽

2
− 𝑡
𝛽

1
)

≤
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝛿 +
𝑀

𝛽Γ (𝛽)
(𝛽
1/𝛽

𝛿)
𝛽

≤
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω)𝛿
𝛽
+

𝑀

Γ (𝛽)
𝛿
𝛽

= (
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐿∞(Ω) +
𝑀

Γ (𝛽)
) 𝛿
𝛽
≤ 𝜖.

(58)

By the means of the Arzela-Ascoli theorem, we know that
Φ(𝑢) : 𝐻

1

0
(Ω) → 𝐻

1
(Ω) is completely continuous. This

completes the proof.

By Lemma 10, we know that ∫
Ω
(𝑢 − Φ(𝑢))V 𝑑𝑥 = 0, ∀𝑡 ∈

[0, 𝑇], 0 < 𝑇 < 1, for every V ∈ 𝐻
1

0
(Ω). That is to say, the

fractional order equation (𝐸𝜆,𝑏,𝑡) has a unique weak solution
𝑢 ∈ 𝐶([0, 𝑇];𝐻

1

0
(Ω)).
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6. Conclusion

In this paper, we discussed the existence of a class of
semilinear equations in the case of 1 < 𝛼 < 𝑝 − 1 in
a weighted Sobolev space. By exploiting the relationship
between the Nehari manifold and fiberingmaps, we first ana-
lyzed the properties of the Nehari manifold in the weighted
Sobolev space, using these properties and combining the
compact imbedding theorem and the behavior of Palais-
Smale sequences on the Nehari manifold, we obtained the
existence of the positive solutions for the problem (1). Finally,
by using the Arzela-Ascoli fixed point theorem, the existence
of weak solution for the time-fractional equation (𝐸𝜆,𝑏,𝑡) was
obtained.
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[12] P. A. Binding, P.Drábek, andY.X.Huang, “Existence ofmultiple
solutions of critical quasilinear elliptic Neumann problems,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 42, no.
4, pp. 613–629, 2000.

[13] J. Huang, Z. L. Pu, and G. G. Chen, “The properties of the
Nehari manifold for the nonlinear elliptic equation involving
a sublinear term,” Journal of Sichuan Normal University, vol. 31,
pp. 127–130, 2008.

[14] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, New York,
NY, USA, 1999.

[15] V. Lakshmikantham, S. Leela, and D. J. Vasundhara, Theory of
Fractional Dynamic Systems, Cambridge Academic Publishers,
Cambridge, UK, 2009.

[16] C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions
of the boundary value problem for nonlinear fractional differ-
ential equations,” Computers & Mathematics with Applications,
vol. 59, no. 3, pp. 1363–1375, 2010.

[17] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley and
Sons, New York, NY, USA, 1993.

[18] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives: Theory and Applications, Gordon and
Breach, Yverdon-les-Bains, Switzerland, 1993.

[19] Y. Tian and A. Chen, “The existence of positive solution to
three-point singular boundary value problem of fractional
differential equation,” Abstract and Applied Analysis, vol. 2009,
Article ID 314656, 18 pages, 2009.

[20] S. Zhang, “Positive solutions for boundary-value problems of
nonlinear fractional differential equations,” Electronic Journal of
Differential Equations, vol. 36, 12 pages, 2006.
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