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This paper investigates the stability of switched nonlinear (SN) systems in two cases: (1) all subsystems are globally asymptotically
stable (GAS), and (2) both GAS subsystems and unstable subsystems coexist, and it proposes a number of new results on the
stability analysis. Firstly, an improved average dwell time (ADT) method is presented for the stability of such switched system by
extending our previous dwell time method. In particular, an improved mode-dependent average dwell time (MDADT) method for
the switched systems whose subsystems are quadratically stable (QS) is also obtained. Secondly, based on the improved ADT and
MDADT methods, several new results to the stability analysis are obtained. It should be pointed out that the obtained results have
two advantages over the existing ones; one is that the improved ADTmethod simplifies the conditions of the existing ADTmethod,
the other is that the obtained lower bound of ADT (𝜏∗

𝑎
) is also smaller than that obtained by other methods. Finally, illustrative

examples are given to show the correctness and the effectiveness of the proposed methods.

1. Introduction

Switched systems arise in various fields of real life world,
such as manufacturing, communication networks, autopilot
design, automotive engine control, computer synchroniza-
tion, traffic control, and chemical processes. In the past two
decades, increasing attention has been paid to the analysis
and synthesis of switched systems due to their significance
in both theory and applications, and many significant results
have been obtained for the analysis and design of switched
systems, see [1–11] and references therein. For the switched
systems, there are several important problems to be investi-
gated, such as stability analysis and control design. Stability
analysis has been a very important and hot issue since the
switched systems came into being, and a lot of efforts have
been devoted to it. For the stability analysis problem, there are
two famous methods, that is, Common Lyapunov Function
(CLF) method [4, 6] and Multiple Lyapunov Functions
(MLF)method [11]. For the CLFmethod, for a given switched
system, it is very difficult to determine whether all the
subsystems share a CLF or not, even for the switched linear
(SL) systems. Regarding the MLF method, it is well known
that the switched system is GAS for any switching signal if

the time between consecutive switching (i.e., dwell time) is
sufficiently large when all the subsystems are stable. Also,
some results have appeared in recent works to compute lower
bounds of the dwell time for ensuring the stability [12–14].
But, how to obtain the minimum dwell time (MDT) for a
given switched system has had no general method so far, even
for the SL systems. As pointed out in [13], the ADT switching
is a class of restricted switching signals which means that
the number of switches in a finite interval is bounded and
the average dwell time between consecutive switching is not
less than a constant. It was well known that the ADT scheme
characterizes a large class of stable switching signals than
dwell time scheme, and its extreme case is the arbitrary
switching.Thus, the ADTmethod is very important not only
in theory, but also in practice, and considerable attention
has been paid, and a lot of efforts have been done to take
advantage of the ADTmethod to investigate the stability and
stabilization problems both in linear and nonlinear systems.

However, on the one hand, almost all the results men-
tioned above are concerned with the stability of the switched
linear or nonlinear systems with stable subsystems; see [12–
15] and the references therein. Although the results in [12]
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deal with the SL system with stable and unstable subsystems,
the ADT method used in such paper has two disadvantages:
one is this ADT method is only used for the SL system,
the other is the lower bound of ADT 𝜏

∗

𝑎
obtained by the

results in [12] has much conservative property. Therefore,
to obtain an improved ADT method for the SN systems
with stable and unstable subsystem is very important, and
to investigate this problem is of value both in theory and in
practice. On the other hand, as the authors in [16] point out
that the property in the ADT switching that the average time
interval between any two consecutive switching is at least 𝜏∗

𝑎
,

which is independent of the system modes, is probably still
not anticipated. In order to solve this problem, they obtain
MDADT method, which can reduce the conservative prop-
erty of ADT.

Motivated by the above reasons, we extend our previous
results in [17, 18] to investigate the stability of SN system in
both cases: one is where all subsystems are GAS, the other is
where both GAS and unstable subsystems coexist. Firstly, we
obtained an improved ADTmethod for studying the stability
of such SN system and an improved MDADT method for a
class of SN systems which have QS property inspired by the
study of MDADT method. Secondly, based on which, some
new stability analysis results for the SN system are obtained,
which have some advantages over the existing result [12].
Finally, illustrative examples are studied by using the results
obtained in this paper. The study of examples shows that our
analysis methods work very well in analyzing the stability of
SN systems with GAS subsystems or both GAS and unstable
subsystems.

The rest of the paper is organized as follows. Section 2
presents the problem formulation of this paper, and Section 3
gives the main results. In Section 4, illustrative examples are
given to support our new results, which is followed by the
conclusion in Section 5.

2. Problem Formulation

Consider the SN system described as

𝑥̇ = 𝑓
𝜎(𝑡)

(𝑥) , (1)

where 𝑥 ∈ R𝑛 is the state, the map 𝜎(𝑡) : [𝑡
0
,∞) → I =

{1, 2, . . . , 𝑁} is a piecewise right-continuous function, called
the switching lawor switching path, whichwill be determined
later, and 𝜎(𝑡) = 𝑖 means that the 𝑖th subsystem is active,
and 𝑓

𝑖
(𝑥) = (𝑓

1𝑖
(𝑥), 𝑓
2𝑖
(𝑥), . . . , 𝑓

𝑛𝑖
(𝑥))
𝑇 is smooth, 𝑖 ∈ I.

Throughout this paper, we assume that there are no jumps in
the state at the switching instants and that a finite number
of switches occur on every bounded time interval. Let 𝑥(𝑡)
denote the trajectory of the system (1) starting from 𝑥

0
, 𝑥
0
=

𝑥(𝑡
0
).
If 𝑓
𝑖
(𝑥) = 𝐴

𝑖
𝑥, 𝑖 ∈ I, the SN system (1) becomes

𝑥̇ = 𝐴
𝜎(𝑡)

𝑥, (2)

where 𝐴
𝑖
is a real matrix, 𝑖 ∈ I.

For an arbitrary switching path 𝜎(𝑡) = 𝑖
𝑚

∈ I (𝑡 ∈

[𝑡
𝑚
, 𝑡
𝑚+1

), 𝑚 = 0, 1, 2, 3, . . .), {𝑡
𝑚
}
+∞

𝑚=0
is called the switching

time sequence, which is assumed to satisfy

𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< ⋅ ⋅ ⋅ < +∞. (3)

Let 𝜏
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

denote the dwell time, 𝑘 = 1, 2, . . ..
For the development of this paper, we introduce several

definitions.

Definition 1 (see [19]). Let 𝑁
𝜎
(𝜏, 𝑡) denote the number of

switching of 𝜎(𝑡) over the interval [𝜏, 𝑡), for given𝑁
0
, 𝜏
𝑎
> 0,

𝑁
𝜎
(𝜏, 𝑡) ≤ 𝑁

0
+

𝑡 − 𝜏

𝜏
𝑎

, (4)

where 𝜏
𝑎
is called average dwell time and 𝑁

0
denotes the

chatter bound.

Definition 2 (see [20, 21]). The SN system (1) with I = {1}

is called quadratic stability, if there is a Lyapunov function
𝑉(𝑥) = 𝑥

𝑇

𝑃𝑥 which ensures the system (1) is stable, where
𝑃 > 0.

Definition 3 (see [16]). For a switching signal 𝜎(𝑡) and any
𝑇 ≥ 𝑡 ≥ 0, let 𝑁

𝜎𝑖
(𝑡, 𝑇) be the switching numbers that the

𝑖th subsystem is activated over the interval [𝑡, 𝑇), and 𝑇
𝑖
(𝑡, 𝑇)

denote the total running time of the 𝑖th subsystem over the
interval [𝑡, 𝑇), 𝑖 ∈ I. We say that 𝜎(𝑡) has a MDADT 𝜏

𝑎𝑖

if there exist positive numbers 𝑁
0𝑖
(we call 𝑁

0𝑖
the mode-

dependent chatter bounds here) and 𝜏
𝑎𝑖
such that

𝑁
𝜎𝑖
(𝑡, 𝑇) ≤ 𝑁

0𝑖
+

𝑇
𝑖
(𝑡, 𝑇)

𝜏
𝑎𝑖

, ∀𝑇 ≥ 𝑡 ≥ 0. (5)

The objective of this paper is to investigate the stability of
SN systems in two cases: all subsystems are GAS, and both
GAS subsystems and unstable subsystems coexist.

3. Main Results

Firstly, we investigate the stability of SN system (1) whose
subsystems are GAS and propose the following results.

Theorem 4. Consider the SN system (1), if there exist C1

functions 𝑉
𝜎(𝑡)

(𝑥) : R𝑛 → R
+
, and two K

∞
class functions

𝑘
1
, 𝑘
2
such that, for all 𝑖 ∈ I

𝑘
1
(‖𝑥‖) ≤ 𝑉

𝑖
(𝑥) ≤ 𝑘

2
(‖𝑥‖) , (6)

𝑉̇
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨(𝑖)

=

𝜕
𝑇

𝑉
𝑖
(𝑥)

𝜕𝑥

𝑓
𝑖
(𝑥) ≤ −𝜆

𝑖
𝑉
𝑖
(𝑥) , (7)

where 𝜆
𝑖
> 0, 𝑖 ∈ I, then the SN system (1) is GAS for any

switching signal with ADT

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑎

𝜆min
, (8)

where

𝑎 = ln 𝜇, 𝜇 = sup
𝑥 ̸= 0

𝑘
2
(‖𝑥 (𝑡)‖)

𝑘
1
(‖𝑥 (𝑡)‖)

,

𝜆min = min
𝑖∈I

𝜆
𝑖
.

(9)
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Proof. Let 𝑡
1
, 𝑡
2
, . . ., denote the time points at which switching

occurs, and write 𝑝
𝑗
for the value of 𝜎(𝑡) on [𝑡

𝑗−1
, 𝑡
𝑗
).

Integrating the inequality (7) over the interval [𝑡
𝑗−1

, 𝑡
𝑗
), we

obtain that

ln𝑉
𝑝𝑗

(𝑥
𝑗
) − ln𝑉

𝑝𝑗
(𝑥
𝑗−1

) ≤ −𝜆
𝑝𝑗
𝜏
𝑗

(10)

and then

𝑉
𝑝𝑗

(𝑥
𝑗
) ≤ 𝑒
−𝜆𝑝𝑗
𝜏𝑗
𝑉
𝑝𝑗

(𝑥
𝑗−1

) . (11)

According to inequality (6), we obtain that

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) ≤ 𝑉
𝑝𝑗

(𝑥
𝑗
) ≤ 𝑒
−𝜆𝑝𝑗
𝜏𝑗
𝑉
𝑝𝑗

(𝑥
𝑗−1

)

≤ 𝑒
−𝜆𝑝𝑗
𝜏𝑗
𝑘
2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝑒
−𝜆𝑝𝑗
𝜏𝑗
𝑘
2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝜇𝑒
−𝜆𝑝𝑗
𝜏𝑗
𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
) .

(12)

Then, for any 𝑡 satisfying 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑖
≤ 𝑡 < 𝑡

𝑖+1
, we

obtain

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑉
𝑝𝑖+1

(𝑥
𝑡
) ≤ 𝑒
−𝜆𝑝𝑖+1
(𝑡−𝑡𝑖)

𝑉
𝑝𝑖+1

(𝑥
𝑡𝑖
)

≤ 𝑒
−𝜆𝑝𝑖+1
(𝑡−𝑡𝑖)

𝑘
2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝜇𝑒
−𝜆𝑝𝑖+1
(𝑡−𝑡𝑖)

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
)

...

≤ 𝜇
𝑖+1

𝑒
−𝜆min(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)

= 𝑒
(𝑖+1)𝑎−𝜆min(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)

= 𝑐𝑒
𝑎𝑁𝜎(𝑡0 ,𝑡)−𝜆min(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) ,

(13)

where 𝑐 = 𝑒
𝑎.

When 𝑎 = 0, that is, 𝜇 = 1, we can obtain that

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑒
−𝜆min(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) (14)

which implies that the switched system (1) is GAS for
arbitrary switching signals.

When 𝑎 > 0, according to (4), we obtain

𝑎𝑁
𝜎
(𝑡
0
, 𝑡) − 𝜆min (𝑡 − 𝑡

0
) ≤ 𝑎𝑁

0
+ (

𝑎

𝜏
𝑎

− 𝜆min) (𝑡 − 𝑡
0
) .

(15)

Substituting (15) into (13), we arrive at

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑐𝑒

𝑎𝑁0
𝑒
((𝑎/𝜏𝑎)−𝜆min)(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) . (16)

If 𝜏
𝑎
> 𝑎/𝜆min, which implies that the system (1) is GAS with

the above ADT.

Remark 5. In general, 𝜇 ≥ 1. Especially, if 𝜇 = 1, which
implies that 𝑉

𝑖
(𝑥) ≡ 𝑉(𝑥), 𝑖 ∈ I, that is, 𝑉(𝑥) is a CLF for

the switched system (1), and thus this system is GAS under
arbitrary switching. It is also noted that the ADT method
proposed in [12, 14, 15, 19] needs the conditions (6)-(7) and an
additional condition as “𝑉

𝑖
(𝑥) ≤ 𝜇𝑉

𝑗
(𝑥), 𝜇 ≥ 1, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I”.

Comparing Theorem 4 with [12, 19], Theorem 4 needs fewer
conditions and thus can be applied to a wider range of
systems. Furthermore, for SL systems, the lower bound of
ADT 𝜏

∗

𝑎
obtained by Theorem 4 is smaller than the lower

bound of ADT 𝜏
󸀠

𝑎
obtained in [19]. In fact,

𝜏
∗

𝑎
= max
𝑖∈I

{

𝜆max (𝑃𝑖)

𝜆min (𝑃
𝑖
) 𝜆min

} ≤ max
𝑖,𝑗∈I

{

𝜆max (𝑃𝑗)

𝜆min (𝑃
𝑖
) 𝜆min

} = 𝜏
󸀠

𝑎
,

(17)

where𝑉
𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥with 𝑃

𝑖
> 0 is the Lyapunov function for

the 𝑖th subsystem, 𝑖 ∈ I.

WithTheorem 4, we can obtain the following corollary.

Corollary 6. For the SL system (2), if 𝐴
𝑖
is Hurwitz, 𝑖 ∈ I,

then the switched system (2) is GAS for anyADT 𝜏
𝑎
> 𝜏
∗

𝑎
, where

𝜏
∗

𝑎
is given as (8).

Remark 7. The proof of Corollary 6 can be obtained using
similar techniques in Theorem 4, so we omit it here. In
addition, if 𝑉

𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥, where 𝑃

𝑖
> 0, 𝑖 ∈ I, then we can

obtain that

𝜇 = max
𝑖∈I

𝜆max (𝑃𝑖)

𝜆min (𝑃
𝑖
)

. (18)

As the authors in [16] point out that the property in the ADT
switching, that the average time interval between any two
consecutive switching is at least 𝜏

∗

𝑎
, which is independent

of the system modes, is probably still not anticipated. Then,
they obtain an MDADT method, which can reduce the
conservative property of ADT. Inspired by the study inwhich,
we extend our results to obtain an improvedMDADTmethod
for a class of SN systems which have quadratic stability
property.

Then, we give the result in the following.

Theorem8. Consider the SN system (1), if there exist functions
𝑉
𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥, where 𝑃

𝑖
> 0, and a class of real numbers 𝑘

1𝑖
>

0, 𝑘
2𝑖

> 0 such that, for all 𝑖 ∈ I

𝑘
1𝑖
‖𝑥‖
2

≤ 𝑉
𝑖
(𝑥) ≤ 𝑘

2𝑖
‖𝑥‖
2

, (19)

𝑉̇
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨(𝑖)

=

𝜕
𝑇

𝑉
𝑖
(𝑥)

𝜕𝑥

𝑓
𝑖
(𝑥) ≤ −𝜆

𝑖
𝑉
𝑖
(𝑥) , (20)

where 𝜆
𝑖
> 0, 𝑖 ∈ I, then the switched system (1) is GAS for

any switching signal with MDADT

𝜏
𝑎𝑖

> 𝜏
∗

𝑎𝑖
=

𝑎
𝑖

𝜆
𝑖

, (21)

where

𝑎
𝑖
= ln 𝜇

𝑖
, 𝜇

𝑖
=

𝑘
2𝑖

𝑘
1𝑖

. (22)
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Proof. For any 𝑡 satisfying 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
≤ 𝑡 < 𝑡

𝑖+1
, we

obtain

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩

2

≤

1

𝑘
1𝜎(𝑡𝑖)

𝑉
𝜎(𝑡)

(𝑥
𝑡
) ≤

1

𝑘
1𝜎(𝑡𝑖)

𝑒
−𝜆𝜎(𝑡𝑖)
(𝑡−𝑡𝑖)

𝑉
𝜎(𝑡)

(𝑥
𝑡𝑖
)

≤

𝑘
2𝜎(𝑡𝑖)

𝑘
1𝜎(𝑡𝑖)

𝑒
−𝜆𝜎(𝑡𝑖)
(𝑡−𝑡𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝜇
𝜎(𝑡𝑖)

𝑒
−𝜆𝜎(𝑡)(𝑡−𝑡𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜇
𝜎(𝑡𝑖)

𝜇
𝜎(𝑡𝑖−1)

𝑒
−𝜆𝜎(𝑡)(𝑡−𝑡𝑖)−𝜆𝜎(𝑡𝑖)

(𝑡𝑖−𝑡𝑖−1)
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖−1

󵄩
󵄩
󵄩
󵄩
󵄩

2

...

≤ 𝜇

𝑁

∏

𝑖=1

𝑒
𝑎𝑖𝑁𝜎𝑖(𝑡0 ,𝑡)−𝜆𝑖𝑇𝑖(𝑡0 ,𝑡)󵄩󵄩

󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩

2

,

(23)

where 𝑇
𝑖
(𝑡
0
, 𝑡) denotes the total activation time of the 𝑖th

subsystem in the interval [𝑡
0
, 𝑡).

When 𝑎
𝑖
= 0, that is, 𝜇

𝑖
= 1, 𝑖 ∈ I, we conclude from (23)

that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩

2

≤

𝑁

∏

𝑖=1

𝑒
−𝜆𝑖𝑇𝑖(𝑡0 ,𝑡)󵄩󵄩

󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑒
−𝜆min(𝑡−𝑡0)󵄩󵄩

󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩

2

, (24)

where 𝜆min is given as (9), which implies that the switched
system (1) is GAS for any MDADT.

When 𝑎
𝑖
> 0, 𝑖 ∈ I, according to (4), we obtain

𝑎
𝑖
𝑁
𝜎𝑖
(𝑡
0
, 𝑡) − 𝜆

𝑖
𝑇
𝑖
(𝑡
0
, 𝑡) ≤ 𝑎

𝑖
𝑁
0𝑖
+ (

𝑎
𝑖

𝜏
𝑎𝑖

− 𝜆
𝑖
)𝑇
𝑖
(𝑡
0
, 𝑡) .

(25)

Substituting (25) into (23), we arrive at

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜇

𝑁

∏

𝑖=1

𝑒
𝑎𝑖𝑁0𝑖+((𝑎𝑖/𝜏𝑎𝑖)−𝜆𝑖)𝑇𝑖(𝑡0 ,𝑡)󵄩󵄩

󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩

2

= 𝜇𝛼𝑒
−𝜆min(𝑡−𝑡0)󵄩󵄩

󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩

2

,

(26)

where 𝛼 = ∏
𝑁

𝑖=1
𝑒
𝑎𝑖𝑁0𝑖 , 𝜆min = min𝑁

𝑖=1
{𝜆
𝑖
− (𝑎
𝑖
/𝜏
𝑎𝑖
)}. If 𝜏

𝑎𝑖
>

𝑎
𝑖
/𝜆
𝑖
, and thus the switched system (1) is GAS for any

MDADT 𝜏
𝑎𝑖

> 𝜏
∗

𝑎𝑖
.

WithTheorem 8, we can obtain the following corollary.

Corollary 9. For the SL system (2), if 𝐴
𝑖
, 𝑖 ∈ I, is Hurwitz,

then the switched system (2) is GAS for any MDADT 𝜏
𝑎𝑖

> 𝜏
∗

𝑎𝑖
,

where 𝜏∗
𝑎𝑖

> 0 are given as (21).

Next, we consider the SN systems in which both GAS and
unstable subsystems exist. For the switching signal 𝜎(𝑡) and
any 𝑡 > 𝜏, we let 𝑇𝑢(𝜏, 𝑡) (resp., 𝑇𝑠(𝜏, 𝑡)) denote the total acti-
vation time of the unstable subsystems (resp., the GAS sub-
systems) on interval [𝜏, 𝑡). Then, we letI = I

𝑢
∪I
𝑠
, where

I
𝑢
∩I
𝑠
= 0.

Next, we give the main results in the following.

Theorem 10. Consider the SN system (1), if there exist C1
functions 𝑉

𝜎(𝑡)
(𝑥) : R𝑛 → R, two K

∞
class functions 𝑘

1
,

𝑘
2
such that (6), and

𝑉̇
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨(𝑖)

=

𝜕
𝑇

𝑉
𝑖
(𝑥)

𝜕𝑥

𝑓
𝑖
(𝑥) ≤ 𝜆

𝑖
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑢
, (27)

𝑉̇
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨(𝑖)

=

𝜕
𝑇

𝑉
𝑖
(𝑥)

𝜕𝑥

𝑓
𝑖
(𝑥) ≤ −𝜆

𝑖
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑠
, (28)

where 𝜆
𝑖
> 0, 𝑖 ∈ I, then under the following switching law

(S1) the switched system (1) is GAS for any switching signal with
ADT

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑎

𝜆
∗

, (29)

where 𝑎 is given as (9), and 𝜆
∗

∈ (0, 𝜆
𝑠
) is an arbitrarily chosen

number,

𝜆
𝑠
=

𝑁

min
𝑖=𝑟+1

𝜆
𝑖
, 𝜆

𝑢
=

𝑟

min
𝑖=1

𝜆
𝑖

(30)

and the switching law

(S1) Determine the𝜎(𝑡) satisfying𝑇𝑠(𝑡
0
, 𝑡)/𝑇
𝑢

(𝑡
0
, 𝑡) ≥ (𝜆

𝑢
+

𝜆
∗

)/(𝜆
𝑠
− 𝜆
∗

) holds for any 𝑡 > 𝑡
0
.

Proof. Let 𝑡
1
, 𝑡
2
, . . ., denote the time points at which switching

occurs, and write 𝑝
𝑗
for the value of 𝜎(𝑡) on [𝑡

𝑗−1
, 𝑡
𝑗
).

Integrating the inequality (27) or (28) over the interval
[𝑡
𝑗−1

, 𝑡
𝑗
), we obtain that

ln𝑉
𝑝𝑗

(𝑥
𝑗
) − ln𝑉

𝑝𝑗
(𝑥
𝑗−1

) ≤ sign (𝑝
𝑗
) 𝜆
𝑝𝑗
𝜏
𝑗

(31)

and then

𝑉
𝑝𝑗

(𝑥
𝑗
) ≤ 𝑒

sign(𝑝𝑗)𝜆𝑝𝑗𝜏𝑗𝑉
𝑝𝑗

(𝑥
𝑗−1

) , (32)

where sign(𝑝
𝑗
) = 1, if 1 ≤ 𝑝

𝑗
≤ 𝑟, sign(𝑝

𝑗
) = −1, if 𝑟 + 1 ≤

𝑝
𝑗
≤ 𝑁.
Thus,

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) ≤ 𝑉
𝑝𝑗

(𝑥
𝑗
) ≤ 𝑒

sign(𝑝𝑗)𝜆𝑝𝑗𝜏𝑗𝑉
𝑝𝑗

(𝑥
𝑗−1

)

≤ 𝑒
sign(𝑝𝑗)𝜆𝑝𝑗𝜏𝑗𝑘

2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝑒
sign(𝑝𝑗)𝜆𝑝𝑗𝜏𝑗

𝑘
2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

𝑘
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝑒
sign(𝑝𝑗)𝜆𝑝𝑗𝜏𝑗𝜇𝑘

1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗−1

󵄩
󵄩
󵄩
󵄩
󵄩
) ,

(33)

where 𝜇 is given as (9).
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Then, for any 𝑡 satisfying 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
≤ 𝑡 < 𝑡

𝑖+1
, we

obtain

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑉
𝑝𝑖+1

(𝑥
𝑡
) ≤ 𝑒

sign(𝑝𝑖+1)𝜆𝑝𝑖+1 (𝑡−𝑡𝑖)𝑉
𝑝𝑖+1

(𝑥
𝑡𝑖
)

≤ 𝑒
sign(𝑝𝑖+1)𝜆𝑝𝑖+1 (𝑡−𝑡0)𝑘

2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤ 𝜇𝑒
sign(𝑝𝑖+1)𝜆𝑝𝑖+1 (𝑡−𝑡𝑖)𝑘

1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
) ⋅ ⋅ ⋅

≤ 𝜇
𝑖+1

𝑒
𝜆𝑢𝑇
𝑢
(𝑡0 ,𝑡)−𝜆𝑠𝑇

𝑠
(𝑡0 ,𝑡)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)

= 𝑒
(𝑖+1)𝑎+𝜆

+
𝑇
𝑢
(𝑡0 ,𝑡)−𝜆𝑠𝑇

𝑠
(𝑡0 ,𝑡)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)

= 𝑐𝑒
𝑎𝑁𝜎(𝑡0 ,𝑡)+𝜆𝑢𝑇

𝑢
(𝑡0 ,𝑡)−𝜆𝑠𝑇

𝑠
(𝑡0 ,𝑡)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) ,

(34)

where 𝑐 = 𝑒
𝑎.

According to the switching law (S1), that is,

𝜆
𝑢
𝑇
𝑢

(𝑡
0
, 𝑡) − 𝜆

𝑠
𝑇
𝑠

(𝑡
0
, 𝑡)

≤ −𝜆
∗

(𝑇
𝑢

(𝑡
0
, 𝑡) + 𝑇

𝑠

(𝑡
0
, 𝑡)) = −𝜆

∗

(𝑡 − 𝑡
0
)

(35)

we obtain from (35) that

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑐𝑒

𝑎𝑁𝜎(𝑡0 ,𝑡)−𝜆
∗
(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) . (36)

When 𝑎 = 0, that is, 𝜇 = 1, we can obtain from (36) that

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑒
−𝜆
∗
(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) (37)

which implies that the switched system (1) is GAS for arbi-
trary switching paths.

When 𝑎 > 0, according to (4), we arrive at

𝑎𝑁
𝜎
(𝑡
0
, 𝑡) − 𝜆

∗

(𝑡 − 𝑡
0
) ≤ 𝑎𝑁

0
+ (

𝑎

𝜏
𝑎

− 𝜆
∗

) (𝑡 − 𝑡
0
) (38)

and then

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑐𝑒

𝑎𝑁0
𝑒
((𝑎/𝜏𝑎)−𝜆

∗
)(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) . (39)

If 𝜏
𝑎
> 𝑎/𝜆

∗, then under the following switching law (S1) the
switched system (1) is GAS for the above ADT.

According to Theorem 10, we can obtain the following
corollary.

Corollary 11. Consider the SL system (2), if𝐴
𝑖
is unstable, 𝑖 =

1, 2, . . . , 𝑟, and𝐴
𝑖
is Hurwitz, 𝑖 = 𝑟+1, 2, . . . , 𝑁, then under the

switching law (S1) the system (2) is GAS for any ADT 𝜏
𝑎
> 𝜏
∗

𝑎
,

where 𝜏∗
𝑎
> 0 is given as (29).

Learning form [22], we obtain other results which can
deal with some subsystems of the switched system being
stable, while some subsystems are not.

Theorem 12. Consider the SN system (1), if there exist C1
functions 𝑉

𝜎(𝑡)
(𝑥) : R𝑛 → R and two K

∞
class functions

𝑘
1
, 𝑘
2
such that (6), (27), and (28). If there exist constants 𝜏

0
,

𝜌 ≥ 0 such that

𝜌 <

𝜆
𝑠

𝜆
𝑠
+ 𝜆
𝑢

, (40)

∀𝑡 ≥ 0 : 𝑇
𝑢

(𝑡
0
, 𝑡) ≤ 𝜏

0
+ 𝜌𝑡 (41)

then the switched system (1) is GAS for any switching signal
with ADT

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑎

𝜆
𝑠
− (𝜆
𝑠
+ 𝜆
𝑢
) 𝜌

, (42)

where 𝑎 is given as (9), and 𝜆
𝑠
, 𝜆
𝑢
are given as (30).

Proof. The proof of Theorem 12 follows the lines of the proof
ofTheorem 10. Similar toTheorem 10, for any 𝑡 satisfying 𝑡

0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
≤ 𝑡 < 𝑡

𝑖+1
, we obtain

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑐𝑒

𝑎𝑁𝜎(𝑡0 ,𝑡)+𝜆𝑢𝑇
𝑢
(𝑡0 ,𝑡)−𝜆𝑠𝑇

𝑠
(𝑡0 ,𝑡)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) , (43)

where 𝑐 = 𝑒
𝑎.

According to (41), we get

𝑇
𝑠

(𝑡
0
, 𝑡) ≥ (1 − 𝜌) (𝑡 − 𝑡

0
) − 𝜏
0
. (44)

We obtain from (44) that

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
)

≤ 𝑐𝑒
𝑎𝑁𝜎(𝑡0 ,𝑡)+𝜆𝑢[𝜏0+𝜌(𝑡−𝑡0)]+𝜆𝑠[𝜏0+(𝜌−1)(𝑡−𝑡0)]

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)

= 𝑐𝑒
𝑎𝑁𝜎(𝑡0 ,𝑡)+(𝜆𝑠+𝜆𝑢)𝜏0−[𝜆𝑠−(𝜆𝑠+𝜆𝑢)𝜌](𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) .

(45)

When 𝑎 = 0, that is, 𝜇 = 1, we can obtain from (45) that

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑐𝑒

(𝜆𝑠+𝜆𝑢)𝜏0
𝑒
−[𝜆𝑠−(𝜆𝑠+𝜆𝑢)𝜌](𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) (46)

which implies that the switched system (1) is GAS for arbi-
trary switching paths.

When 𝑎 > 0, according to (4), we arrive at

𝑎𝑁
𝜎
(𝑡
0
, 𝑡) − [𝜆

𝑠
− (𝜆
𝑠
+ 𝜆
𝑢
) 𝜌] (𝑡 − 𝑡

0
)

≤ 𝑎𝑁
0
+ {

𝑎

𝜏
𝑎

− [𝜆
𝑠
− (𝜆
𝑠
+ 𝜆
𝑢
) 𝜌]} (𝑡 − 𝑡

0
)

(47)

and then

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
)

≤ 𝑐𝑒
𝑎𝑁0

𝑒
(𝜆𝑠+𝜆𝑢)𝜏0

𝑒
{(𝑎/𝜏𝑎)−[𝜆𝑠−(𝜆𝑠+𝜆𝑢)𝜌]}(𝑡−𝑡0)

𝑘
1
(
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
) .

(48)

If 𝜏
𝑎
> 𝜏
∗

𝑎
, then the switched system (1) is GAS for the above

ADT.

According to Theorem 12, we can obtain the following
corollary.

Corollary 13. Consider the SL system (2), if 𝐴
𝑖
is unstable,

𝑖 = 1, 2, . . . , 𝑟, and 𝐴
𝑖
is Hurwitz, 𝑖 = 𝑟 + 1, 2, . . . , 𝑁, then

the system (2) is GAS for any ADT 𝜏
𝑎
> 𝜏
∗

𝑎
, where 𝜏

∗

𝑎
> 0 is

given as (42).

4. Illustrative Examples

In this section, we give two illustrative examples to show how
to use the results obtained in this paper to analyze the stability
of switched linear and nonlinear system with stable and
unstable subsystems.
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Example 1. Consider the following SL system [12]

𝑥̇ = 𝐴
𝑖
𝑥, (49)

where 𝑖 ∈ I = {1, 2}, and

𝐴
1
= (

2 2

1 3
) , 𝐴

2
= (

−2 1

1 −2
) . (50)

Obviously, 𝐴
1
is unstable while 𝐴

2
is Hurwitz stable. In [12],

the authors have obtained that 𝑇
𝑠

(𝑡
0
, 𝑡)/𝑇
𝑢

(𝑡
0
, 𝑡) ≥ 9 and

𝜏
∗󸀠

𝑎
= 2.4. Next, we will investigate the switched system (49)

by our method.
It is easy to know that 𝑉(𝑥) = 𝑥

𝑇

𝑥 is a CLF for the
switched system (49), and

𝑉̇

󵄨
󵄨
󵄨
󵄨
󵄨(1)

= 2𝑥
1
𝑥̇
1
+ 2𝑥
2
𝑥̇
2

󵄨
󵄨
󵄨
󵄨(1)

≤ 8𝑉 (𝑥) ,

𝑉̇

󵄨
󵄨
󵄨
󵄨
󵄨(2)

= 2𝑥
1
𝑥̇
1
+ 2𝑥
2
𝑥̇
2

󵄨
󵄨
󵄨
󵄨(2)

≤ −2𝑉 (𝑥) .

(51)

According to the above results, we obtain that 𝜆
𝑢
= 8, 𝜆

𝑠
= 2,

and 𝑎 = 0. Therefore, the ADT 𝜏
∗

𝑎
= 0; that is, the ADT can

be arbitrary. Next, we choose 𝜆
∗

= 0.5 which are the same to
those in [12]. Then, the switching law (S1) will require

𝑇
𝑠

(𝑡
0
, 𝑡)

𝑇
𝑢
(𝑡
0
, 𝑡)

≥

𝜆
𝑢
+ 𝜆
∗

𝜆
𝑠
− 𝜆
∗

=

8.5

1.5

≈ 5.67. (52)

According to Corollary 11, the system (49) is GAS under the
above switching law (S1).

To illustrate the correctness of the above conclusion, we
carry out some simulation results with the following choices.
Initial Condition: [𝑥

1
(0), 𝑥
2
(0)] = [2, −3], and Switching

Path:

𝜎 (𝑡) = {

1, 𝑡 ∈ [𝑡
2𝑚

, 𝑡
2𝑚+1

) , 𝑡
2𝑚+1

− 𝑡
2𝑚

= 0.1,

2, 𝑡 ∈ [𝑡
2𝑚+1

, 𝑡
2𝑚+2

) , 𝑡
2𝑚+2

− 𝑡
2𝑚+1

= 0.6,

(53)

where 𝑚 = 0, 1, 2, . . .. The simulation result is given in
Figure 1, which is the response of the state under the above
path 𝜎(𝑡).

It can be observed from Figure 1 that the trajectory
𝑥(𝑡) converges to origin quickly. The simulation shows that
Corollary 11 is very effective in analyzing the stability for the
SL systems with both unstable and GAS subsystems.

Remark. From this example, we show that the lower bound of
ADT (𝜏∗

𝑎
= 0) for the switched system (49) obtained by our

method is smaller than the ADT (𝜏∗󸀠
𝑎

= 2.4) by the method
in [12], which implies that our method for determining the
lower bound of ADT of switched system has some advantages
in some cases.

Example 2. Consider the following SN system

𝑥̇ = 𝑓
𝑖
(𝑥) , (54)

where 𝑖 ∈ I = {1, 2}, and

𝑓
1
(𝑥) = (

−𝑥
1
− 𝑥
1
𝑥
2

2

𝑥
2

1
𝑥
2
− 3𝑥
2

) , 𝑓
2
(𝑥) = (

2𝑥
1
+ 2𝑥
2

𝑥
1
+ 3𝑥
2

) . (55)
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Figure 1: The state’s response.

It is easy to know that 𝑉(𝑥) = 𝑥
𝑇

𝑥 is a CLF for the
switched system (54), and

𝑉̇

󵄨
󵄨
󵄨
󵄨
󵄨(1)

= 2𝑥
1
𝑥̇
1
+ 2𝑥
2
𝑥̇
2

󵄨
󵄨
󵄨
󵄨(1)

≤ −2𝑉 (𝑥) ,

𝑉̇

󵄨
󵄨
󵄨
󵄨
󵄨(2)

= 2𝑥
1
𝑥̇
1
+ 2𝑥
2
𝑥̇
2

󵄨
󵄨
󵄨
󵄨(2)

≤ 8𝑉 (𝑥) .

(56)

According to the above results, we obtain that 𝜆
𝑢
= 8, 𝜆

𝑠
= 2

and 𝑎 = 0. Therefore, the lower bound of ADT 𝜏
∗

𝑎
= 0; that

is, the ADT can be arbitrary. Next, we choose 𝜆∗ = 0.8. Then,
the switching law (S1) will require

𝑇
𝑠

(𝑡
0
, 𝑡)

𝑇
𝑢
(𝑡
0
, 𝑡)

≥

𝜆
𝑢
+ 𝜆
∗

𝜆
𝑠
− 𝜆
∗

=

8.8

1.2

≈ 7.33. (57)

According to Theorem 10, the switched system (54) is GAS
under the above switching law (S1).

To illustrate the correctness of the above conclusion, we
carry out some simulation results with the following choices.
Initial Condition: [𝑥

1
(0), 𝑥
2
(0)] = [−2.5, 3], and Switching

Path:

𝜎 (𝑡) = {

2, 𝑡 ∈ [𝑡
2𝑚

, 𝑡
2𝑚+1

) , 𝑡
2𝑚+1

− 𝑡
2𝑚

= 0.2,

1, 𝑡 ∈ [𝑡
2𝑚+1

, 𝑡
2𝑚+2

) , 𝑡
2𝑚+2

− 𝑡
2𝑚+1

= 1.6,

(58)

where 𝑚 = 0, 1, 2, . . .. The simulation result is given in
Figure 2, which is the response of the state under the above
path 𝜎(𝑡).

It can be observed from Figure 2 that the trajectory
𝑥(𝑡) converges to origin quickly. The simulation shows that
Theorem 10 is very effective in analyzing the stability for the
SN systems with both unstable and GAS subsystems.

5. Conclusions

In conclusion, we have investigated the stability of SN
systems in two cases: all subsystems are GAS and both GAS
subsystems and unstable subsystems coexist, and we pro-
posed a number of new results on the stability analysis. An
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Figure 2: The state’s response.

improved ADT method has been established for the stability
of such switched system, and an improved MDADT method
for the switched systems whose subsystems are QS also has
been obtained. Based on which several new results to the
stability analysis have been obtained. Comparing with the
exiting corresponding results, not only the conditions of the
improved ADT method are simplified, but also the obtained
lower bound of ADT is smaller than that obtained by
other methods. Finally, illustrative examples with numerical
simulations have been studied by using the obtained results to
show the effectiveness and correctness of the obtained results.
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