
Research Article
Estimated Interval-Based Checkpointing (EIC) on Spot
Instances in Cloud Computing

Daeyong Jung, JongBeom Lim, Heonchang Yu, and Taeweon Suh

Department of Computer Science Education, Korea University, Seoul, Republic of Korea

Correspondence should be addressed to Taeweon Suh; suhtw@korea.ac.kr

Received 21 January 2014; Accepted 6 May 2014; Published 28 May 2014

Academic Editor: Young-Sik Jeong

Copyright © 2014 Daeyong Jung et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In cloud computing, users can rent computing resources from service providers according to their demand. Spot instances are
unreliable resources provided by cloud computing services at low monetary cost. When users perform tasks on spot instances,
there is an inevitable risk of failures that causes the delay of task execution time, resulting in a serious deterioration of quality
of service (QoS). To deal with the problem on spot instances, we propose an estimated interval-based checkpointing (EIC) using
weighted moving average. Our scheme sets the thresholds of price and execution time based on history. Whenever the actual price
and the execution time cross over the thresholds, the system saves the state of spot instances. The Bollinger Bands is adopted to
inform the ranges of estimated cost and execution time for user’s discretion.The simulation results reveal that, compared to theHBC
and REC, the EIC reduces the number of checkpoints and the rollback time. Consequently, the task execution time is decreased
with EIC by HBC and REC. The EIC also provides the benefit of the cost reduction by HBC and REC, on average. We also found
that the actual cost and execution time fall within the estimated ranges suggested by the Bollinger Bands.

1. Introduction

Cloud computing is a computing paradigm that constitutes
an advanced computing environment that evolved from
utility and grid computing. The infrastructure of cloud
computing typically includes a collection of interconnected
and virtualized computers from parallel and distributed
systems. The virtual computers are dynamically provided
to consumers as one or more unified computing resources,
based on service level agreements (SLA) established through
negotiation between the service provider and consumers [1–
5]. Typically, cloud computing services provide a high level
of scalability of computing resources combined with Internet
technology to multiple customers [6]. Currently, there are
several commercial cloud systems in service such as Amazon
EC2 [7], GoGrid [8], and FlexiScale [9].

In most of these cloud services, there is a notion of an
instance to provide users with resources in a cost-efficient
manner. An instance means the virtual machine (VM) that
serves for the user’s need. In general, instances are classified
into two types: on-demand instances and spot instances. On-
demand instances are charged for the compute capacity on

an hourly basis without the long-term commitment. This
frees users from the costs and complexities of planning,
purchasing, and maintaining hardware and transforms com-
monly large fixed costs into much smaller variable costs [7].
On the other hand, spot instances allow users to bid on
unused compute capacity and utilize those instances for as
long as the current spot price is below their bid. The spot
price is changing periodically based on supply and demand.
When users’ bids meet or exceed the price, they gain access
to the available spot instances. If users are flexible as to
when applications should run, spot instances can significantly
decrease the cost as reported in [7]. Nevertheless, there is a
risk of task failures, which occurs when the spot price of the
instance becomes higher than the bid price.

To efficiently handle this problem, the checkpointing
schemes have been proposed in the research community
[10, 11]. The checkpointing saves the execution status of tasks
if a certain condition is met and then recovers the task status
from the last saved point upon a failure. It allows a reduction
in the execution time and cost in an unreliable computing
environment. On a legal side, the SLA is typically used for
alleviating the uncertainty by specifying service details such

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 217547, 12 pages
http://dx.doi.org/10.1155/2014/217547

http://dx.doi.org/10.1155/2014/217547

2 Journal of Applied Mathematics

as price and task execution time. SLA specifies the resource
allocation and rental terms to consumers in agreement with
providers.

In this paper, we propose the estimated interval-based
checkpointing (EIC), which improves the efficiency over our
previous study [12]. The key idea is adopting the weighted
moving average (WMA) and Bollinger Bands. The moving
average is a history-based prediction scheme.TheWMA sets
a different weight for each time interval in the past and
calculates the average of the weights. With these weights, the
failure occurrence probability is obtained in each interval.
The threshold for checkpointing is calculated based on the
average failure probability. We apply two thresholds of price
and time in EIC. In addition, we use the Bollinger Bands to
inform users of estimated execution time and cost. In the
stock market, the Bollinger Bands is a well-known analysis
method. It is used to measure the high and low value level of
the previous trading data. This method is used to predict the
price bid in the stock market. We use the Bollinger Bands to
calculate both the estimated execution time and the cost.

We have measured the number of checkpoint trials
and total cost per spot instance for a user bid. Simulation
results show that the EIC outperforms the existing schemes,
hour-boundary checkpointing (HBC) [13] and rising edge-
driven checkpointing (REC), [11] in terms of the number of
checkpoints. Consequently, the EIC minimizes the execution
time of applications and the time wasted by task failures.

The rest of this paper is organized as follows. Section 2
briefly describes related work on resource allocation, SLA,
fault tolerance, moving average, and Bollinger Bands in
cloud computing. Section 3 presents our system architecture.
Section 4 presents our SLA, estimation, and checkpoint algo-
rithms based on the price history of spot instances. Section 5
presents performance evaluations with simulations. Finally,
Section 6 concludes the paper.

2. Related Work

Many researchers and companies have recently studied
fault-tolerance techniques in two different environments of
cloud computing: reliable environments, with on-demand
instances [14, 15], and unreliable environments, with spot
instances [11, 13, 16, 17]. The fault-tolerance techniques are
more required in unreliable environments. Our study was
performed in the latter category of the environments to
provide the cost-effectiveness of task execution.

Spot instances are typically used in unreliable environ-
ments, and studies on spot instances focus on performing
tasks at low monetary costs. The spot instances in the
Amazon Elastic Compute Cloud (EC2) offer lower price at
the expense of the reduced reliability [18]. Cloud exchange
[19] supports the actual price history of EC2 spot instances. In
the spot instances environment, there are numerous studies
on resource allocation [16, 17], SLA [6, 20, 21], fault tolerance
[10, 11, 13, 16], moving average [22, 23], and Bollinger Bands
[24, 25].

On the resource allocation side, Voorsluys and Buyya [16]
solve the problem of running computation-intensive tasks on

a pool of intermittent VMs. To mitigate potential unavail-
ability periods, the study proposed amultifaceted fault-aware
resource provisioning policy. Their solution employs price
and runtime estimation mechanisms. The proposed strategy
achieves cost savings and stricter adherence to deadlines.
Zhang et al. [17] introduced a solution of how best to
match customer demand in terms of both supply and price
and to maximize the provider’s revenue and the customer’s
satisfaction in terms of VM scheduling. The proposed model
is designed to solve the problem of discrete-time optimal
control.This model achieves higher revenues than static allo-
cation strategies and minimizes the average request waiting
time. Our work differs from [16, 17] in that we focus on
reducing the rollback time after a task failure, achieving the
cost savings and reducing the total execution time.

On the SLA side, Andrzejak et al. [20] proposed a
probabilistic decision model to help users decide a minimum
cost according to an SLA between users and Amazon’s
EC2. The scheme is based on a probabilistic model for
the optimization of cost, performance, and reliability. It
improves the reliability of service by changing conditions
dynamically to satisfy user requirements. Due to the dynamic
nature of cloud computing, continuous monitoring of the
quality of service (QoS) attributes is necessary to enforce
SLAs. Two similar studies [6, 21] focus on cloud resource
management in the reliable cloud environment. One is based
on SLA monitoring and enforcement in a service-oriented
architecture (SOA) [21], whereas the other focuses more on
the resource management.The resource manager optimizes a
global utility function that integrates both the SLA fulfillment
degree and the computational costs [6]. Our paper differs
from [6, 21] in that we deal with the resource management
in the unreliable cloud environment.

On the fault tolerance side, two similar studies (HBC
[13] and REC [11]) proposed enforcing fault tolerance in
cloud computing with spot instances. Based on the actual
price history of EC2 spot instances, they compared several
adaptive checkpointing schemes in terms of monetary costs
and job execution time. Goiri et al. [10] evaluated three
fault tolerance schemes, checkpointing, migration, and job
duplication, assuming that the communication cost is fixed.
The migration-based scheme shows a better performance
than the checkpointing or the job duplication-based scheme.
Voorsluys and Buyya [16] also analyzed and evaluated the
impact of checkpointing and migration on fault tolerance
using spot instances. Our paper differs from [10, 11, 13, 16] in
that we utilize double thresholds for fault tolerance.

On the moving average and Bollinger Bands side, the
moving average takes the next observation data using the data
in the past [22, 23]. Reference [22] introduced the simple
moving average (SMA) and WMA. Reference [23] used the
average data to apply weight according to each interval.
It evaluates the average of price depending on the weight
change. Our paper also adopts WMA to estimate price,
execution time, and thresholds based on price history. How-
ever, we found that the estimation is not accurate enough.
We overcome this shortcoming by applying Bollinger Bands
to estimate the execution time and the price ranges. The
Bollinger Bands, proposed by Bollinger [24], is a technical

Journal of Applied Mathematics 3

Cloud user

· ·
·

··
·

··
·

Cloud portal

Cloud server

Storage server
Cluster server

Cluster server Node

Node

...

Figure 1: Cloud computing environment.

VM information
collector

SLA
manager

History
manager

VM info.
manager

QoS
manager

Coordinator

Scheduler

Estimation predictor

Figure 2: Cloud computing environment.

analysismethodused in the stockmarket. It analyzes previous
trades and determines the standard deviation. Daytrader [25]
introduced a method to predict the range of Bollinger Bands.
This prediction requires the selection of length of the moving
average around which the Bollinger Bands are plotted, and
standard deviations to calculate from this moving average.
Our paper differs from [24, 25] in that we apply Bollinger
Bands to predict both cost and execution time ranges in the
unreliable cloud environment.

In our previous paper [12], we proposed a checkpoint
scheme based on SLA to satisfy user requirements. Our
previous study performs a checkpointing operation based on
two thresholds: price and time.The estimated execution time
is predicted using the price history of an instance only for the
same amount of time in task execution in the past.This paper
differs in that the Bollinger Bandswas adopted to improve the
accuracy of cost and execution time estimationswith utilizing
numerous estimation intervals of the past.

3. System Architecture

Figure 1 shows the cloud computing environment assumed
in this paper, which basically consists of four entities: a
cloud server, storage servers, cluster servers, and cloud users.
The cloud server is connected to cluster servers and storage
servers.The cluster server is composed ofmany nodes. Cloud
users can access the cloud server via the cloud portal to
utilize the nodes in the cluster servers as resources.Therefore,

VM status
collector

VM information
provider

Job execution
manager

Virtual machine

VM manager

Checkpoint
manager

Checkpoint
storage

Figure 3: The structure of virtual machine.

the cloud server takes responsibility of finding resources and
spawning virtual machines to satisfy the user’s requirements
in terms of the SLA and QoS. The coordinator in the
cloud server manages tasks and is responsible for the SLA
management. We focus on the coordinator and the VM,
which play important roles in our checkpointing scheme.

3.1. Layer Structure. Figure 2 shows the structure of the
coordinator in the cloud server, which is composed of
Scheduler, Estimation Predictor, VM Information Manager,
History Manager, SLA Manager, QoS Manager, and VM
Information Collector. In the coordinator, the four managers
are responsible for generating and maintaining a list of avail-
ableVMs, based on the information collected fromVMInfor-
mationCollector.TheVMInformationCollector collectsVM
information and provides it to VM informationManager.The
VM InformationManager generates a list of CPU utilization,
availablememory and storage space, network bandwidth, and
so on. The History Manager manages the history data, in
which the past bid and execution time of spot instances are
accumulated. SLA Manager and QoS Manager manage the
SLA requirements and the QoS requirements, respectively.
Estimation Predictor analyzes data taken from the other
managers and calculates the range of estimation completion
time and total prices. When a cloud user requests job
execution, the Scheduler allocates the requested job to the
selected VM.

Figure 3 shows the structure of theVM. In this figure, VM
Status Collector collects the status information of the VM,
such as CPU utilization andmemory space. VM Information
Provider extracts resource information needed for job execu-
tion using the VM status Collector and delivers the resource
information to VM Manager. Job execution Manager exe-
cutes a requested job received from the coordinator and
returns a job result to VM Manager, and VM Manager then
delivers the result to the coordinator. Checkpoint Manager
manages checkpointing status and the data checkpointed by
the Checkpoint Manager are stored in Checkpoint Storage.

3.2. Instances Types. The difference between the two instance
types is as follows. In on-demand instances, a failure does
not occur during task execution, but the cost is comparatively
high. In contrast, the cost of spot instances is lower than that
of on-demand instances. However, there is an inevitable risk
of task failures encountered when the price of the instances
becomes higher than the user bid.

4 Journal of Applied Mathematics
Pr

ic
e (

$)

Time
Dec 15 Dec 16 Dec 17 Dec 18 Dec 19 Dec 20 Dec 21 Dec 22

Bid

0.336

0.328

0.320

0.312

0.304

Figure 4: Price history of EC2’s spot instances for c1-xlarge.

Amazon allows users to bid on unused EC2 capacity
among 42 types of spot instances [18].Their prices, which are
referred to as spot prices, are changing dynamically based on
supply and demand. Figure 4 shows a spot price fluctuations
example during seven days in December 2010 for c1-xlarge
(High-CPU Spot Instances—Extra Large) [19]. Our proposed
systemmodel is based on the characteristics of Amazon EC2’s
spot instances.

(i) The system provides a spot instance when a user bid
is higher than the current price.

(ii) The system immediately stops the spot instance with-
out any notice when a user bid becomes less than or
equal to the current price. We refer to it as an out-of-
bid event or a failure.

(iii) The system does not charge for the last partial hour
when the system stops the spot instance.

(iv) The system does charges for the last partial hour when
the user voluntarily terminates the spot instance.

(v) The system provides the spot price history.

4. Estimated Interval-Based Checkpointing

In this section, we detail an estimated interval-based check-
pointing for spot instances that includes the SLA, the moving
average, Bollinger Bands, and the fault tolerance.

4.1. Price History-Based SLA. Figure 5 shows the SLA process
between a user and an instance. A user determines an
instance type and the bid price to begin tasks on the instance.
The coordinator calculates the task execution time based on
the user’s decision. Then, the coordinator sends a request
message to the selected instance to investigate the perfor-
mance of the instance and calculates the expected execution
time, the expected failure time, and the expected cost. Then,
the coordinator sends a user the expected execution time
and cost. When a task is completed on the selected instance,
the coordinator receives the outcome from the instance and
sends it to the user. As shown in Figure 5, the prediction
function in the coordinator plays an important role in our
SLA process because it performs the estimation using price
history.

4.2. EstimationUsingMoving Average and Bollinger Bands. In
EIC, the checkpointing operation is performed by analyzing

the price variation at certain time intervals in the past.We use
the moving average which estimates a job execution time and
a cost from the analyzed data. The estimations are combined
with the failure probability to calculate the thresholds for
the checkpointing operation. The proper estimation of the
execution time and cost is crucial for the credibility of
service providers to customers. For the probable estimation
information, we use Bollinger Bands. It suggests the upper
and lower bounds of the execution time and the cost. We
show in Section 5 that the actual execution time and the cost
fall within the bounds.

In this paper, we introduce a terminology referred to
as estimated interval (EI). Figure 6 shows an illustrative
definition of the EI. The detailed definitions are as follows.

(i) Pure task time: the time to execute a task on a selected
instance when there are no failures.

(ii) Past pure task time: a sum of time durations taken for
task execution on the selected instance in the past,
excluding failure durations. It is extracted from the
price history.

(iii) Past failure time: a sum of failure durations in the past
to execute a task. A failure occurs when the current
user bid is below the past spot price.

(iv) Estimated interval (EI): the sum of the past pure task
time and the past failure time.

(v) Moving average EI: the average of EIs computed using
moving average.

(vi) Expected cost: the average of costs charged for task
execution in EIs.

Based on the simple moving average (SMA), we calculate
an estimated time SMAET and an estimated price SMAEp by
the average of EIs in the price history, as shown below:

SMAET (𝑛) =
ET
1
+ ET
2
+ ET
3
+ ⋅ ⋅ ⋅ + ET

𝑛

𝑛
,

SMAEP (𝑛) =
EP
1
+ EP
2
+ EP
3
+ ⋅ ⋅ ⋅ + EP

𝑛

𝑛
,

(1)

where ET
𝑖
is the estimated time in an interval 𝑖, EP

𝑖
is the

estimated price in an interval 𝑖, and 𝑛 is the number of
intervals, as depicted in Figure 6.

Based on the weightedmoving average (WMA),WMAET
and WMAEP are averages of the estimated time and the
estimated price from the price history with a weight using
SMA.They are calculated by

WMAET =
∑
𝑛

𝑖=1
𝛼
𝑖
ET
𝑛−𝑖+1

∑
𝑛

𝑖=1
𝛼
𝑖

, WMAEP =
∑
𝑛

𝑖=1
𝛼
𝑖
EP
𝑛−𝑖+1

∑
𝑛

𝑖=1
𝛼
𝑖

,

(2)

where 𝛼 is a weight.The 𝛼
𝑖
is assigned the highest for themost

recent EI
1
, and it is decreased from the most recent EI

1
to the

last EI
𝑁
. The weight 𝛼

𝑖
is calculated by

𝛼
𝑖
=
𝑛 + 1 − 𝑖

∑
𝑛

𝑖=1
𝑖
, (3)

Journal of Applied Mathematics 5

Selected ()

Job check ()

Task execution ()

Prediction ()

Confirm ()

Job command ()

Job finished ()

Performance check ()

User bid price
Instance type

Task execution time

Expected failure time
Expected execution time
Expected costExpected execution time

Expected cost

Request
Response

User Coordinator Instance

Figure 5: SLA processing.

Past pure task time

Pure task time

Time length

(a) Pure task time and past pure
task time

Estimated interval

Past failure time
Past pure task time

Time length

(b) Estimated interval

Future timePast time Present time
Real task execution timeEIn EI1EI2EI3

Moving average EI

(c) Moving average estimated interval

Figure 6: Moving average relation.

where 𝑖 and 𝑛 are the interval number and the last interval
number, respectively. By adjusting the weight, we empirically
reduce the gap between the estimation and actual data from
real execution. The Bollinger Bands presents the range of
estimation using a moving average and a standard deviation.
Generally, the Bollinger Bands itself adopts a moving average
as the middle value. We use WMA as the middle value of
the Bollinger Bands because the near past is more likely to
be influencing the near future. The upper and lower bounds
of the Bollinger Bands are defined as

(i) Middle Bollinger Band =WMA

(ii) Lower Bollinger Band = Middle Bollinger Band − 2𝜎

(iii) Upper Bollinger Band = Middle Bollinger Band + 2𝜎

where 𝜎 is the standard deviation of EIs. Figure 7 illustrates
the range of Bollinger Bands using training data that consist
of each estimation value in EIs.The training data are obtained
from (an) N-zone EIs.

Bollinger bands
range

Training data

Upper Bollinger Band
Middle Bollinger Band
Lower Bollinger Band

EIn EI1EI2EI3

+2𝜎
−2𝜎

Datan Data1Data2Data3

Figure 7: Bollinger Bands acquisition.

0 60 120 180
Time

Task execution

Pay per hour

Failure
(without
payment)

Recovery

Checkpoint position

tc tc tc

Figure 8: Hour-boundary checkpointing.

4.3. Fault Tolerance Mechanisms Using Checkpoints. On a
spot instance, a task failure occurswhen the user’s bid is below
the current spot price.This problem has been solved by using
the checkpointing, one of fault tolerance mechanism [9]. In
this section, we detail the existing checkpointing methods
and our proposed scheme.

Figure 8 illustrates the hour-boundary checkpointing
(HBC). In this scheme, the checkpointing operation is per-
formed in the hour boundary, and a user pays the biding price
on an hourly basis. Upon the task failure, the task is restarted
from the position of the last checkpoint.

Figure 9 illustrates the rising edge-driven checkpointing
(REC). In this scheme, the checkpointing operation is per-
formed when both the price of the spot instance is raised (i.e.,

6 Journal of Applied Mathematics

Available duration Available durationFailure
Time

Recovery
User bid

Pr
ic

e f
or

 a
sp

ot
 in

sta
nc

e

Checkpoint position
Rising edge

Figure 9: Rising edge-driven checkpointing.

Recovery

Pr
ic

e f
or

 a
sp

ot
 in

sta
nc

e

Available duration Available durationFailure
Time

Price threshold

User bid

Tend Tstart
EIn EI1EI2

tend tstart

Checkpoint position (price threshold)
Rising edge over price threshold
Checkpoint position (time threshold)

Figure 10: Estimated interval-based checkpointing.

rising-edge) and the price is less than the user bid. It increases
the number of checkpoints when the spot price fluctuates
frequently. The critical problem in REC is that the rollback
time becomes long when a rising edge does not appear for
a long period of time after a checkpoint is taken. This could
lead to a longer time for the task completion than HBC.

Figure 10 illustrates checkpointing operation in EIC. It
is basically performed using two thresholds, price and time,
based on the expected execution time according to the price
history. Now, let 𝑡start and 𝑡end denote a start point and an
end point, respectively, in the total of EIs. Based on 𝑡start and
𝑡end, we obtain the price threshold (PriceTh) and the time
threshold (TimeTh

𝑃𝑖
), which are used as thresholds in EIC.

The price threshold, PriceTh, can be calculated by

PriceTh =
WPmin + Userbid
2

, (4)

where Userbid represents the user bid and WPmin represents
an available minimum price using a moving average in the
time duration between 𝑡start and 𝑡end.

First, the 𝑃EI𝑖min represents the minimum price in the time
duration between 𝑇start and 𝑇end in EI

𝑖

𝑃
EI𝑖
min = PriceMin (𝑡start, 𝑡end) . (5)

Second, the WPmin is the average of the product of 𝑃
EI𝑖
min and

sum of the weighted value 𝛼
𝑖
:

WPmin =
∑
𝑛

𝑖=1
𝛼
𝑖
× 𝑃

EI𝑛−𝑖+1
min

∑
𝑛

𝑖=1
𝛼
𝑖

. (6)

The time threshold of price 𝑃
𝑖
, TimeTh

𝑃𝑖
, is calculated by

TimeTh
𝑃𝑖
=
∑
𝑛

𝑗=1
𝛼
𝑗
× TimeThEI𝑛−𝑗+1

𝑃𝑖

∑
𝑛

𝑗=1
𝛼
𝑗

. (7)

In each EI, the time threshold of price 𝑃
𝑖
, TimeThEI𝑗

𝑃𝑖
, is

calculated by

TimeThEI𝑗
𝑃𝑖
= AvgTimeEI𝑗

𝑃𝑖
(𝑡start, 𝑡end) × (1 − 𝐹

EI𝑗
𝑃𝑖
) , (8)

where 𝐹EI𝑗
𝑃𝑖

is the failure probability of price 𝑃
𝑖
and

AvgTimeEI𝑗
𝑃𝑖
(𝑡start, 𝑡end) represents the average execution time

of 𝑃
𝑖
in an interval between 𝑇start and 𝑇end in EI

𝑗
. The failure

occurrence probability 𝐹EI𝑗
𝑃𝑖

is calculated by

𝐹
EI𝑗
𝑃𝑖
=

∑ext𝑘∈EI𝑗,𝑃𝑖 ext
after failure
𝑘

∑ext𝑘∈EI𝑗 ,𝑃𝑖 (ext
after failure
𝑘

+ extafter non-failure
𝑘

)
, (9)

where ext
𝑘
is the execution task time to invoke an interval

𝑘 when a price 𝑝
𝑖
is in EI

𝑗
. The after failure function is

calculated when the current spot price is above or equal to the
user bid.The after non-failure function is calculated when the
current spot price is below the user bid.

Using these two thresholds, our scheme performs check-
pointing operations in two cases. First, a checkpointing is
performed when there is a rising edge in the actual price
variation, and the actual price falls in between the user bid
and the price threshold; second, the checkpointing is based
on the time threshold, which is computed with the failure
probability and the average execution time as in (7). It is
performed if the current execution time exceeds the time
threshold computed at the same past price as the current one.

Algorithm 1 shows the checkpointing and recovery algo-
rithm used in EIC. The flag represents the occurrence of a
task failure, and it is initially set to false. The checkpointing
process repeats until all tasks are completed. When the task
execution is normal (i.e., the flag is false), the scheduler
performs a checkpoint operation to cope with the potential
job failure (lines 5–25).The scheduler estimates the execution
time before the initial task starts (lines 6–9). The recovery
process is performed when the flag is true (lines 11–14). The
checkpoints are performed in two cases (lines 15–20). If the
rising spot price falls in between the user bid and the price
threshold, the scheduler performs a checkpointing operation
(lines 15–17). If the execution time exceeds the time threshold,
the scheduler also performs a checkpointing operation (lines
18–12). When a task failure occurs, the flag is set to true
(lines 22–24). Lines 26–29 show the detailed process of time
estimation. Lines 30–33 and 34–37 show the detailed process
of checkpointing and recovery, respectively.

Journal of Applied Mathematics 7

(1) // Input: user’s requested task and bid
(2) // Output: total task execution time and total cost
(3) Boolean 𝐹 flag = false // a flag representing occurrence of a task failure
(4) Boolean EI flag = true // a EI flag representing a task start
(5) while (! Task execution finishes) do
(6) if (EI flag) then
(7) Estimation();
(8) EI flag = false;
(9) end if
(10) if (spot prices < User bid) then
(11) if (𝐹 flag) then
(12) Recovery();
(13) 𝐹 flag = false;
(14) end if
(15) if (rising edge && Price threshold < spot prices) then
(16) Checkpoint();
(17) end if
(18) if (Time threshold < execution time in current price) then
(19) Checkpoint();
(20) end if
(21) end if
(22) if (failure is occurred) then
(23) 𝐹 flag = true;
(24) end if
(25) end while
(26) Function Estimation()
(27) calculate the points of checkpoint to base a price history;
(28) set the price and time thresholds;
(29) end Function
(30) Function Checkpoint()
(31) task a checkpoint on the spot instance;
(32) Send the checkpoint to the storage;
(33) end Function
(34) Function Recovery()
(35) retrieve the checkpoint information form the storage;
(36) restart the job execution;
(37) end Function

Algorithm 1: Checkpointing and recovery algorithm.

5. Performance Evaluation

Our simulations were conducted using the history data
obtained from the Amazon EC2’s spot instances [19], which
was accumulated during a period from December 15, 2010
to December 22, 2010 as shown in Figure 4. The history data
before December 20, 2010 were used to extract the expected
execution time and failure probability for the proposed
checkpointing scheme. The applicability of EIC was tested
using the history data after December 20, 2010, which was
also used in HBC and REC.

In the simulations, one type of spot instances, c1.xlarge,
was applied to show the effect of the three checkpointing
schemes on performance according to the user bid and the
task time. Table 1 shows the applied resource type details
used in Amazon EC2. The high-CPU instance offers more
compute units than other resources (standard and high-
memory instances) and is ideal for the compute-intensive
applications. Under the simulation environments, we com-
pare the performance of EIC with those of HBC and REC in

Table 1: Resource type information.

Instance type Compute
unit

Virtual
cores Memory Storage

C1.xlarge
(High-CPU) 20 EC2 8 cores

(2.5 EC2) 7GB 1690GB

terms of various metrics according to the user bid and task
time.

5.1. User Bid Impact on Performance. Before analyzing the
performance of EIC, we extracted the simulation specifics
from the spot history presented in Figure 4. Table 2 shows
the data used for simulation.The simulations were conducted
with incrementing the user bid interval fromminimumbid to
maximum bid.

We also extracted the failure probability with the current
bid price according to each spot price in the past (12-15-
2010–12-19-2010), as drawn in Figure 4. The probability was

8 Journal of Applied Mathematics

Table 2: Simulation parameters and values.

Parameter Value
Task time 259,200 sec
Checkpoint time 300 sec
Recovery time 300 sec
Minimum user bid $0.310
Maximum user bid $0.340
User bid interval $0.005

0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340
0

20
40
60
80

100

Fa
ilu

re
 p

ro
ba

bi
lit

y
(%

)

Spot price ($)
User bid ($)

0.31 0.315
0.32 0.325
0.33 0.335
0.34

Figure 11: Failure occurrence probability.

used to determine the time threshold in EIC. Figure 11 shows
the failure occurrence probability for the c1.xlarge instance.
The X-axis and Y-axis denote the spot price and the failure
probability for a given user bid, respectively.

Figure 11 states that the failure occurrence probability
changes according to the user bid. As anticipated, if the bid
price is low, the failure probability is high across all spot
prices. If the bid price is high, the failure probability is low.
Thus, it is reasonable to predict that the task execution time
will be longer if the failure probability is high because both
the total failure time and total rollback time increase.

Figure 12 estimated execution time, cost, and Bollinger
Bands of each EI zone computed with the past price history.
Figures 12(a) and 12(b) show the execution time and the cost
according to the user bid respectively. Estimated interval (EI)
with the weighted moving average which is calculated by
using the past spot price history, is necessary for the user
bid. Figure 12 also shows the Bollinger Bands (Lower BB,
Middle BB, and Upper BB) according to the user bid.

Figure 13 shows the task execution time, the cost, and
Bollinger Bands when the number of EI zones is increased.
For example, 2 in x-axis means that two zones (EI

1
and EI

2
)

are included in the simulation.
Figure 14 shows the rollback times of EIC,HBC, andREC.

The rollback time is calculated from a failure point in time
to the last checkpointed time. The EIC lessens the average
rollback time by 72.46% over HBC and 88.49% over REC.

Figure 15 shows the performance comparison of EIC,
HBC, and REC. The EIC reduces the number of checkpoints
on average by 35.97% and 37.92%, compared to HBC and
REC, respectively. Consequently, the EIC shortens the task

User bid ($)

×10
6

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

0.310 0.315 0.320 0.325 0.330 0.335 0.340

Ti
m

e (
s)

EI1
EI2
EI3
EI4
EI5

Lower BB
Middle BB
Upper BB

(a) Estimated Bollinger Bands of execution time

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

EI1
EI2
EI3
EI4
EI5

Lower BB
Middle BB
Upper BB

25

20

15

C
os

ts
($

)

(b) Estimated Bollinger Bands of costs

Figure 12: Estimated execution time, cost, and Bollinger Bands of
each EI zone computed with the past price history.

execution time by 35.53% over the HBC and 40.40% over
REC.

Figure 16 shows the total costs according to the user bid.
The EIC reduces the cost on average by 36.26% and 38.52%
over HBC and REC, respectively.

Figure 17 shows the combined performance metric, the
product of the total execution time, and cost. According to the
user bid, the EIC shows marginal variation due to the lowest
amount of rollback time among the compared schemes. The
EIC achieves the relative benefits in the combined metric on
average by 55.73% and 60.95% when compared to HBC and
REC, respectively.

Figure 18 shows how well the actual execution time and
cost are predicted with EIC according to the user bid. The
actual execution time and cost are located between the lower
and upper bounds of the Bollinger Band. Figures 18(a) and
18(b) show that they are close to the middle point of the
Bollinger Band. The experiments show that the adoption
of the Bollinger Band would provide reliable estimations to
Cloud users.

5.2. Task Time Impact on Performance. In this section,
we analyzed the performance of computing-type instances
according to the task time. Table 3 shows the simulation
parameters. Note that the execution time in simulations

Journal of Applied Mathematics 9

Number of expanded EIs

Ti
m

e (
s)

×10
5

7

6

5

4
1 2 3 4 5 6 7 8 9 10

(a) Estimated Bollinger Bands of execution time

C
os

ts
($

)

Number of expanded EIs
1 2 3 4 5 6 7 8 9 10

24

22

20

18

(b) Estimated Bollinger Bands of costs

Pr
od

uc
t(

co
sts

×
tim

e) ×10
7

1.6

1.4

1.2

1.0

0.8

Number of expanded EIs
1 2 3 4 5 6 7 8 9 10

Lower BB
Middle BB

Upper BB
EIC

(c) Estimated Bollinger Bands of product

Figure 13: Estimated execution time, cost, and Bollinger Bands of
expanded EI zones computed with the past price history.

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335

Ti
m

e (
s)

×10
5

2.5

2.0

1.5

1.0

0.5

0.0

HBC
REC
EIC

Figure 14: Comparison of rollback time according to user bid.

varies from minimum time to maximum time at the gran-
ularity of the time interval.

Figure 19 shows the rollback time of EIC, HBC, and REC
according to the task time. The increase rate of rollback time
in EIC is small compared to HBC and REC. The rollback
times are increased by 5.25 times, 15.84 times, and 12.41 times
for EIC, HBC, and REC, respectively, when the task times are
increased from the minimum to the maximum times. EIC

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

Ev
en

t c
ou

nt
 n

um
be

r 500

400

300

200

100

0

Failure count (HBC)
Failure count (REC)
Failure count (EIC)

Ckp count (HBC)
Ckp count (REC)
Ckp count (EIC)

(a) Number of failures and checkpoints

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

Total time (HBC)
Total time (REC)
Total time (EIC)

Total failure time (HBC)
Total failure time (REC)
Total failure time (EIC)

×10
6

3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.0

Ti
m

e (
s)

(b) Total task execution time and total failure time

Figure 15: Performance comparison of checkpointing schemes
according to user bid.

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

C
os

ts
($

)

Total price (HBC)
Total price (REC)
Total price (EIC)

50

40

30

20

10

0

Figure 16: Comparison of total costs.

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340Pr

od
uc

t(
co

sts
×

tim
e) ×10

8

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

HBC
REC
EIC

Figure 17: Comparison of combined metrics (total task execution
time and costs).

10 Journal of Applied Mathematics

×10
6

1.4

1.0
1.2

0.8
0.6
0.4
0.2

Ti
m

e (
s)

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

(a) Total task execution time

User bid ($)
0.310 0.315 0.320 0.325 0.330 0.335 0.340

25

20

15

C
os

ts
($

)

Lower BB
Middle BB
Upper BB

EIC

(b) Total costs

Figure 18: Comparison of actual EIC outputs (execution time and
cost) and estimations according to the user bid.

×10
5

Ti
m

e (
s)

HBC
REC
EIC

2.5

2.0

1.5

1.0

0.5

0.0

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)

Figure 19: Comparison of rollback times according to the task time.

Table 3: Simulation parameters and values.

Parameter Value
User bid $0.32
Checkpoint time 300 sec
Recovery time 300 sec
Minimum task time 43,200 sec
Maximum task time 345,600 sec
Task time interval 43,200 sec

lessens the rollback time on average by 80.61% and 84.36%
over HBC and REC, respectively.

Figure 20 shows the performance comparison of EIC,
HBC, and REC. Figures 20(a) and 20(b) show the numbers
of failures and checkpoints, and total task execution time and
total failure time according to the task time.The EIC reduces
the number of checkpoints on average by 31.97% and 32.93%

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)

Ev
en

t c
ou

nt
 n

um
be

r

Failure count (HBC)
Failure count (REC)
Failure count (EIC)

Ckp count (HBC)
Ckp count (REC)
Ckp count (EIC)

200
175
150
125
100
75
50
25
0

(a) Number of failures and checkpoints

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)
Total time (HBC)
Total time (REC)
Total time (EIC)

Total failure time (HBC)
Total failure time (REC)
Total failure time (EIC)

×10
6

Ti
m

e (
s)

1.8

1.5

1.2

0.9

0.6

0.3

0.0

(b) Total task execution time and total failure time

Figure 20: Performance comparison according to the task time.

C
os

ts
($

)

Total price (HBC)
Total price (REC)
Total price (EIC)

Task time (s)

60

50

40

30

20

10

0

4
3
.2
0
0

8
6
.4
0
0

1
2
9
.6
0
0

1
7
2
.8
0
0

2
1
6
.0
0
0

2
5
9
.2
0
0

3
0
2
.4
0
0

3
4
5
.6
0
0

Figure 21: Comparison of total costs.

compared to HBC and REC, respectively. Thus, the EIC
achieves performance improvements in the task execution
time on average by 43.79% and 48.25% over HBC and REC,
respectively.

Figure 21 shows the total cost according to the task time.
The EIC reduces the cost on average by 39.38% and 40.08%
compared to HBC and REC, respectively.

Figure 22 shows the combined performance metric, the
product of the total task execution time, and cost. The rate of
increase in the product in EIC is lowest among the compared
schemes. The EIC achieves a performance improvement on

Journal of Applied Mathematics 11

HBC
REC
EIC

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)

×10
8

Pr
od

uc
t(

co
sts

×
tim

e)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 22: Comparison of combined metrics (product of total
execution time and cost).

×10
5

Ti
m

e (
s)

8.0

6.0

4.0

2.0

0.0

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)

(a) Total task execution time

4
3

,2
0
0

8
6

,4
0
0

1
2
9

,6
0
0

1
7
2

,8
0
0

2
1
6

,0
0
0

2
5
9

,2
0
0

3
0
2

,4
0
0

3
4
5

,6
0
0

Task time (s)
Lower BB
Middle BB

Upper BB
EIC

C
os

ts
($

)

30
25
20
15
10
5
0

(b) Total costs

Figure 23: Comparison of actual EIC outputs (execution time and
cost) and estimations according to the task time.

average by 65.36% and 68.51% when compared to HBC and
REC, respectively.

Figure 23 shows the estimation accuracies according to
the task time. The actual execution time and cost are located
between the lower and upper bounds of the Bollinger Band.
Figures 23(a) and 23(b) prove that the actual execution time
and cost are close to the middle point of the Bollinger Band.
They state that the EIC would be able to offer approximate
ranges of total costs and task execution time to Cloud users.

Overall, the EIC significantly reduces the number of
checkpoint trials compared to the existing checkpointing
schemes. Furthermore, the rollback time is much lesser
because the EIC adaptively performs the checkpointing oper-
ation according to the execution time and price. Simulation

results showed that our scheme achieved the cost-efficiency
by reducing rollback time regardless of the resource types of
spot instances.

Analyzing history to compute the estimated interval
requires overheads such as CPU time. However, computa-
tions only involve failure probability, execution time and cost
estimations, and a range of the Bollinger Band. Considering
the advancement of modern computers, we strongly believe
it would take the minimal amount of overheads for computa-
tions.

6. Conclusion

In this paper, we proposed the estimated interval-based
checkpointing (EIC) in the unreliable cloud computing envi-
ronment. The weighted moving average estimates the execu-
tion time and cost using the price history of spot instances
to improve the performance and stability of task processing.
The EIC performs the checkpointing operation, based on
price and time thresholds. The thresholds are determined
based on the moving average and the failure probability.
They are used to determine the checkpointing position to
recover from the potential failures of spot instances arising
from the price fluctuation. The Bollinger Bands determines
the lower and upper bounds of the estimated execution time
and cost. The ranges are informed to users as guidance for
their decision. The simulation results reveal that, compared
to the hour-boundary checkpointing (HBC) and rising edge-
driven checkpointing (REC), the EIC reduces the number of
checkpoints by 35.97% and 37.92%, respectively, on average
according to the user bid. It also reduces the rollback time
by 72.46% and 88.49% on average. Consequently, the task
execution time is decreased with ETC by 35.53% over HBC
and 40.40% over REC. The EIC also provides the benefit of
the cost reduction by 36.26%overHBCand 38.52%over REC,
on average.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Research Founda-
tion of Korea (NRF) Grant funded by the Korea government
(MEST) (NRF-2012R1A2A2A 02046684).

References

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
cloud computing: vision, hype, and reality for delivering IT
services as computing utilities,” in Proceedings of the 10th IEEE
International Conference on High Performance Computing and
Communications (HPCC ’08), pp. 5–13, September 2008.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Proceedings of the
Grid Computing Environments Workshop (GCE ’08), pp. 1–10,
November 2008.

12 Journal of Applied Mathematics

[3] K. Mahajan, A. Makroo, and D. Dahiya, “Round Robin with
server AF-finity: a VM load balancing algorithm for cloud
based infrastructure,” Journal of Information Processing System,
vol. 9, no. 3, pp. 379–394, 2013.

[4] M. M. Weng, T. K. Shih, and J. C. Hung, “A personal tutoring
mechanism based on the cloud environment,” Journal of Con-
vergence, vol. 4, pp. 37–44, 2013.

[5] A. Følstad, K. Hornbæk, and P. Ulleberg, “Social design feed-
back: evaluations with users in online ad-hoc groups,” Human-
centric Computing and Information Sciences, vol. 3, article 18,
2013.

[6] H. N. Van, F. D. Tran, and J.-M. Menaud, “SLA-aware virtual
resource management for cloud infrastructures,” in Proceedings
of the 9th IEEE International Conference on Computer and
Information Technology (CIT ’09), pp. 357–362, October 2009.

[7] Elastic Compute Cloud (EC2), 2014, http://aws.amazon.com/
ec2.

[8] GoGrid, 2014, http://www.gogrid.com.
[9] FlexiScale, 2014, http://www.flexiscale.com.
[10] I. Goiri, F. Julià, J. Guitart, and J. Torres, “Checkpoint-based

fault-tolerant infrastructure for virtualized service providers,”
in Proceedings of the 12th IEEE/IFIP Network Operations and
Management Symposium (NOMS ’10), pp. 455–462, April 2010.

[11] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot
instances via checkpointing in the Amazon Elastic Compute
Cloud,” in Proceedings of the 3rd IEEE International Conference
on Cloud Computing (CLOUD ’10), pp. 236–243, July 2010.

[12] D. Jung, S. Chin, K. Chung, H. Yu, and J. Gil, “An efficient
checkpointing scheme using price history of spot instances in
cloud computing environment,” in Proceedings of the 8th IFIP
International Conference on Network and Parallel Computing
(NPC ’11), pp. 185–200, 2011.

[13] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking point decision
mechanism for page-level incremental checkpointing based on
cost analysis of process execution time,” Journal of Information
Science and Engineering, vol. 23, no. 5, pp. 1325–1337, 2007.

[14] G. Singer, I. Livenson, M. Dumas, S. N. Srirama, and U.
Norbisrath, “Towards a model for cloud computing cost esti-
mation with reserved resources,” in Proceedings of the 2nd ICST
International Conference on Cloud Computing (CloudComp ’10),
Springer, Barcelona, Spain, October 2010.

[15] M. Mazzucco and M. Dumas, “Reserved or on-demand
instances? A revenue maximization model for cloud providers,”
in Proceedings of the 4th IEEE International Conference on Cloud
Computing (CLOUD ’11), pp. 428–435, July 2011.

[16] W. Voorsluys and R. Buyya, “Reliable provisioning of spot
instances for compute-intensive applications,” in Proceedings
of the 26th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA ’12), pp. 542–549,
March 2012.

[17] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic
resource allocation for spot markets in clouds,” in Proceedings
of the 11th USENIX Conference on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services (Hot-ICE
’11), pp. 1–6, 2011.

[18] Amazon EC2 spot Instances, 2014, http://aws.amazon.com/ec2/
spot-instances.

[19] Cloud Exchange, 2014, http://cloudexchange.org.
[20] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for

cloud computing under SLA constraints,” in Proceedings of the
18th Annual IEEE/ACM International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS ’10), pp. 257–266, August 2010.

[21] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement
in cloud computing,” in Proceedings of the Conference on Object
Oriented Programming Systems Languages and Applications, pp.
212–217, 2009.

[22] G. Dagnino, “Technical analysis, the markets and moving
averages,” Tech. Rep., The Peter Dag Portfolio Strategy &
Management, 2013.

[23] R. J. Hyndman, “Moving averages,” Tech. Rep., Department of
Econometrics and Business Statistics, Monash University, 2009.

[24] J. Bollinger, Bollinger on Bollinger Bands, McGraw Hill, 2002.
[25] Daytrader, “Bollinger bands as an entry technique,” 2000.

