
Research Article
Fixed Points of Multivalued Contractive Mappings
in Partial Metric Spaces

Abdul Rahim Khan,1 Mujahid Abbas,2 Talat Nazir,3 and Cristiana Ionescu4

1 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Department of Mathematics and Applied Mathematics, University Pretoria, Lynnwood Road, Pretoria 0002, South Africa
3 Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
4 Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania

Correspondence should be addressed to Cristiana Ionescu; cristianaionescu58@yahoo.com

Received 23 November 2013; Accepted 7 January 2014; Published 20 February 2014

Academic Editor: Hassen Aydi

Copyright © 2014 Abdul Rahim Khan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The aim of this paper is to present fixed point results of multivalued mappings in the framework of partial metric spaces. Some
examples are presented to support the results proved herein. Our results generalize and extend various results in the existing
literature. As an application of our main result, the existence and uniqueness of bounded solution of functional equations arising
in dynamic programming are established.

1. Introduction

In 1922, Banach proved his celebrated contraction principle
[1]. As it is well known, there have been published remarkable
research articles about fixed points theory for different classes
of contractivemappings, on some spaces such as quasi-metric
spaces [2], cone metric spaces [3], convex metric spaces [4],
partially ordered metric spaces [5–10], 𝐺-metric spaces [11–
15], partial metric spaces [16, 17], quasi-partial metric spaces
[18], fuzzy metric spaces [19], and Menger spaces [20]. Also,
studies either on approximate fixed point or on qualitative
aspects of numerical procedures for approximating fixed
points are available in literature; please, see [4, 21–23].

The concept of a partial metric space is introduced
by Matthews [24], as a part of the study of denotational
semantics of dataflow networks. He gave a modified version
of the Banach contraction principle, more suitable in this
context (see also [25, 26]). In fact, (complete) partial metric
spaces constitute a suitable framework to model several
distinguished examples of the theory of computation and also
to model metric spaces via domain theory (see [24, 27–31]).

It was shown that, in some cases, the results of fixed
point in partial metric spaces can be obtained directly from

their induced metric counterparts [32–34]. However, some
conclusions important for the application of partial metrics
in information sciences cannot be obtained in this way. For
example, if 𝑥 is a fixed point of map 𝑓, then, by using the
method from [32], we cannot conclude that 𝑝(𝑓𝑥, 𝑓𝑥) = 0 =
𝑝(𝑥, 𝑥). For further details, we refer the reader to [35, 36].

Recently, Aydi et al. [37] introduced the concept of a
partial Hausdorff metric. They initiated study of fixed point
theory for multivalued mappings on partial metric space
using the partial Hausdorff metric and proved an analogue
of the well-known Nadler fixed point theorem.

In this paper, we obtain several fixed point results of
multivalued mappings in partial metric spaces. Our results
extend, unify, and generalize the comparable results in [38–
41].

2. Preliminaries

In the sequel the letters R, R+, and N∗ will denote the set of
all real numbers, the set of all nonnegative real numbers, and
the set of all positive integer numbers, respectively.

Consistent with [24, 42], the following definitions and
results will be needed in the sequel.
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Definition 1. Let 𝑋 be a nonempty set. A function 𝑝 : 𝑋 ×

𝑋 → R+ is said to be a partialmetric on𝑋 if, for any 𝑥, 𝑦, 𝑧 ∈
𝑋, the following conditions hold:

(p
1
) 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) = 𝑝(𝑥, 𝑦) if and only if 𝑥 = 𝑦;

(p
2
) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(p
3
) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(p
4
) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦).

The pair (𝑋, 𝑝) is called a partial metric space.

If 𝑝(𝑥, 𝑦) = 0, then (p
1
) and (p

2
) imply that 𝑥 = 𝑦. But

the converse does not hold in general.
A trivial example of a partial metric space is the pair

(R+, 𝑝), where

𝑝 : R
+

×R
+

→ R
+

, 𝑝 (𝑥, 𝑦) = max {𝑥, 𝑦} . (1)

Example 2 (see [24]). If𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏}, then

𝑝 ([𝑎, 𝑏] , [𝑐, 𝑑]) = max {𝑏, 𝑑} −min {𝑎, 𝑐} (2)

defines a partial metric 𝑝 on𝑋.

For more examples of partial metric spaces, we refer to
[17, 29, 31, 43–45].

Each partial metric 𝑝 on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋, whose base is the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜀) : 𝑥 ∈

𝑋, 𝜀 > 0}, where 𝐵
𝑝
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜀},

for all 𝑥 ∈ 𝑋 and 𝜀 > 0.
Observe (see [24, p. 187]) that a sequence {𝑥

𝑛
} in a partial

metric space (𝑋, 𝑝) converges to a point 𝑥 ∈ 𝑋, with respect
to 𝜏
𝑝
, if and only if 𝑝(𝑥, 𝑥) = lim

𝑛→∞
𝑝(𝑥, 𝑥

𝑛
).

If 𝑝 is a partial metric on𝑋, then the function

𝑝
𝑆

: 𝑋 × 𝑋 → R
+

,

𝑝
𝑆

(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) ,

(3)

defines a metric on𝑋.
Furthermore, a sequence {𝑥

𝑛
} converges in (𝑋, 𝑝𝑆) to a

point 𝑥 ∈ 𝑋 if and only if

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥) = 𝑝 (𝑥, 𝑥) . (4)

Definition 3 (see [24]). Let (𝑋, 𝑝) be a partial metric space.

(a) A sequence {𝑥
𝑛
} in𝑋 is said to be a Cauchy sequence

if lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite.

(b) (𝑋, 𝑝) is said to be complete if every Cauchy sequence
{𝑥
𝑛
} in𝑋 converges with respect to 𝜏

𝑝
to a point𝑥 ∈ 𝑋

such that lim
𝑛→∞

𝑝(𝑥, 𝑥
𝑛
) = 𝑝(𝑥, 𝑥). In this case, we

say that the partial metric 𝑝 is complete.

Lemma 4 (see [24, 42]). Let (𝑋, 𝑝) be a partial metric space.
Then,

(i) a sequence {𝑥
𝑛
} in 𝑋 is a Cauchy sequence in (𝑋, 𝑝)

if and only if it is a Cauchy sequence in metric space
(𝑋, 𝑝
𝑆
);

(ii) a partial metric space (𝑋, 𝑝) is complete if and only if
the metric space (𝑋, 𝑝𝑆) is complete.

Let (𝑋, 𝑝) be a partial metric space. Let 𝑃(𝑋) and𝑃
𝑐𝑙
(𝑋)

(𝑃
𝐶𝐵
(𝑋)) be the family of all nonempty and nonempty and

closed (nonempty, closed, and bounded) subsets of the partial
metric space (𝑋, 𝑝). Note that here closedness is considered in
(𝑋, 𝜏
𝑝
) (𝜏
𝑝
is the topology induced by 𝑝) while boundedness

is given as follows: 𝐴 is a bounded subset in (𝑋, 𝑝) if there
exist 𝑥

0
∈ 𝑋 and 𝑀 ≥ 0 such that, for all 𝑎 ∈ 𝐴, we have

𝑎 ∈ 𝐵
𝑝
(𝑥
0
,𝑀); that is, 𝑝(𝑥

0
, 𝑎) < 𝑝(𝑎, 𝑎) + 𝑀.

For 𝐴, 𝐵 ∈ 𝑃
𝐶𝐵
(𝑋) and 𝑥 ∈ 𝑋, [37] defines

𝑝 (𝑥, 𝐴) = inf {𝑝 (𝑥, 𝑎) , 𝑎 ∈ 𝐴} ,

𝛿
𝑝
(𝐴, 𝐵) = sup {𝑝 (𝑎, 𝐵) : 𝑎 ∈ 𝐴} ,

𝛿
𝑝
(𝐵, 𝐴) = sup {𝑝 (𝑏, 𝐴) : 𝑏 ∈ 𝐵} .

(5)

It is easy to check that 𝑝(𝑥, 𝐴) = 0 ⇒ 𝑝
𝑆
(𝑥, 𝐴) = 0, where

𝑝
𝑆
(𝑥, 𝐴) = inf{𝑝𝑆(𝑥, 𝑎), 𝑎 ∈ 𝐴}.

Remark 5 (see [42]). Let (𝑋, 𝑝) be a partial metric space and
let 𝐴 be any nonempty set in (𝑋, 𝑝). Then

𝑎 ∈ 𝐴 iff𝑝 (𝑎, 𝐴) = 𝑝 (𝑎, 𝑎) , (6)

where 𝐴 denotes the closure of 𝐴 with respect to the partial
metric 𝑝. Note that 𝐴 is closed in (𝑋, 𝑝) if and only if 𝐴 = 𝐴.

Let 𝑋 be any nonempty set and let 𝑇 : 𝑋 → 𝑃(𝑋) be a
given mapping. For any fixed 𝑥

0
∈ 𝑋, a sequence {𝑥

𝑛
} in 𝑋

such that𝑥
𝑛+1

∈ 𝑇(𝑥
𝑛
) is called a𝑇-orbital sequence about𝑥

0
.

Collection of all such sequences will be denoted by 𝑂(𝑇, 𝑥
0
).

Further a point 𝑧 ∈ 𝑋 is called a fixed point of 𝑇 if and only
if 𝑧 ∈ 𝑇(𝑧) [46]. The set of all fixed points of multivalued
mapping 𝑇 is denoted by 𝐹(𝑇).

We have the following partial metric space version of
Definition 1.8 in [47].

Definition 6. Let 𝑋 be any nonempty set, 𝑥
0
, 𝑧 ∈ 𝑋, and

let 𝑇 : 𝑋 → 𝑃(𝑋). A mapping 𝑓 : 𝑋 → R is said
to be 𝑇-orbitally lower semicontinuous at 𝑧 with respect to
𝑥
0
if {𝑥
𝑛
} ∈ 𝑂(𝑇, 𝑥

0
) and 𝑥

𝑛
converges to 𝑧 implying that

𝑓(𝑧) ≤ lim inf
𝑛→∞

𝑓(𝑥
𝑛
).

3. Fixed Points of Multivalued Mapping

In this section, we obtain several fixed point results of
multivalued mappings satisfying more general contractive
conditions than those of Cho et al. [47], Ćiri ́c [48], and Feng
and Liu [38] in the frame work of partial metric spaces.

Theorem 7. Let 𝑋 be a partial metric space and let 𝑇 : 𝑋 →

𝑃
𝑐𝑙
(𝑋) be a multivalued mapping. Suppose that there exist
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functions 𝜙 : [0,∞) → [0, 1) and 𝜓 : [0,∞) → [𝑐, 1] such
that

𝜙 (𝑡) < 𝜓 (𝑡) ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1 ∀𝑟 ∈ [0,∞) ,

(7)

where 𝑐 ∈ (0, 1). If, for any 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑇(𝑥)

satisfying

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) ≤ 𝑝 (𝑥, 𝑇 (𝑥)) , (8)

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) , (9)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 is a fixed point

of 𝑇. If 𝑇(𝑧) = {𝑧}, then 𝑝(𝑧, 𝑧) = 0.

Proof. Let 𝑥
0
be a given point in 𝑋. Since 𝑇(𝑥

0
) ∈ 𝑃
𝑐𝑙
(𝑋), we

can choose 𝑥
1
∈ 𝑇(𝑥

0
) such that

𝜓 (𝑝 (𝑥
0
, 𝑥
1
)) 𝑝 (𝑥

0
, 𝑥
1
) ≤ 𝑝 (𝑥

0
, 𝑇 (𝑥
0
)) ,

𝑝 (𝑥
1
, 𝑇 (𝑥
1
)) ≤ 𝜙 (𝑝 (𝑥

0
, 𝑥
1
)) 𝑝 (𝑥

0
, 𝑥
1
) .

(10)

Then, we have

𝑝 (𝑥
1
, 𝑇 (𝑥
1
)) ≤

𝜙 (𝑝 (𝑥
0
, 𝑥
1
))

𝜓 (𝑝 (𝑥
0
, 𝑥
1
))
𝑝 (𝑥
0
, 𝑇 (𝑥
0
)) . (11)

We define 𝜇 : [0,∞) → [0,∞) by 𝜇(𝑡) = 𝜙(𝑡)/𝜓(𝑡) for all 𝑡 ∈
[0,∞). Then by definition of 𝜙 and 𝜓, it follows that 𝜇(𝑡) < 1
for all 𝑡 ∈ [0,∞) and lim sup

𝑡→ 𝑟
+𝜇(𝑡) < 1 for all 𝑟 ∈ [0,∞).

From (11), we have

𝑝 (𝑥
1
, 𝑇 (𝑥
1
)) ≤ 𝜇 (𝑝 (𝑥

0
, 𝑥
1
)) 𝑝 (𝑥

0
, 𝑇 (𝑥
0
)) . (12)

Continuing this way, we can obtain a sequence {𝑥
𝑛
} in𝑋 such

that 𝑥
𝑛+1

∈ 𝑇(𝑥
𝑛
) which satisfies

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) , (13)

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜙 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)) 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) . (14)

Now by (13) and (14), we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜇 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)) 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) . (15)

As 𝜇(𝑡) < 1, we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) < 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) , (16)

for all 𝑛 ≥ 0. Thus, {𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
))} is (strictly) decreasing

sequence of positive real numbers. Consequently, there exists
𝛼 ≥ 0 such that {𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
))} converges to 𝛼. Since 0 < 𝑐 ≤

𝜓(𝑡) for all 𝑡 ∈ [0,∞), it follows from (13) that 𝑐𝑝(𝑥
𝑛
, 𝑥
𝑛+1
) ≤

𝜓(𝑝(𝑥
𝑛
, 𝑥
𝑛+1
))𝑝(𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
)), and hence we have

0 ≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤

1

𝑐
𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) . (17)

On taking upper limit as 𝑛 → ∞ on both sides of (17), we
have

𝛼 ≤ lim sup
𝑛→∞

𝜇 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) 𝛼, (18)

which implies that 𝛼 = 0; that is, lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
)) = 0.

Now we show that {𝑥
𝑛
} is a Cauchy sequence. Put

𝛾 = lim sup
𝑝(𝑥
𝑛
,𝑥
𝑛+1
)→0
+𝜇(𝑝(𝑥

𝑛
, 𝑥
𝑛+1
)). We can choose a real

number 𝑘 ∈ [𝛾, 1) such that there exists a positive integer 𝑛
1

such that 𝜇(𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)) ≤ 𝑘 for all 𝑛 ≥ 𝑛

1
. Thus, from (15),

we have 𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
)) ≤ 𝑘𝑝(𝑥

𝑛−1
, 𝑇(𝑥
𝑛−1
)) for all 𝑛 ≥ 𝑛

1
. So

for all𝑚, 𝑛 ∈ N with𝑚 > 𝑛 ≥ 𝑛
1
+ 1,

𝑝 (𝑥
𝑚
, 𝑇 (𝑥
𝑚
)) ≤ 𝑘

𝑚−𝑛

𝑝 (𝑥
𝑛−1
, 𝑇 (𝑥
𝑛−1
)) . (19)

Also, from (17) and (19), we have

𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) ≤
𝑘
𝑚−𝑛

𝑐
𝑝 (𝑥
𝑛−1
, 𝑇 (𝑥
𝑛−1
)) (20)

for all𝑚 > 𝑛 > 𝑛
1
+ 1. Now

𝑝
𝑆

(𝑥
𝑚
, 𝑥
𝑚+1

)

= 2𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) − 𝑝 (𝑥
𝑚
, 𝑥
𝑚
) − 𝑝 (𝑥

𝑚+1
, 𝑥
𝑚+1

)

≤ 2𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑝 (𝑥
𝑚
, 𝑥
𝑚
) + 𝑝 (𝑥

𝑚+1
, 𝑥
𝑚+1

)

≤ 4𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) ≤
4

𝑐
𝑘
𝑚−𝑛

𝑝 (𝑥
𝑛−1
, 𝑇 (𝑥
𝑛−1
)) .

(21)

Thus

𝑝
𝑆

(𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝
𝑆

(𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑝
𝑆

(𝑥
𝑛+1
, 𝑥
𝑛+2
) + ⋅ ⋅ ⋅ + 𝑝

𝑆

(𝑥
𝑚−1

, 𝑥
𝑚
)

≤
4

𝑐
[𝑘 + 𝑘

2

+ ⋅ ⋅ ⋅ 𝑘
𝑚−𝑛−1

] 𝑝 (𝑥
𝑛−1
, 𝑇 (𝑥
𝑛−1
))

≤
4

𝑐
(

1

1 − 𝑘
)𝑝 (𝑥

𝑛−1
, 𝑇 (𝑥
𝑛−1
)) ,

(22)

for all 𝑚 > 𝑛 ≥ 𝑛
1
+ 1. Using lim

𝑛→∞
𝑝(𝑥
𝑛−1
, 𝑇(𝑥
𝑛−1
)) = 0,

we get that {𝑥
𝑛
} is a Cauchy sequence in the metric space

(𝑂(𝑇, 𝑥
0
), 𝑝
𝑆
). By Lemma 4, {𝑥

𝑛
} is a Cauchy sequence in

(𝑂(𝑇, 𝑥
0
), 𝑝).

Next, we assume that there exists an element 𝑧 in𝑂(𝑇, 𝑥
0
)

such that

𝑝 (𝑧, 𝑧) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑧) = lim

𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) (23)

and the function 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower semicontin-
uous at 𝑧 with respect to 𝑥

0
. Then it follows that

0 ≤ 𝑝 (𝑧, 𝑇 (𝑧))

≤ lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
))

≤ lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) = 0.

(24)

Thus 𝑝(𝑧, 𝑇(𝑧)) = 0. Since 𝑇(𝑧) is closed, 𝑧 ∈ 𝑇(𝑧).
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Now, if 𝑇(𝑧) = {𝑧}, then from (9) we have

0 ≤ 𝑝 (𝑧, 𝑧) = 𝑝 (𝑧, 𝑇 (𝑧)) ≤ 𝜙 (𝑝 (𝑧, 𝑧)) 𝑝 (𝑧, 𝑧) , (25)

where 𝜙(𝑝(𝑧, 𝑧)) < 1. Hence 𝑝(𝑧, 𝑧) = 0.

Example 8. Let 𝑋 = {1, 2, 3} and let 𝑝 : 𝑋 × 𝑋 → R+ be the
partial metric defined by

𝑝 (1, 1) =
1

4
, 𝑝 (2, 2) = 𝑝 (3, 3) = 0,

𝑝 (1, 2) = 𝑝 (2, 1) =
11

24
,

𝑝 (1, 3) = 𝑝 (3, 1) =
1

2
,

𝑝 (2, 3) = 𝑝 (3, 2) =
1

3
.

(26)

Define the mapping 𝑇 : 𝑋 → 𝑃
𝑐𝑙
(𝑋) by

𝑇𝑥 = {
{2} if 𝑥 ∈ {2, 3} ,
{2, 3} if 𝑥 = 1.

(27)

Note that 𝑇𝑥 is closed and bounded for all 𝑥 ∈ 𝑋 in the
partial metric space (𝑋, 𝑝). Define 𝜙 : [0,∞) → [0, 1) and
𝜓 : [0,∞) → [𝑐, 1], where 𝑐 ∈ (0, 1) as

𝜙 (𝑡) =

{{{

{{{

{

𝑡

8
if 𝑡 ∈ [0, 4) ,

1

2
if 𝑡 ≥ 4,

𝜓 (𝑡) =

{{{{{{{

{{{{{{{

{

1

6
if 𝑡 = 0,

𝑡

4
if 𝑡 ∈ (0, 4) ,

1 if 𝑡 ≥ 4.

(28)

Clearly, 𝜙(𝑡) < 𝜓(𝑡) for all 𝑡 ∈ [0,∞) and
lim sup

𝑡→ 𝑟
+(𝜙(𝑡)/𝜓(𝑡)) < 1 for all 𝑟 ∈ [0,∞). We will

show that for all 𝑥, 𝑦 ∈ 𝑋, (8) and (9) are satisfied. For this,
we consider the following cases.

(i) If 𝑥 = 1, then there exists 𝑦 = 2 ∈ 𝑇(1) such that

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) = 𝜓 (𝑝 (1, 2)) 𝑝 (1, 2) =
121

2304

<
11

24
= 𝑝 (1, {2, 3}) = 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) = 𝑝 (2, {2}) = 0

<
121

4608
= 𝜙 (𝑝 (1, 2)) 𝑝 (1, 2)

= 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) .

(29)

(ii) When 𝑥 = 2, then there exists 𝑦 = 2 ∈ 𝑇(2) such that

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) = 𝜓 (𝑝 (2, 2)) 𝑝 (2, 2) = 0

= 𝑝 (2, {2}) = 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) = 𝑝 (2, {2}) = 0

= 𝜙 (𝑝 (2, 2)) 𝑝 (2, 2)

= 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) .

(30)

(iii) For 𝑥 = 3, there exists 𝑦 = 2 ∈ 𝑇(1) such that

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) = 𝜓 (𝑝 (3, 2)) 𝑝 (3, 2) =
1

36

<
1

3
= 𝑝 (3, {2}) = 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) = 𝑝 (2, {2}) = 0

<
1

72
= 𝜙 (𝑝 (3, 2)) 𝑝 (3, 2)

= 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) .

(31)

Thus, all the conditions ofTheorem 7 are satisfied. More-
over, 𝑇(2) = {2} and 𝑝(2, 2) = 0.

The next example shows that one cannot derive the
conclusion of Theorem 7 using metric induced by a partial
metric.

Example 9. Let 𝑋 = R+ be the partial metric space with
𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. Define the mapping 𝑇 : 𝑋 → 𝑃

𝑐𝑙
(𝑋)

by

𝑇𝑥 =

{{{

{{{

{

[0,
7𝑥

8
] if 𝑥 ∈ [0, 1] ,

{
1

2
} if 𝑥 > 1.

(32)

Note that 𝑇𝑥 is closed and bounded for all 𝑥 ∈ 𝑋 in the
partial metric space (𝑋, 𝑝). Define 𝜙 : [0,∞) → [0, 1) and
𝜓 : [0,∞) → [𝑐, 1] by

𝜙 (𝑡) =

{{{

{{{

{

𝑡

8
if 𝑡 ∈ [0, 1) ,

1

2
if 𝑡 ≥ 1,

𝜓 (𝑡) =

{{{{{{{

{{{{{{{

{

1

6
if 𝑡 = 0,

𝑡

4
if 𝑡 ∈ (0, 1) ,

1 if 𝑡 ≥ 1,

(33)

where 𝑐 ∈ (0, 1). Clearly, 𝜙(𝑡) < 𝜓(𝑡) for all 𝑡 ∈ [0,∞) and
lim sup

𝑡→ 𝑟
+(𝜙(𝑡)/𝜓(𝑡)) < 1 for all 𝑟 ∈ [0,∞). We will show
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that, for all 𝑥, 𝑦 ∈ 𝑋, (8) and (9) are satisfied. For this, we
consider the following cases.

When 𝑥 = 0, then, for 𝑦 = 0 ∈ 𝑇(𝑥), (8) and (9) are
satisfied.

For 𝑥 ∈ (0, 1], take 𝑦 = 𝑥/2 ∈ 𝑇(𝑥) such that

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) = 𝜓(𝑝(𝑥,
𝑥

2
))𝑝(𝑥,

𝑥

2
) =

𝑥
2

4

< 𝑥 = 𝑝(𝑥, [0,
7𝑥

8
]) = 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) = 𝑝 (
𝑥

2
, [0,

7𝑥

8
]) =

𝑥

2

<
𝑥
2

8
= 𝜙 (𝑝(𝑥,

𝑥

2
))𝑝(𝑥,

𝑥

2
)

= 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) .

(34)

In case 𝑥 > 1, taking 𝑦 = 1/2 ∈ 𝑇(𝑥), we have

𝜓 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) = 𝜓(𝑝(𝑥,
1

2
))𝑝(𝑥,

1

2
)

= 𝑥 = 𝑝(𝑥, [0,
7𝑥

8
]) = 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) = 𝑝 (
1

2
, [0,

7

16
)) =

1

2

<
𝑥

2
= 𝜙(𝑝(𝑥,

1

2
))𝑝(𝑥,

1

2
)

= 𝜙 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) .

(35)

Hence for all 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑇(𝑥) such that (8)
and (9) are satisfied. Thus, all the conditions of Theorem 7
are satisfied. Moreover, 𝑇(0) = {0} and 𝑝(0, 0) = 0.

On the other hand, we have 𝑝𝑆(𝑥, 𝑦) = |𝑥 − 𝑦|. If we take
𝑥 ∈ (1/2, 1), then there does not exist any 𝑦 ∈ 𝑇(𝑥) such that
(8) and (9) are satisfied.

Hence we are justified in formulating the following result.

Theorem 10. Let 𝑋 be a partial metric space and let 𝑇 :

𝑋 → 𝑃
𝑐𝑙
(𝑋) be a mapping. Suppose that there exist functions

𝜙 : [0,∞) → [0, 1), 𝜓 : [0,∞) → [𝑐, 1] such that

𝜙 (𝑡) < 𝜓 (𝑡) ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1 ∀𝑟 ∈ [0,∞) ,

(36)

where 𝑐 ∈ (0, 1). If for any 𝑥 ∈ 𝑋 there exists 𝑦 ∈ 𝑇(𝑥)

satisfying

𝜓 (𝑝 (𝑥, 𝑇 (𝑥))) 𝑝 (𝑥, 𝑦) ≤ 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝜙 (𝑝 (𝑥, 𝑇 (𝑥))) 𝑝 (𝑥, 𝑦) ,

(37)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges

to 𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 ∈ 𝐹(𝑇).

Proof. Let 𝑥
0
be a given point in 𝑋. As in the proof of

Theorem 7, we can obtain a sequence {𝑥
𝑛
} in 𝑋 such that

𝑥
𝑛+1

∈ 𝑇(𝑥
𝑛
), which satisfies

𝜓 (𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
))) 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) , (38)

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜙 (𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
))) 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) . (39)

From 𝜇(𝑡) = 𝜙(𝑡)/𝜓(𝑡) for all 𝑡 ∈ [0,∞), we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜇 (𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
))) 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) . (40)

As 𝜇(𝑡) < 1, so we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) < 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) , (41)

for all 𝑛 ≥ 0, and it follows that {𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
))} is (strictly)

decreasing sequence of positive real numbers. Consequently,
there exists 𝛽 ≥ 0 such that {𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
))} converges to 𝛽. On

taking upper limit as 𝑛 → ∞ on both sides of (40), we have

𝛽 ≤ lim sup
𝑛→∞

𝜇 (𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
))) 𝛽, (42)

which implies that 𝛽 = 0; that is, lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
)) = 0.

Now we show that {𝑥
𝑛
} is a Cauchy sequence. Since 0 <

𝑐 ≤ 𝜓(𝑡), for all 𝑡 ∈ [0,∞), it follows from (38) that
𝑐𝑝(𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝜓(𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
)))𝑝(𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
)),

and hence we have

0 ≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤

1

𝑐
𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) . (43)

Thus the sequence {𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)} is bounded.

Following arguments similar to those in the proof of
Theorem 7, we obtain that {𝑥

𝑛
} is a Cauchy sequence in

(𝑂(𝑇, 𝑥
0
), 𝑝) and 𝑧 ∈ 𝑇(𝑧).

Now, in the next two results, we consider further general-
ization of the conditions (8), (9), and (37).

Theorem 11. Let 𝑋 be a partial metric space and let 𝑇 :

𝑋 → 𝑃
𝑐𝑙
(𝑋) be a multivalued mapping. Suppose that there

exist functions 𝜙 : [0,∞) → [0,∞), 𝜓 : [0,∞) → (0,∞)

such that 𝜙 is nondecreasing and subadditive and they satisfy

𝜙 (𝑡) < 𝜓 (𝑡) ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1 ∀𝑟 ∈ [0,∞) .

(44)

If for any 𝑥 ∈ 𝑋 there exists 𝑦 ∈ 𝑇(𝑥) satisfying

𝜓 (𝑝 (𝑥, 𝑦)) ≤ 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) ,

(45)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 ∈ 𝐹(𝑇).
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Proof. Let 𝑥
0
be a given point in 𝑋. Since 𝑇(𝑥

0
) ∈ 𝑃
𝑐𝑙
(𝑋), we

can choose 𝑥
1
∈ 𝑇(𝑥

0
) such that

𝜓 (𝑝 (𝑥
0
, 𝑥
1
)) ≤ 𝑝 (𝑥

0
, 𝑇 (𝑥
0
)) ,

𝑝 (𝑥
1
, 𝑇 (𝑥
1
)) ≤ 𝜙 (𝑝 (𝑥

0
, 𝑥
1
)) .

(46)

As before by continuing this way, we can obtain a sequence
{𝑥
𝑛
} in𝑋 such that 𝑥

𝑛+1
∈ 𝑇(𝑥

𝑛
) which satisfies

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) ≤ 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) ,

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜙 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)) .

(47)

By (47), we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤

𝜙 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
))

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
))
𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) , (48)

for all 𝑛 ≥ 0. We define 𝜇 : [0,∞) → [0,∞) by 𝜇(𝑡) =
𝜙(𝑡)/𝜓(𝑡) for all 𝑡 ∈ [0,∞). Then by the definitions of 𝜙
and 𝜓, it follows that 𝜇(𝑡) < 1 for all 𝑡 ∈ [0,∞), and
lim sup

𝑡→ 𝑟
+𝜇(𝑡) < 1 for all 𝑟 ∈ [0,∞). From (48), we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) ≤ 𝜇 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)) 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) . (49)

As 𝜇(𝑡) < 1, so we have

𝑝 (𝑥
𝑛+1
, 𝑇 (𝑥
𝑛+1
)) < 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) , (50)

for all 𝑛 ≥ 0. Also,

𝜙 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) < 𝜓 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
))

≤ 𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) ≤ 𝜙 (𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
)) .

(51)

By nondecreasing 𝜙, it follows that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) < 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) (52)

for all 𝑛 ≥ 0. Thus, {𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
))} and {𝑝(𝑥

𝑛
, 𝑥
𝑛+1
)} are

(strictly) decreasing sequences of positive real numbers.
Consequently, there exist 𝛼, 𝛽 ≥ 0 such that {𝑝(𝑥

𝑛
, 𝑇(𝑥
𝑛
))}

converges to 𝛼 and {𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)} converges to 𝛽. Now, by

taking upper limit as 𝑛 → ∞ in (49), we have

𝛼 ≤ lim sup
𝑛→∞

𝜇 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) 𝛼, (53)

which implies 𝛼 = 0; that is, lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑇(𝑥
𝑛
)) = 0.

Nowwe show that {𝑥
𝑛
} is a Cauchy sequence.There exists

a real number 𝑘 ∈ (0, 1) such that, for a positive integer 𝑛
1

with 𝑛 ≥ 𝑛
1
, we have

𝑝 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) ≤ 𝑘

𝑛−𝑛
0𝑝 (𝑥
𝑛
0

, 𝑇 (𝑥
𝑛
0

)) . (54)

Clearly,

𝜙 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) < 𝜓 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)) ≤ 𝑝 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
))

≤ 𝑘
𝑛−𝑛
0𝑝 (𝑥
𝑛
0

, 𝑇 (𝑥
𝑛
0

))

(55)

for all 𝑛 > 𝑛
1
. Now

𝜓 (𝑝
𝑆

(𝑥
𝑚
, 𝑥
𝑚+1

))

= 𝜓 (2𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) − 𝑝 (𝑥
𝑚
, 𝑥
𝑚
) − 𝑝 (𝑥

𝑚+1
, 𝑥
𝑚+1

))

≤ 𝜓 (2𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑝 (𝑥
𝑚
, 𝑥
𝑚
) + 𝑝 (𝑥

𝑚+1
, 𝑥
𝑚+1

))

≤ 4𝜓 (𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

)) ≤ 4𝑘
𝑚−𝑛

𝑝 (𝑥
𝑛
0

, 𝑇 (𝑥
𝑛
0

)) .

(56)

Thus

𝜓 (𝑝
𝑆

(𝑥
𝑛
, 𝑥
𝑚
))

≤ 𝜓 (𝑝
𝑆

(𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑝
𝑆

(𝑥
𝑛+1
, 𝑥
𝑛+2
)

+ ⋅ ⋅ ⋅ + 𝑝
𝑆

(𝑥
𝑚−1

, 𝑥
𝑚
))

≤ 4 [𝑘 + 𝑘
2

+ ⋅ ⋅ ⋅ 𝑘
𝑚−𝑛

] 𝑝 (𝑥
𝑛
0

, 𝑇 (𝑥
𝑛
0

))

≤ 4(
𝑘
𝑚

1 − 𝑘
)𝑝 (𝑥

𝑛
0

, 𝑇 (𝑥
𝑛
0

)) ,

(57)

for all 𝑚 > 𝑛 ≥ 𝑛
1
+ 1. This implies that {𝑥

𝑛
} is a Cauchy

sequence in themetric space (𝑂(𝑇, 𝑥
0
), 𝑝
𝑆
). By Lemma 4, {𝑥

𝑛
}

is a Cauchy sequence in (𝑂(𝑇, 𝑥
0
), 𝑝). Using arguments as in

the proof of Theorem 7, we can show that the limit point of
{𝑥
𝑛
} is a fixed point of 𝑇.

In same way, we can prove the following result.

Theorem 12. Let 𝑋 be a partial metric space and 𝑇 : 𝑋 →

𝑃
𝑐𝑙
(𝑋) be a multivalued mapping. Suppose that there exist 𝜙 :

[0,∞) → [0,∞), 𝜓 : [0,∞) → (0,∞) such that 𝜙 is
nondecreasing and subadditive and they satisfy

𝜙 (𝑡) < 𝜓 (𝑡) ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1 ∀𝑟 ∈ [0,∞) .

(58)

If for any 𝑥 ∈ 𝑋 there exists 𝑦 ∈ 𝑇(𝑥) satisfying

𝜓 (𝑝 (𝑥, 𝑦)) ≤ 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) ,

(59)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 ∈ 𝐹(𝑇).

The following result generalizes and extendsTheorem 3.1
in [38] to partial metric spaces.

Corollary 13. Let (𝑋, 𝑝) be a partial metric space, and let 𝑇 :

𝑋 → 𝑃
𝑐𝑙
(𝑋) be amultivaluedmapping. If there exist constants

𝑏, 𝑐 ∈ (0, 1) with 𝑐 < 𝑏 such that, for any 𝑥 ∈ 𝑋, there exists
𝑦 ∈ 𝑇(𝑥) satisfying

𝑏𝑝 (𝑥, 𝑦) ≤ 𝑝 (𝑥, 𝑇 (𝑥)) ,

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝑐𝑝 (𝑥, 𝑦) ,

(60)
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then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 ∈ 𝐹(𝑇).

The following corollary is an extension of [49] and in view
of Corollary 3.2 in [38] is a special case of Theorem 10.

Corollary 14. Let (𝑋, 𝑝) be a partial metric space, and let 𝑇 :

𝑋 → 𝑃
𝑐𝑙
(𝑋) be amultivaluedmapping. If there exist constants

𝑐 ∈ (0, 1) such that, for any 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑇(𝑥)

satisfying

𝑝 (𝑦, 𝑇 (𝑦)) ≤ 𝑐𝑝 (𝑥, 𝑦) , (61)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇(𝑥)) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑧 ∈ 𝐹(𝑇).

Corollary 15. Let𝑋 be a partial metric space and let𝑇 : 𝑋 →

𝑋 be a self-mapping. Suppose that, there exist 𝜙 : [0,∞) →

[0,∞), 𝜓 : [0,∞) → (0,∞) such that 𝜙 is nondecreasing
and subadditive and they satisfy

𝜙 (𝑡) < 𝜓 (𝑡) ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1 ∀𝑟 ∈ [0,∞) .

(62)

If for any 𝑥 ∈ 𝑋 there exists 𝑇(𝑥) ∈ 𝑋 satisfying

𝜓 (𝑝 (𝑥, 𝑇𝑥)) ≤ 𝑝 (𝑥, 𝑇𝑥) ,

𝑝 (𝑇𝑥, 𝑇
2

𝑥) ≤ 𝜙 (𝑝 (𝑥, 𝑇𝑥)) ,

(63)

then, for each 𝑥
0
∈ 𝑋, there exists {𝑥

𝑛
} in 𝑂(𝑇, 𝑥

0
) such

that {𝑥
𝑛
} is a Cauchy sequence. Further, if {𝑥

𝑛
} converges to

𝑧 and the function 𝑓(𝑥) = 𝑝(𝑥, 𝑇𝑥) is 𝑇-orbitally lower
semicontinuous at 𝑧 with respect to 𝑥

0
, then 𝑇𝑧 = 𝑧.

We remark that

(1) if (𝑋, 𝑝) is a complete partial metric space in Theo-
rems 7 and 10, 𝑇 : 𝑋 → 𝑃

𝑐𝑙
(𝑋) is a multivalued

mapping satisfying all the conditions of Theorems 7
and 10, and the function 𝑓(𝑥) := 𝑝(𝑥, 𝑇(𝑥)) is lower
semicontinuous on 𝑋, then there exists 𝑧 in 𝑋 such
that 𝑧 ∈ 𝐹(𝑇).

(2) Theorems 7, 10, and 11 extend and generalize Theo-
rems 2.1 and 2.4 in [47], Theorem 3.1 in [38], and
Theorems 2.3, 2.4, 2.7 and 2.8 in [41] to partial metric
spaces.

4. Application

Let 𝑈 and 𝑉 be the Banach spaces with𝑊 ⊆ 𝑈 and 𝐷 ⊆ 𝑉.
Suppose that

𝜏 : 𝑊 × 𝐷 → 𝑊, 𝑔, ℎ : 𝑊 × 𝐷 → R,

𝐺 : 𝑊 × 𝐷 ×R → R.
(64)

If we consider 𝑊 and 𝐷 as the state and decision spaces,
respectively, then the problem of dynamic programming
reduces to the problem of solving the functional equation

𝑞 (𝑥) = sup
𝑦∈𝐷

{ℎ (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑞 (𝜏 (𝑥, 𝑦)))} , for 𝑥 ∈ 𝑊.

(65)

Equation (65) can be reformulated as

𝑞 (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑞 (𝜏 (𝑥, 𝑦)))} − 𝑏,

for 𝑥 ∈ 𝑊,
(66)

where 𝑏 > 0.
For more on problems of dynamic programming involv-

ing such functional equations, we refer the reader to [25, 50–
52].

We study the existence and uniqueness of the bounded
solution of the functional equation (66) arising in dynamic
programming in the setup of partial metric spaces.

Let 𝐵(𝑊) denote the set of all bounded real valued
functions on 𝑊. For an arbitrary ℎ ∈ 𝐵(𝑊), define ‖ℎ‖ =

sup
𝑡∈𝑊

|ℎ(𝑡)|. Then (𝐵(𝑊), ‖ ⋅ ‖) is a Banach space endowed
with the metric 𝑑 defined as 𝑑(ℎ, 𝑘) = sup

𝑡∈𝑊
|ℎ𝑡 − 𝑘𝑡|.

Now consider

𝑝
𝐵
(ℎ, 𝑘) = 𝑑 (ℎ, 𝑘) + 𝑏 = sup

𝑡∈𝑊

|ℎ (𝑡) − 𝑘 (𝑡)| + 𝑏, (67)

where ℎ, 𝑘 ∈ 𝐵(𝑊). Then 𝑝
𝐵
is a partial metric on 𝐵(𝑊) (see

also [53]).
We need the following two conditions.

(A
1
) 𝐺 and 𝑔 are bounded.

(A
2
) For 𝑥 ∈ 𝑊, ℎ ∈ 𝐵(𝑊), and 𝑏 > 0, define

𝐾ℎ (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} − 𝑏. (68)

Moreover, assume that there existmappings𝜙 : [0,∞) →

[0,∞) and𝜓 : [0,∞) → (0,∞) such that𝜙 is nondecreasing
and subadditive and they satisfy

𝜙 (𝑡) < 𝜓 (𝑡) , ∀𝑡 ∈ [0,∞) ,

lim sup
𝑡→ 𝑟
+

𝜙 (𝑡)

𝜓 (𝑡)
< 1, ∀𝑟 ∈ [0,∞) .

(69)

Also for any ℎ ∈ 𝐵(𝑊), there exists 𝐾(ℎ) ∈ 𝐵(𝑊) such
that

𝜓 (𝑝
𝐵
(ℎ (𝑥) , 𝐾ℎ (𝑥))) ≤ (ℎ (𝑥) − 𝐾ℎ (𝑥)) ,


𝐾ℎ (𝑥) − 𝐾

2

ℎ (𝑥)

≤ 𝜙 (𝑝

𝐵
(ℎ (𝑥) , 𝐾ℎ (𝑥))) − 𝑏

(70)

hold for all 𝑥 ∈ 𝑊.

Theorem 16. Assume that conditions (A
1
) and (A

2
) are

satisfied. If 𝐾(𝐵(𝑊)) is a closed convex subspace of 𝐵(𝑊),
then the functional equation (66) has a unique and bounded
solution.
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Proof. Note that (𝐵(𝑊), 𝑝
𝐵
) is a complete partial metric

space. By (A
1
), 𝐾 is a self-map of 𝐵(𝑊). By (68) in (A

2
) it

follows that for any ℎ ∈ 𝐵(𝑊), there exists𝐾(ℎ) ∈ 𝐵(𝑊) such
that

𝜓 (𝑝
𝐵
(ℎ (𝑡) , 𝐾ℎ (𝑡))) ≤ (ℎ (𝑡) − 𝐾ℎ (𝑡)) ,


𝐾ℎ (𝑡) − 𝐾

2

ℎ (𝑡)

≤ 𝜙 (𝑝

𝐵
(ℎ (𝑡) , 𝐾ℎ (𝑡))) − 𝑏

(71)

hold for all 𝑡 ∈ 𝑊. Now, we have

(ℎ (𝑡) − 𝐾ℎ (𝑡))

= ℎ (𝑡) − [sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} − 𝑏]

= ℎ (𝑡) − [sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))}] + 𝑏

≤ sup
𝑡∈𝑊



ℎ (𝑡) − [sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))}]



+ 𝑏

= 𝑝
𝐵
(ℎ (𝑡) , 𝐾ℎ (𝑡)) .

(72)

Also

𝑝
𝐵
(𝐾
2

ℎ (𝑡) , 𝐾ℎ (𝑡)) = sup
𝑡∈𝑊


𝐾
2

ℎ (𝑡) − 𝐾ℎ (𝑡)

+ 𝑏

≤ 𝜙 (𝑝
𝐵
(ℎ (𝑡) , 𝐾ℎ (𝑡))) .

(73)

Note that the above inequalities are true for all 𝑡 ∈ 𝑊, and,
for any ℎ ∈ 𝐵(𝑊), there exists 𝐾(ℎ) ∈ 𝐵(𝑊) such that

𝜓 (𝑝
𝐵
(ℎ, 𝐾ℎ)) ≤ 𝑝

𝐵
(ℎ, 𝐾ℎ) ,

𝑝
𝐵
(𝐾
2

ℎ,𝐾ℎ) ≤ 𝜙 (𝑃
𝐵
(ℎ, 𝐾ℎ)) .

(74)

Therefore by Corollary 15, the map 𝐾 has a fixed point ℎ∗;
that is, ℎ∗(𝑥) is a unique and bounded solution of functional
equation (66).
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