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We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and
continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem,
the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong
convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit
iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its
strong convergence under mild assumptions.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻 and let 𝑃

𝐶
be the metric projection of 𝐻 onto 𝐶.

Let 𝑆 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We denote
by Fix(𝑆) the set of fixed points of 𝑆 and by R the set of all
real numbers. A mapping 𝑉 is called strongly positive on 𝐻
if there exists a constant 𝛾 > 0 such that

⟨𝑉𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (1)

A mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if
there exists a constant 𝐿 ≥ 0 such that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

In particular, if 𝐿 = 1, then 𝑆 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1), then 𝑆 is called a contraction.

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We
consider the following variational inequality problem (VIP):
find a point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP (3) is denoted by VI(𝐶, 𝐴).
Let 𝜑 : 𝐶 → R be a real-valued function, 𝐴 : 𝐻 → 𝐻

a nonlinear mapping, and Θ : 𝐶 × 𝐶 → R a bifunction. The
generalized mixed equilibrium problem (GMEP) introduced
in [1] is to find 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (4)

We denote the set of solutions of GMEP (4) by
GMEP(Θ, 𝜑, 𝐴).

We assume as in [1] that Θ : 𝐶 × 𝐶 → R is a bifunction
satisfying conditions (H1)–(H4) and 𝜑 : 𝐶 → R is a lower
semicontinuous and convex function with restriction (H5),
where

(H1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
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(H2) Θ is monotone, that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for any
𝑥, 𝑦 ∈ 𝐶;

(H3) Θ is upper-hemicontinuous, that is, for each 𝑥, 𝑦, 𝑧 ∈
𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (5)

(H4) Θ(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(H5) for each𝑥 ∈ 𝐻 and 𝑟 > 0, there exist a bounded subset
𝐷
𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that, for any 𝑧 ∈ 𝐶 \ 𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦
𝑥
− 𝑧, 𝑧 − 𝑥⟩ < 0. (6)

Given a positive number, 𝑟 > 0. Let 𝑆(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 be
the solution set of the auxiliary mixed equilibrium problem;
that is, for each 𝑥 ∈ 𝐻,

𝑆
(Θ,𝜑)

𝑟
(𝑥) := {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(7)

In particular, whenever 𝐾(𝑥) = (1/2)‖𝑥‖
2, for all 𝑥 ∈

𝐻, 𝑆
(Θ,𝜑)

𝑟
(𝑥) is rewritten as 𝑇(Θ,𝜑)

𝑟
(𝑥).

LetΘ
1
, Θ
2
: 𝐶 × 𝐶 → R be two bifunctions and 𝐴

1
, 𝐴
2
:

𝐶 → 𝐻 two nonlinear mappings. Consider the following
system of generalized equilibrium problems (SGEP) [2]: find
(𝑥
∗
, 𝑦
∗
) ∈ 𝐶 × 𝐶 such that

Θ1 (𝑥
∗
, 𝑥) + ⟨𝐴1𝑦

∗
, 𝑥 − 𝑥

∗
⟩ +

1

]
1

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

Θ
2
(𝑦
∗
, 𝑦) + ⟨𝐴

2
𝑥
∗
, 𝑦 − 𝑦

∗
⟩ +

1

]2
⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(8)

where ]
1
> 0 and ]

2
> 0 are two constants.

In 2010, Ceng and Yao [2] transformed the SGEP into a
fixed point problem in the following way.

Proposition CY (see [2]). Let Θ
1
, Θ
2
: 𝐶 × 𝐶 → R be

two bifunctions satisfying conditions (H1)–(H4) and let 𝐴
𝑘
:

𝐶 → 𝐻 be 𝜁
𝑘
-inverse-strongly monotone for 𝑘 = 1, 2. Let

]𝑘 ∈ (0, 2𝜁𝑘) for 𝑘 = 1, 2. Then, (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 is a solution
of SGEP (8) if and only if 𝑥∗ is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by 𝐺 = 𝑇

Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)

where 𝑦∗ = 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑥
∗. Here, we denote the fixed point

set of 𝐺 by 𝑆𝐺𝐸𝑃(𝐺).

Let {𝑇
𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive map-

pings on 𝐻 and {𝜆
𝑛
}
∞

𝑛=1
a sequence of nonnegative numbers

in [0, 1]. For any 𝑛 ≥ 1, define a mapping𝑊
𝑛
on𝐻 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈𝑛,𝑛 = 𝜆𝑛𝑇𝑛𝑈𝑛,𝑛+1 + (1 − 𝜆𝑛) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

...

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼,

𝑈𝑛,𝑘−1 = 𝜆𝑘−1𝑇𝑘−1𝑈𝑛,𝑘 + (1 − 𝜆𝑘−1) 𝐼,

...

𝑈
𝑛,2

= 𝜆
2
𝑇
2
𝑈
𝑛,3
+ (1 − 𝜆

2
) 𝐼,

𝑊𝑛 = 𝑈𝑛,1 = 𝜆1𝑇1𝑈𝑛,2 + (1 − 𝜆1) 𝐼.

(9)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
1
.

Let 𝑄 : 𝐻 → 𝐻 be a contraction and 𝑉 a strongly
positive bounded linear operator on 𝐻. Assume that 𝜑 :

𝐻 → R is a lower semicontinuous and convex functional,
that Θ,Θ

1
, Θ
2
: 𝐻 × 𝐻 → R satisfy conditions (H1)–

(H4), and that 𝐴,𝐴
1
, 𝐴
2
: 𝐻 → 𝐻 are inverse-strongly

monotone. Let the mapping 𝐺 be defined as in Proposition
CY. Very recently, Ceng et al. [3] introduced the following
hybrid extragradient-like iterative scheme:

𝑧
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑄𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉))𝑊𝑛𝐺𝑧𝑛, ∀𝑛 ≥ 0,

(10)

for finding a common solution of GMEP (4), SGEP (8), and
the fixed point problem of an infinite family of nonexpansive
mappings {𝑇

𝑛
}
∞

𝑛=1
on 𝐻, where {𝑟

𝑛
} ⊂ (0,∞), {𝛼

𝑛
}, {𝛽
𝑛
} ⊂

(0, 1), ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2, and 𝑥

0
, 𝑢 ∈ 𝐻 are given. The

authors proved the strong convergence of the sequence {𝑥
𝑛
} to

a point 𝑥∗ ∈ Ω := ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺)

under some suitable conditions. This point 𝑥∗ also solves the
following optimization problem:

min
𝑥∈Ω

𝜇

2
⟨𝑉𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP1)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑄.
Let 𝐵 be a single-valued mapping of 𝐶 into 𝐻 and 𝑅 a

multivaluedmapping with𝐷(𝑅) = 𝐶. Consider the following
variational inclusion: find a point 𝑥 ∈ 𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥. (11)

We denote by 𝐼(𝐵, 𝑅) the solution set of the variational
inclusion (11). In 1998, Huang [4] studied problem (11) in
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the case where 𝑅 is maximal monotone and 𝐵 is strongly
monotone and Lipschitz continuous with𝐷(𝑅) = 𝐶 = 𝐻.

Let 𝑓 : 𝐶 → R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing 𝑓 over the constraint set 𝐶:

minimize {𝑓 (𝑥) : 𝑥 ∈ 𝐶} . (12)

We denote by Γ the set of minimizers of CMP (12).
Very recently, Ceng and Al-Homidan [5] introduced an

implicit iterative algorithm for finding a common solution
of the CMP (12), finitely many GMEPs and finitely many
variational inclusions, and derived its strong convergence
under appropriate conditions.

Algorithm CA (see [5, Theorem 18]). Let 𝐶 be a nonempty
closed convex subset of a realHilbert space𝐻. Let𝑓 : 𝐶 → R
be a convex functional with 𝐿-Lipschitz continuous gradient
∇𝑓. Let 𝑀,𝑁 be two integers. Let Θ

𝑘
be a bifunction from

𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑𝑘 : 𝐶 → R ∪

{+∞} a proper lower semicontinuous and convex function,
where 𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal
monotone mapping and let 𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 :

𝐶 → 𝐻 be 𝜇𝑘-inverse strongly monotone and 𝜂
𝑖
-inverse

strongly monotone, respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑖 ∈
{1, 2, . . . , 𝑁}. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-
strongly monotone operator with positive constants 𝜅, 𝜂 > 0.
Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with constant
𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅

2
) and 0 ≤ 𝛾𝑙 < 𝜏, where

𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Let {𝑥
𝑛
} be a sequence generated

by

𝑢
𝑛
= 𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
) 𝑇
(Θ
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆
𝑁−1,𝑛

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑥
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇

𝑛
V
𝑛
, ∀𝑛 ≥ 1,

(13)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= ((2 − 𝜆

𝑛
𝐿)/4) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿))), and

the following conditions hold:

(i) 𝑠
𝑛
∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿)), lim

𝑛→∞
𝑠
𝑛
= 0

(⇔ lim
𝑛→∞

𝜆
𝑛
= (2/𝐿));

(ii) {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), for all 𝑖 ∈ {1, 2, . . . , 𝑁};

(iii) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), for all 𝑘 ∈ {1, 2, . . . ,𝑀}.

Motivated and inspired by the above facts, we first
introduce and analyze one implicit iterative algorithm for
finding a solution of the CMP (12) with constraints of
several problems: the GMEP (4), the SGEP (8), and finitely
many variational inclusions in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithm
under suitable conditions.The iterative algorithm is based on
Korpelevich’s extragradient method, hybrid steepest-descent

method in [6], viscosity approximation method, averaged
mapping approach to the GPA in [7], and strongly positive
bounded linear operator technique. On the other hand, we
also propose another implicit iterative algorithm for finding
a fixed point of infinitely many nonexpansive mappings with
the same constraints. We derive its strong convergence under
mild assumptions.

2. Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space whose inner product and norm are denoted by ⟨⋅, ⋅⟩
and ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. We write 𝑥𝑛 ⇀ 𝑥 to indicate that the sequence
{𝑥𝑛} converges weakly to 𝑥 and 𝑥𝑛 → 𝑥 to indicate that
the sequence {𝑥𝑛} converges strongly to 𝑥. Moreover, we use
𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of the sequence {𝑥𝑛};
that is,

𝜔
𝑤
(𝑥
𝑛
)

:={𝑥 ∈ 𝐻 : 𝑥
𝑛
𝑖

⇀𝑥 for some subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}} .

(14)

Recall that a mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (15)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶; (16)

(iii) 𝛼-inverse-stronglymonotone if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (17)

It is obvious that if 𝐴 is 𝛼-inverse-strongly monotone,
then 𝐴 is monotone and (1/𝛼)-Lipschitz continuous.

Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃

𝐶
: 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 =: 𝑑 (𝑥, 𝐶) . (18)

Some important properties of projections are gathered in the
following proposition.

Proposition 1. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶,

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
−

‖𝑦 − 𝑧‖
2, for all 𝑦 ∈ 𝐶;

(iii) ⟨𝑃𝐶𝑥 − 𝑃𝐶𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃𝐶𝑥 − 𝑃𝐶𝑦‖
2, for all 𝑦 ∈ 𝐻.

Consequently, 𝑃
𝐶
is nonexpansive and monotone.
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If𝐴 is an 𝛼-inverse-stronglymonotonemapping of𝐶 into
𝐻, then it is obvious that 𝐴 is (1/𝛼)-Lipschitz continuous. If
𝜆 ≤ 2𝛼, then it is easy to see that 𝐼 − 𝜆𝐴 is a nonexpansive
mapping from 𝐶 to𝐻.

Definition 2. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻; (19)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or
equivalently, if 𝑇 is 1-inverse strongly monotone (1-
ism),

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻; (20)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 =
1

2
(𝐼 + 𝑆) , (21)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if 𝑇 is nonexpansive, then 𝐼−𝑇 is
monotone. It is also easy to see that a projection 𝑃

𝐶
is 1-ism.

Definition 3. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (22)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged mappings.

Proposition 4 (see [8]). Let 𝑇 : 𝐻 → 𝐻 be a given mapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇
is (1/2)-ism.

(ii) If 𝑇 is ]-ism, then, for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is ]-ism

for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Proposition 5 (see [8]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1

is averaged, then so is the composite 𝑇
1
⋅ ⋅ ⋅ 𝑇
𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

(v) If the mappings {𝑇
𝑖
}
𝑁

𝑖=1
are averaged and have a

common fixed point, then

𝑁

⋂

𝑖=1

𝐹𝑖𝑥 (𝑇
𝑖) = 𝐹𝑖𝑥 (𝑇1 ⋅ ⋅ ⋅ 𝑇𝑁) . (23)

The notation 𝐹𝑖𝑥(𝑇) denotes the set of all fixed points of the
mapping 𝑇; that is, 𝐹𝑖𝑥(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.

By using the technique in [9], we can readily obtain the
following elementary result.

Proposition 6 (see [3, Lemma 1 and Proposition 1]). Let𝐶 be
a nonempty closed convex subset of a real Hilbert space𝐻 and
let𝜑 : 𝐶 → R be a lower semicontinuous and convex function.
Let Θ : 𝐶 × 𝐶 → R be a bifunction satisfying the conditions
(H1)–(H4). Assume that

(i) 𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0

and the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾
󸀠
(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded subset

𝐷𝑥 ⊂ 𝐶 and 𝑦𝑥 ∈ 𝐶 such that, for any 𝑧 ∈ 𝐶 \ 𝐷𝑥,

Θ(𝑧, 𝑦
𝑥) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝐾
󸀠
(𝑧) − 𝐾

󸀠
(𝑥) , 𝑦𝑥 − 𝑧⟩ < 0.

(24)

Then the following hold:

(a) for each 𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)
𝑟

(𝑥) ̸= 0;

(b) 𝑆(Θ,𝜑)
𝑟

is single-valued;

(c) 𝑆(Θ,𝜑)
𝑟

is nonexpansive if𝐾󸀠 is Lipschitz continuous with
constant ] > 0 and

⟨𝐾
󸀠
(𝑥
1
) − 𝐾
󸀠
(𝑥
2
) , 𝑢
1
− 𝑢
2
⟩

≤ ⟨𝐾
󸀠
(𝑢
1
) − 𝐾
󸀠
(𝑢
2
) , 𝑢
1
− 𝑢
2
⟩, ∀ (𝑥

1
, 𝑥
2
) ∈ 𝐻 × 𝐻,

(25)

where 𝑢
𝑖
= 𝑆
(Θ,𝜑)

𝑟
(𝑥
𝑖
) for 𝑖 = 1, 2;

(d) for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻

⟨𝐾
󸀠
(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾

󸀠
(𝑆
(Θ,𝜑)

𝑡
𝑥) , 𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩

≤
𝑠 − 𝑡

𝑠
⟨𝐾
󸀠
(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾

󸀠
(𝑥) , 𝑆

(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩ ;

(26)

(e) 𝐹𝑖𝑥(𝑆(Θ,𝜑)
𝑟

) = 𝑀𝐸𝑃(Θ, 𝜑);
(f) 𝑀𝐸𝑃(Θ, 𝜑) is closed and convex.
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Remark 7. In Proposition 4, whenever Θ : 𝐶 × 𝐶 → R is a
bifunction satisfying the conditions (H1)–(H4) and 𝐾(𝑥) =
(1/2)‖𝑥‖

2, for all 𝑥 ∈ 𝐻, we have for any 𝑥, 𝑦 ∈ 𝐻,
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ (27)

(𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive) and
󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
≤
|𝑠 − 𝑡|

𝑠

󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
,

∀𝑠, 𝑡 > 0, 𝑥 ∈ 𝐻.

(28)

In this case, 𝑆(Θ,𝜑)
𝑟

is rewritten as 𝑇(Θ,𝜑)
𝑟

. If, in addition, 𝜑 ≡ 0,
then 𝑇

(Θ,𝜑)

𝑟
is rewritten as 𝑇Θ

𝑟
; see [2, Lemma 2.1] for more

details.

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 8. Let 𝑋 be a real inner product space. Then there
holds the following inequality:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (29)

Lemma 9. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 1(i)) implies

𝑢 ∈ 𝑉𝐼 (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (30)

Lemma 10 (see [10, demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥
𝑛
} strongly converges

to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Lemma 11 (see [11, Lemma 3.2]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇

𝑛
}
∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛) ̸= 0 and let {𝜆𝑛} be a sequence in (0, 𝑏] for some

𝑏 ∈ (0, 1). Then, for every 𝑥 ∈ 𝐶 and 𝑘 ≥ 1 the limit
lim𝑛→∞𝑈𝑛,𝑘𝑥 exists where 𝑈𝑛,𝑘 is defined as in (9).

Lemma 12 (see [11, Lemma 3.3]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇𝑛}

∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛) ̸= 0, and let {𝜆𝑛} be a sequence in (0, 𝑏] for some

𝑏 ∈ (0, 1). Then, 𝐹𝑖𝑥(𝑊) = ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛).

The following lemma can be easily proved and, therefore,
we omit the proof.

Lemma 13. Let 𝑉 : 𝐻 → 𝐻 be a 𝛾-strongly positive bounded
linear operator with constant 𝛾 > 1. Then for 𝛾 − 1 > 0,

⟨(𝑉 − 𝐼) 𝑥 − (𝑉 − 𝐼) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(31)

That is, 𝑉 − 𝐼 is strongly monotone with constant 𝛾 − 1.

Let𝐶 be a nonempty closed convex subset of a realHilbert
space𝐻. We introduce some notations. Let 𝜆 be a number in
(0, 1] and let𝜇 > 0. Associatingwith a nonexpansivemapping
𝑇 : 𝐶 → 𝐻, we define the mapping 𝑇𝜆 : 𝐶 → 𝐻 by

𝑇
𝜆
𝑥 := 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐶, (32)

where 𝐹 : 𝐻 → 𝐻 is an operator such that, for some
positive constants 𝜅, 𝜂 > 0, 𝐹 is 𝜅-Lipschitzian and 𝜂-strongly
monotone on𝐻; that is, 𝐹 satisfies the conditions
󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜅
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

(33)

for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 14 (see [12, Lemma 3.1]). 𝑇𝜆 is a contraction provided
0 < 𝜇 < (2𝜂/𝜅

2
); that is,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑥 − 𝑇
𝜆
𝑦
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜆𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, (34)

where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2) ∈ (0, 1].

We observe that since 𝐹 is 𝜅-Lipschitzian and 𝜂-strongly
monotone on 𝐻, we get 0 < 𝜂 ≤ 𝜅. Hence, whenever 0 <

𝜇 < (2𝜂/𝜅
2
), we have 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2) ∈ (0, 1]. Also

in Lemma 14, put 𝐹 = (1/2)𝐼 and 𝜇 = 2. Then we know that
𝜅 = 𝜂 = (1/2), 0 < 𝜇 = 2 < (2𝜂/𝜅

2
) = 4 and 𝜏 = 1.

Recall that a set-valued mapping 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻 is

calledmonotone if for all 𝑥, 𝑦 ∈ 𝐷(𝑅),𝑓 ∈ 𝑅(𝑥) and 𝑔 ∈ 𝑅(𝑦)
imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (35)

A set-valued mapping 𝑅 is called maximal monotone if 𝑅 is
monotone and (𝐼 + 𝜆𝑅)𝐷(𝑅) = 𝐻 for each 𝜆 > 0, where 𝐼
is the identity mapping of 𝐻. We denote by 𝐺(𝑅) the graph
of 𝑅. It is known that a monotone mapping 𝑅 is maximal if
and only if, for (𝑥, 𝑓) ∈ 𝐻 × 𝐻, ⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0 for every
(𝑦, 𝑔) ∈ 𝐺(𝑅) implies 𝑓 ∈ 𝑅(𝑥).

Let 𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-continuous
mapping and let𝑁

𝐶
V be the normal cone to 𝐶 at V ∈ 𝐶; that

is,

𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢, 𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶} . (36)

Define

𝑇V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(37)

It is well known that 𝑇 is maximal monotone and 0 ∈ 𝑇V if
and only if V ∈ 𝑉𝐼(𝐶, 𝐴).

Assume that 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻 is a maximal

monotone mapping. Then, for 𝜆 > 0, associated with 𝑅, the
resolvent operator 𝐽

𝑅,𝜆
can be defined as

𝐽
𝑅,𝜆
𝑥 = (𝐼 + 𝜆𝑅)

−1
𝑥, ∀𝑥 ∈ 𝐻. (38)

From Huang [4] (see also [13]), there holds the following
property for the resolvent operator 𝐽

𝑅,𝜆
: 𝐻 → 𝐷(𝑅).
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Lemma 15. 𝐽
𝑅,𝜆

is single-valued and firmly nonexpansive; that
is,

⟨𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜆
𝑦, 𝑥 − 𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝐽𝑅,𝜆𝑥 − 𝐽𝑅,𝜆𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻.

(39)

Consequently, 𝐽
𝑅,𝜆

is nonexpansive and monotone.

Lemma 16 (see [14]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶. Then for any given 𝜆 > 0, 𝑢 ∈ 𝐶 is a solution
of problem (11) if and only if 𝑢 ∈ 𝐶 satisfies

𝑢 = 𝐽
𝑅,𝜆 (𝑢 − 𝜆𝐵𝑢) . (40)

Lemma 17 (see [13]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and let 𝐵 : 𝐶 → 𝐻 be a strongly monotone,
continuous, and single-valued mapping. Then for each 𝑧 ∈ 𝐻,
the equation 𝑧 ∈ (𝐵+𝜆𝑅)𝑥 has a unique solution 𝑥

𝜆
for 𝜆 > 0.

Lemma 18 (see [14]). Let 𝑅 be a maximal monotone mapping
with𝐷(𝑅) = 𝐶 and 𝐵 : 𝐶 → 𝐻 a monotone, continuous, and
single-valued mapping. Then (𝐼 + 𝜆(𝑅 + 𝐵))𝐶 = 𝐻 for each
𝜆 > 0. In this case, 𝑅 + 𝐵 is maximal monotone.

3. Convex Minimization Problems
with Constraints

In this section, we will introduce and analyze one implicit
iterative algorithm for finding a solution of the CMP (12)
with constraints of several problems: the GMEP (4), the
SGEP (8), and finitely many variational inclusions in a real
Hilbert space. We po prove strong convergence theorem for
the iterative algorithm under suitable conditions.

Theorem 19. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑁 be an integer. Let 𝑓 : 𝐶 → R be
a convex functional with 𝐿-Lipschitz continuous gradient ∇𝑓.
Let Θ,Θ1, Θ2 be three bifunctions from 𝐶 × 𝐶 to R satisfying
(H1)–(H4) and 𝜑 : 𝐶 → R a lower semicontinuous and
convex functional. Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐴 : 𝐻 → 𝐻 and let 𝐴𝑘, 𝐵𝑖 : 𝐶 → 𝐻

be 𝜁-inverse strongly monotone, 𝜁𝑘-inverse strongly monotone,
and 𝜂𝑖-inverse-strongly monotone, respectively, for 𝑘 = 1, 2

and 𝑖 = 1, 2, . . . , 𝑁. Let 𝑉 be a 𝛾-strongly positive bounded
linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅

2
) and

0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴)∩𝑆𝐺𝐸𝑃(𝐺)∩∩

𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
)∩Γ ̸= 0where𝐺

is defined as in Proposition CY. Let {𝑟
𝑛
} be a sequence in (0, 2𝜁]

and {𝛼
𝑛
} a sequence in (0, 1] such that lim

𝑛→∞
𝛼
𝑛
= 0. Let {𝑥

𝑛
}

be the sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆
𝑁−1,𝑛

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑥𝑛 = (𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] , ∀𝑛 ≥ 1,

(41)

where𝑃𝐶(𝐼−𝜆𝑛∇𝑓) = 𝑠𝑛𝐼+(1−𝑠𝑛)𝑇𝑛 (here𝑇𝑛 is nonexpansive,
𝑠𝑛 = ((2 − 𝜆𝑛𝐿)/4) ∈ (0, (1/2)) for each 𝜆𝑛 ∈ (0, (2/𝐿))).
Suppose that the following conditions hold.

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧𝑥 ∈ 𝐶 such that, for any 𝑦 ∉ 𝐷
𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦) +

1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(42)

(iii) 𝑠
𝑛
∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿)), lim

𝑛→∞
𝑠
𝑛
=

0 (⇔ lim
𝑛→∞

𝜆
𝑛
= (2/𝐿));

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 = 1, 2 and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂

(0, 2𝜂
𝑖
), 𝑖 = 1, 2, . . . , 𝑁;

(v) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥𝑛} converges
strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 → 0) to a point 𝑞 ∈ Ω, which
is a unique solution in Ω to the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (43)

Proof. First of all, let us show that the sequence {𝑥𝑛} is well
defined. Indeed, since ∇𝑓 is 𝐿-Lipschitzian, it follows that
∇𝑓 is 1/𝐿-ism. By Proposition 4(ii) we know that, for 𝜆 >

0, 𝜆∇𝑓 is (1/𝜆𝐿)-ism. So by Proposition 4(iii) we deduce that
𝐼 − 𝜆∇𝑓 is (𝜆𝐿/2)-averaged. Now since the projection 𝑃𝐶 is
(1/2)-averaged, it is easy to see from Proposition 5(iv) that
the composite 𝑃

𝐶
(𝐼 − 𝜆∇𝑓) is ((2 + 𝜆𝐿)/4)-averaged for 𝜆 ∈

(0, (2/𝐿)). Hence we obtain that, for each 𝑛 ≥ 1, 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓)

is ((2 + 𝜆
𝑛
𝐿)/4)-averaged for each 𝜆

𝑛
∈ (0, (2/𝐿)). Therefore,

we can write

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) =
2 − 𝜆
𝑛
𝐿

4
𝐼 +

2 + 𝜆
𝑛
𝐿

4
𝑇𝑛 = 𝑠𝑛𝐼 + (1 − 𝑠𝑛) 𝑇𝑛,

(44)

where 𝑇
𝑛 is nonexpansive and 𝑠𝑛 := 𝑠𝑛(𝜆𝑛) = ((2 − 𝜆𝑛𝐿)/4) ∈

(0, (1/2)) for each 𝜆𝑛 ∈ (0, (2/𝐿)). It is clear that

𝜆
𝑛
󳨀→

2

𝐿
⇐⇒ 𝑠

𝑛
󳨀→ 0. (45)

As lim
𝑛→∞

𝑠
𝑛
= 0 and 0 < lim inf

𝑛→∞
𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
<

2𝜁, we may assume, without loss of generality, that {𝑟𝑛} ⊂

[𝑎, 𝑎] ⊂ (0, 2𝜁) and 𝑠𝑛‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1. Since 𝑉 is a
𝛾-strongly positive bounded linear operator on 𝐻, we know
that

‖𝑉‖ = sup {⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1} ≥ 𝛾 > 1. (46)
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Taking into account that 𝑠
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1, we have

⟨(𝐼 − 𝑠
𝑛
𝑉) 𝑢, 𝑢⟩ = 1 − 𝑠

𝑛 ⟨𝑉𝑢, 𝑢⟩ ≥ 1 − 𝑠𝑛 ‖𝑉‖ ≥ 0, (47)

that is, (1 − 𝛽
𝑛
)𝐼 − 𝑠
𝑛
𝑉 is positive. It follows that

󵄩󵄩󵄩󵄩𝐼 − 𝑠𝑛𝑉
󵄩󵄩󵄩󵄩 = sup {⟨(𝐼 − 𝑠

𝑛
𝑉) 𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

= sup {1 − 𝑠𝑛⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝑠
𝑛
𝛾.

(48)

Put

Λ
𝑖

𝑛
= 𝐽𝑅

𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝐽𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆𝑖−1,𝑛𝐵𝑖−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1)

(49)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ0
𝑛
= 𝐼, where 𝐼 is the identity

mapping on𝐻. Then we have V
𝑛 = Λ
𝑁

𝑛
𝑢𝑛.

Consider the following mapping 𝐺𝑛 on𝐻 defined by

𝐺
𝑛
𝑥 = (𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥

+ 𝑠𝑛 [𝑇𝑛𝑥 − 𝛼𝑛 (𝜇𝐹 (𝑇𝑛𝑥) − 𝛾𝑄𝑥)] , ∀𝑥 ∈ 𝐻, 𝑛 ≥ 1,

(50)

where 𝑠
𝑛
= ((2 −𝜆

𝑛
𝐿)/4) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿)).

Since 𝐴𝑘 is 𝜁𝑘-inverse-strongly monotone with 0 ≤ ]𝑘 ≤ 2𝜁𝑘

for 𝑘 = 1, 2, we deduce that. for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑥

−𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − ]

1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑥

− (𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑦
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
[𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑥 − 𝑇

Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑦]

−]
1 [𝐴1𝑇

Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑥 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑦]
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)𝑥 − 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)𝑦
󵄩󵄩󵄩󵄩󵄩

2

+ ]1 (]1 − 2𝜁1)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑥 − 𝐴

1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑥 − 𝑇

Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − ]

2𝐴2)𝑥 − (𝐼 − ]2𝐴2)𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − ]

2
(𝐴
2
𝑥 − 𝐴

2
𝑦)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
+ ]2 (]2 − 2𝜁2)

󵄩󵄩󵄩󵄩𝐴2𝑥 − 𝐴2𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
.

(51)

By the nonexpansivity of 𝑆(Θ,𝜑)
𝑟

and Lemma 14we obtain from
(41), (48), and (51) that for all 𝑥, 𝑦 ∈ 𝐶

󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑠
𝑛
𝑉) (𝑇

𝑛
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)) 𝑥

−𝑇
𝑛
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑛𝑥 − (𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑛𝑦
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛𝛼𝑛𝛾

󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦
󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥

−𝑇
𝑛
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥 − 𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑦
󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥 − Λ

𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛𝛾)

×
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥

− (𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛𝛾)

×
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥 − Λ

𝑁−1

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (1 − 𝛼𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

...

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥 − Λ

0

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (1 − 𝛼𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥 − 𝑆

(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑦

󵄩󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (1 − 𝛼𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩(𝐼 − 𝑟𝑛𝐴) 𝑥 − (𝐼 − 𝑟𝑛𝐴)𝑦

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
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≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛 (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛𝛼𝑛 (𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(52)

Since 0 < 1 − 𝑠
𝑛
𝛼
𝑛
(𝜏 − 𝛾𝑙) < 1, 𝐺

𝑛
: 𝐻 → 𝐻 is a

contraction. Therefore, by the Banach contraction principle,
𝐺
𝑛
has a unique fixed point 𝑥

𝑛
∈ 𝐻, which uniquely solves

the fixed point equation

𝑥
𝑛
= (𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] .

(53)

This shows that the sequence {𝑥
𝑛} is defined well.

Note that

⟨(𝑉 − 𝐼) 𝑥 − (𝑉 − 𝐼) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(54)

That is, 𝑉 − 𝐼 is (𝛾 − 1)-strongly monotone for 𝛾 − 1 > 0.
Moreover, it is clear that𝑉− 𝐼 is Lipschitz continuous. So the
VIP (43) has only one solution in Ω. Below we use 𝑞 ∈ Ω to
denote the unique solution of the VIP (43).

Now, let us show that {𝑥
𝑛
} is bounded. In fact, take 𝑝 ∈ Ω

arbitrarily. Then from the nonexpansivity of 𝑆(Θ,𝜑)
𝑟

and {𝑟
𝑛
} ⊂

[𝑎, 𝑎] ⊂ (0, 2𝜁) we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝑟𝑛𝐴)𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑝) − 𝑟𝑛(𝐴𝑥𝑛 − 𝐴𝑝)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 2𝑟
𝑛
⟨𝑥
𝑛
− 𝑝, 𝐴𝑥

𝑛
− 𝐴𝑝⟩

+ 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝑟
𝑛
𝜁
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(55)

Since 𝑝 = 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)𝑝, Λ𝑖

𝑛
𝑝 = 𝑝 and 𝐵

𝑖
is 𝜂
𝑖
-inverse

strongly monotone, where 𝜆
𝑖,𝑛
∈ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁}, by

Lemma 15 we deduce that for each 𝑛 ≥ 1

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛𝐵𝑖)Λ
𝑖−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑖,𝑛𝐵𝑖)𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(56)

Combining (55) and (56), we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (57)

Since 𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝, 𝐴
𝑘
is 𝜁
𝑘
-

inverse-strongly monotone for 𝑘 = 1, 2, and 0 ≤ ]
𝑘
≤ 2𝜁
𝑘
for

𝑘 = 1, 2, we deduce that, for any 𝑛 ≥ 1,

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) V𝑛

−𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − ]

1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

−(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
[𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝]

−]
1 [𝐴1𝑇

Θ
2

]
2

(𝐼 − ]2𝐴2) V𝑛 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝]
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)V𝑛 − 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ ]1 (]1 − 2𝜁1)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − ]

2𝐴2)V𝑛 − (𝐼 − ]2𝐴2)𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(V𝑛 − 𝑝) − ]

2
(𝐴
2
V
𝑛
− 𝐴
2
𝑝)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]2 (]2 − 2𝜁2)

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(58)
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Thus, utilizing Lemmas 8 and 14, from (41), (43), (55), (56),
and (58) we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠𝑛 [𝑇𝑛𝑥𝑛 − 𝛼𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑝]

+(𝐼 − 𝑠
𝑛
𝑉)𝑝 − (1 − 𝑠

𝑛
)𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝛼
𝑛
(𝛾𝑄𝑥
𝑛
− 𝜇𝐹𝑝) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

− (𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑛𝑝] + 𝑠𝑛(𝐼 − 𝑉)𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝛼
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑝) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑝]

+𝑠
𝑛
[(𝐼 − 𝑉)𝑝 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑝]

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝛼
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑝) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

−(𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑛𝑝]
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ [
󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝛼𝑛𝛾 (𝑄𝑥𝑛 − 𝑄𝑝) + (𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑛𝑥𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

≤ [(1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+𝑠
𝑛 (𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)]
2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ [(1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑠𝑛 (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

= [(1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑠𝑛𝛾
(1 − 𝛼

𝑛
(𝜏 − 𝛾𝑙))

𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛𝛾

(1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
2

𝛾
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛
(1 − 𝛼

𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

= (1 − 𝑠
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(59)

which implies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

2

𝛾 − 1
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩) . (60)

Hence {𝑥
𝑛
} is bounded. So, according to (55) and (57)

we know that {𝑢
𝑛
}, {V
𝑛
}, {𝐺V
𝑛
}, {𝑇
𝑛
𝐺V
𝑛
}, {𝑇
𝑛
𝑥
𝑛
}, {𝑄𝑥

𝑛
}, and

{𝐹𝑇
𝑛
𝑥
𝑛
} are bounded.

Next let us show that ‖𝑢
𝑛
− 𝑥
𝑛
‖ → 0, ‖V

𝑛
− 𝑢
𝑛
‖ → 0,

‖V
𝑛
−𝐺V
𝑛
‖ → 0 and ‖V

𝑛
−𝑃
𝐶
(𝐼−(2/𝐿)∇𝑓)V

𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, combining (55) and (59), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾) [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

≤ (1 − 𝑠
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝑠𝑛𝛾) 𝑟𝑛 (𝑟𝑛 − 2𝜁)
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝑠
𝑛
𝛾) 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(61)

which immediately yields

(1 − 𝑠
𝑛𝛾) 𝑎 (2𝜁 − 𝑎)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠
𝑛
𝛾) 𝑟
𝑛
(2𝜁 − 𝑟

𝑛
)
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(62)
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From lim
𝑛→∞

𝑠
𝑛

= 0 and the boundedness of {𝑥
𝑛
} we

conclude that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩 = 0. (63)

Furthermore, from the firm nonexpansivity of 𝑆(Θ,𝜑)
𝑟
𝑛

, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝, 𝑢𝑛 − 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − 𝑟𝑛𝐴)𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝 − (𝑢𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛 − 𝑟𝑛(𝐴𝑥𝑛 − 𝐴𝑝)

󵄩󵄩󵄩󵄩

2
]

=
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+2𝑟
𝑛
⟨𝐴𝑥
𝑛
− 𝐴𝑝, 𝑥

𝑛
− 𝑢
𝑛
⟩ − 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2
] ,

(64)

which leads to
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑛
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 .

(65)

From (59) and (65), we get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
≤ (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠𝑛𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑛
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(66)

which hence implies that

(1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

≤ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 2𝑎
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(67)

Since lim
𝑛→∞

𝑠
𝑛

= 0 and {𝑥
𝑛
} and {𝑢

𝑛
} are bounded

sequences, it follows from (63) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (68)

Next we show that lim
𝑛→∞‖𝐵𝑖Λ

𝑖

𝑛
𝑢𝑛 − 𝐵𝑖𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. As amatter of fact, combining (55), (56), and (59),
we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛𝛾) [

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

] + 𝑠𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛 (𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝑠
𝑛
𝛾) 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝑠𝑛𝛾) 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(69)

which leads to

(1 − 𝑠
𝑛𝛾) 𝜆𝑖,𝑛 (2𝜂𝑖 − 𝜆𝑖,𝑛)

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(70)
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Since lim
𝑛→∞

𝑠
𝑛

= 0, {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), 𝑖 =

1, 2, . . . , 𝑁, and {𝑥
𝑛
} is bounded, it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
= 0. (71)

Also, by Lemma 15, we obtain that for each 𝑖 ∈ {1, 2, . . . , 𝑁}

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖)Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐽𝑅

𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝, Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛𝐵𝑖)Λ
𝑖−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑖,𝑛𝐵𝑖)𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛𝐵𝑖)Λ
𝑖−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑖,𝑛𝐵𝑖)𝑝 − (Λ

𝑖

𝑛
𝑢𝑛 − 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(72)

which yields

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛 − 𝜆𝑖,𝑛 (𝐵𝑖Λ

𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝)

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
2

𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛
⟨Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
, 𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
.

(73)

Thus, utilizing Lemma 8, from (41), (55), (56), (59), and (73)
we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩
]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾) [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 2𝑠𝑛 (

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝
󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛 (𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(74)

which leads to

(1 − 𝑠
𝑛𝛾)

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(75)

Since lim
𝑛→∞𝑠𝑛 = 0, {𝜆𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), 𝑖 =

1, 2, . . . , 𝑁 and {𝑥
𝑛
} and {𝑢

𝑛
} are bounded sequences, it

follows from (71) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (76)

From (76) we get
󵄩󵄩󵄩󵄩𝑢𝑛 − V𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢𝑛 − Λ

𝑁

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Λ
1

𝑛
𝑢
𝑛
− Λ
2

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(77)

Taking into account that ‖𝑥
𝑛
− V
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑢
𝑛
‖ + ‖𝑢

𝑛
− V
𝑛
‖, we

conclude from (68) and (77) that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩 = 0. (78)
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On the other hand, for simplicity, we write 𝑝 = 𝑇
Θ
2

]
2

(𝐼 −

]
2
𝐴
2
)𝑝, Ṽ
𝑛
= 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
and 𝑤

𝑛
= 𝐺V

𝑛
= 𝑇
Θ
1

]
1

(𝐼 −

]
1
𝐴
1
)Ṽ
𝑛
for all 𝑛 ≥ 1. Then

𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑝

= 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝.

(79)

We now show that lim
𝑛→∞

‖𝐺V
𝑛
− V
𝑛
‖ = 0, that is,

lim
𝑛→∞

‖𝑤
𝑛
− V
𝑛
‖ = 0. As a matter of fact, for 𝑝 ∈ Ω, it

follows from (56), (57), and (59) that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

= (1 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛𝛾)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]2 (]2 − 2𝜁2)

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

2

+]1 (]1 − 2𝜁1)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 𝑠𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
] + 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛 (𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝑠𝑛𝛾)

× []
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝑠

𝑛𝛾)

× []
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(80)

which immediately implies that

(1 − 𝑠
𝑛
𝛾) []
2
(2𝜁
2
− ]
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(2𝜁
1
− ]
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

≤ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(81)

Since lim
𝑛→∞

𝑠
𝑛
= 0, ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and {𝑥

𝑛
} is

bounded, it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩 = 0.

(82)

Also, in terms of the firm nonexpansivity of 𝑇Θ𝑘]
𝑘

and the 𝜁𝑘-
inverse strong monotonicity of 𝐴

𝑘
for 𝑘 = 1, 2, we obtain

from ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2, and (58) that

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]2𝐴2) V𝑛 − (𝐼 − ]2𝐴2) 𝑝, Ṽ𝑛 − 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐴
2
)V
𝑛
− (𝐼 − ]

2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

2𝐴2)V𝑛 − (𝐼 − ]2𝐴2)𝑝 − (Ṽ𝑛 − 𝑝)
󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − ]
2
(𝐴
2
V
𝑛
− 𝐴
2
𝑝) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2
]

=
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2
⟨(V
𝑛
− Ṽ
𝑛
) − (𝑝 − 𝑝) , 𝐴

2
V
𝑛
− 𝐴
2
𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

2
] ,

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)Ṽ
𝑛
− 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]
1
𝐴
1
) Ṽ
𝑛
− (𝐼 − ]

1
𝐴
1
) 𝑝, 𝑤
𝑛
− 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐴
1
)Ṽ
𝑛
− (𝐼 − ]

1
𝐴
1
)𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐴
1
)Ṽ
𝑛
− (𝐼 − ]

1
𝐴
1
)𝑝 − (𝑤

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2
]
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≤
1

2
[
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]1 ⟨𝐴1Ṽ𝑛 − 𝐴1𝑝, (Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)⟩

−]2
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]
1
⟨𝐴
1
Ṽ
𝑛
− 𝐴
1
𝑝, (Ṽ
𝑛
− 𝑤
𝑛
) + (𝑝 − 𝑝)⟩ ] .

(83)

Thus, we have
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐴2V𝑛 − 𝐴2𝑝⟩

− ]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

2
,

(84)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 .

(85)

Consequently, from (57), (80), and (84) it follows that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
≤ (1 − 𝑠𝑛𝛾)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐴2V𝑛 − 𝐴2𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

2
] + 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩 ]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(86)

which hence leads to

(1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(87)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
}, {V
𝑛
}, and {Ṽ

𝑛
} are bounded

sequences, we conclude from (82) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 = 0. (88)

Consequently, from (57), (80), and (85) it follows that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾) [

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 ]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 ]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑠
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
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≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝑠

𝑛𝛾)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(89)

which hence yields

(1 − 𝑠
𝑛𝛾)

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩

2

≤ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(90)

Since lim
𝑛→∞𝑠𝑛 = 0 and {𝑥𝑛}, {𝑤𝑛}, and {Ṽ𝑛} are bounded

sequences, we conclude from (82) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩 = 0. (91)

Note that

󵄩󵄩󵄩󵄩V𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 .

(92)

Hence from (88) and (91) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝐺V𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩 = 0. (93)

Also, it is clear from (41) that

𝑥
𝑛
− 𝑇
𝑛
𝐺V
𝑛

= 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
) − 𝑉𝑇

𝑛
𝐺V
𝑛
] .

(94)

So, it follows from lim𝑛→∞𝑠𝑛 = 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0. (95)

Observe that
󵄩󵄩󵄩󵄩V𝑛 − 𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺V𝑛 − V𝑛

󵄩󵄩󵄩󵄩 .

(96)

Hence, from (78), (93), and (95) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩 = 0. (97)

It is easy to see that

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑠𝑛V𝑛 + (1 − 𝑠𝑛) 𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 ,

(98)

where 𝑠
𝑛
= ((2 −𝜆

𝑛
𝐿)/4) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿)).

Hence we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶 (𝐼 −

2

𝐿
∇𝑓) V𝑛 − V𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− (𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤ (
2

𝐿
− 𝜆
𝑛
)
󵄩󵄩󵄩󵄩∇𝑓 (V𝑛)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 .

(99)

From the boundedness of {V
𝑛
}, 𝑠
𝑛
→ 0 (⇔ 𝜆

𝑛
→ (2/𝐿))

and ‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ → 0 (due to (97)), it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑛
− 𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (100)

Furthermore, we show that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. Indeed, since

{𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
}

which converges weakly to some 𝑤. Note that lim𝑛→∞‖𝑥𝑛 −
𝑢𝑛‖ = 0 (due to (68)). Hence 𝑢𝑛

𝑖

⇀ 𝑤. Since 𝐶 is closed
and convex, 𝐶 is weakly closed. So, we have 𝑤 ∈ 𝐶. From
(68), (76), and (78) we have that 𝑢𝑛

𝑖

⇀ 𝑤, V𝑛
𝑖

⇀ 𝑤 and
Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤, where 𝑚 ∈ {1, 2, . . . , 𝑁}. First, we prove that
𝑤 ∈ ∩

𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
). However, the argument to show that 𝑤

lies in 𝐼(𝐵
𝑚
, 𝑅
𝑚
) is quite standard by using maximality and

hence is omitted. Next, we show that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). In
fact, from 𝑢

𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
, we know that

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝐾
󸀠
(𝑢
𝑛
) − 𝐾
󸀠
(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(101)

From (H2) it follows that

𝜑 (𝑦) − 𝜑 (𝑢
𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩ +

1

𝑟
𝑛

× ⟨𝐾
󸀠
(𝑢
𝑛
) − 𝐾
󸀠
(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ Θ (𝑦, 𝑢

𝑛
) ,

∀𝑦 ∈ 𝐶.

(102)

Replacing 𝑛 by 𝑛
𝑖, we have

𝜑 (𝑦) − 𝜑 (𝑢
𝑛
𝑖

) + ⟨𝐴𝑥𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩

+ ⟨

𝐾
󸀠
(𝑢
𝑛
𝑖

) − 𝐾
󸀠
(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑦 − 𝑢
𝑛
𝑖

⟩ ≥ Θ(𝑦, 𝑢
𝑛
𝑖

) ,

∀𝑦 ∈ 𝐶.

(103)
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Put 𝑢
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then, from

(103) we have

⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
⟩

≥ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
⟩ − 𝜑 (𝑢

𝑡
) + 𝜑 (𝑢

𝑛
𝑖

)

− ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑥
𝑛
𝑖

⟩ −⟨

𝐾
󸀠
(𝑢𝑛
𝑖

) − 𝐾
󸀠
(𝑥𝑛
𝑖

)

𝑟𝑛
𝑖

, 𝑢
𝑡
− 𝑢
𝑛
𝑖

⟩

+Θ(𝑢
𝑡
, 𝑢
𝑛
𝑖

)

≥ ⟨𝑢𝑡 − 𝑢𝑛
𝑖

, 𝐴𝑢𝑡 − 𝐴𝑢𝑛
𝑖

⟩

+ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

⟩ − 𝜑 (𝑢
𝑡
) + 𝜑 (𝑢

𝑛
𝑖

)

− ⟨

𝐾
󸀠
(𝑢
𝑛
𝑖

) − 𝐾
󸀠
(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢
𝑡
− 𝑢
𝑛
𝑖

⟩+Θ(𝑢
𝑡
, 𝑢
𝑛
𝑖

) .

(104)

Since ‖𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

‖ → 0 as 𝑖 → ∞, we deduce from the
Lipschitz continuity of 𝐴 and 𝐾󸀠 that ‖𝐴𝑢

𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

‖ → 0

and ‖𝐾󸀠(𝑢
𝑛
𝑖

) − 𝐾
󸀠
(𝑥
𝑛
𝑖

)‖ → 0 as 𝑖 → ∞. Furthermore, from
the monotonicity of𝐴, we have ⟨𝑢

𝑡
−𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
−𝐴𝑢
𝑛
𝑖

⟩ ≥ 0. So,
from (H4), the weakly lower semicontinuity of 𝜑, ((𝐾󸀠(𝑢𝑛

𝑖

) −

𝐾
󸀠
(𝑥
𝑛
𝑖

))/𝑟
𝑛
𝑖

) → 0, and 𝑢
𝑛
𝑖

⇀ 𝑤, we have

⟨𝑢
𝑡
− 𝑤,𝐴𝑢

𝑡
⟩ ≥ −𝜑 (𝑢

𝑡
) + 𝜑 (𝑤) + Θ (𝑢

𝑡
, 𝑤) , as 𝑖 󳨀→ ∞.

(105)

From (H1), (H4), and (105) we also have

0 = Θ (𝑢
𝑡
, 𝑢
𝑡
) + 𝜑 (𝑢

𝑡
) − 𝜑 (𝑢

𝑡
)

≤ 𝑡Θ (𝑢𝑡, 𝑦) + (1 − 𝑡)Θ (𝑢𝑡, 𝑤) + 𝑡𝜑 (𝑦)

+ (1 − 𝑡) 𝜑 (𝑤) − 𝜑 (𝑢𝑡)

= 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)]

+ (1 − 𝑡) [Θ (𝑢𝑡, 𝑤) + 𝜑 (𝑤) − 𝜑 (𝑤) − 𝜑 (𝑢𝑡)]

≤ 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)]

+ (1 − 𝑡) ⟨𝑢𝑡 − 𝑤,𝐴𝑢𝑡⟩

= 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)] + (1 − 𝑡) 𝑡⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩,

(106)

and hence

0 ≤ Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩. (107)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ (𝑤, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑤) + ⟨𝐴𝑤, 𝑦 − 𝑤⟩. (108)

This implies that𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). In addition, let us show
that 𝑤 ∈ SGEP(𝐺) ∩ Γ. As a matter of fact, from (93), (100),
V
𝑛
𝑖

⇀ 𝑤, and Lemma 10, we deduce that 𝑤 ∈ SGEP(𝐺) and

𝑤 ∈ Fix(𝑃
𝐶
(𝐼− (2/𝐿)∇𝑓)) = VI(𝐶, ∇𝑓) = Γ. Hence we get𝑤 ∈

SGEP(𝐺) ∩ Γ. Therefore, 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩
∩
𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) ∩ Γ =: Ω. This shows that 𝜔

𝑤
(𝑥
𝑛
) ⊂ Ω.

Finally, we prove that {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→

(2/𝐿) (⇔ 𝑠
𝑛
→ 0) to 𝑞 ∈ Ω, which is the unique solution

in Ω to the VIP (43). In fact, we note that, for 𝑤 ∈ Ω with
𝑥
𝑛
𝑖

⇀ 𝑤,

𝑥𝑛 − 𝑤 = (𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑤)

+ 𝑠
𝑛
[𝛼
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑤) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑤]

+ 𝑠
𝑛
[(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤] .

(109)

By (48), (57), and Lemma 14, we obtain that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

= ⟨(𝐼 − 𝑠
𝑛
𝑉) (𝑇
𝑛
𝐺V
𝑛
− 𝑤) , 𝑥

𝑛
− 𝑤⟩

+ 𝑠𝑛 [𝛼𝑛𝛾 ⟨(𝑄𝑥𝑛 − 𝑄𝑤) , 𝑥𝑛 − 𝑤⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑤, 𝑥
𝑛
− 𝑤⟩]

+ 𝑠𝑛⟨(𝐼 − 𝑉)𝑤 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥𝑛 − 𝑤⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑤

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
[𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑤

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑤

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
[𝛼
𝑛
𝛾𝑙
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛
[𝛼
𝑛
𝛾𝑙
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
]

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

= (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛
(1 − 𝛼

𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

= (1 − 𝑠𝑛 (𝛾 − 1))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩,

(110)
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which hence leads to

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2
≤
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

𝛾 − 1
. (111)

In particular, we have

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
𝑖

(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥
𝑛
𝑖

− 𝑤⟩

𝛾 − 1
. (112)

Since 𝑥
𝑛
𝑖

⇀ 𝑤 and lim
𝑛→∞

𝛼
𝑛
= 0, it follows from (112) that

𝑥
𝑛
𝑖

→ 𝑤 as 𝑖 → ∞.
Now we show that 𝑤 solves the VIP (43). As a matter of

fact, from (55) and (59) we obtain that, for any 𝑝 ∈ Ω,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝑠

𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

= (1 − 𝑠
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥𝑛 − 𝑝⟩,

(113)

which immediately implies that

⟨(𝑉 − 𝐼) 𝑝 + 𝛼𝑛 (𝜇𝐹 − 𝛾𝑄) 𝑝, 𝑥𝑛 − 𝑝⟩ ≤ 0. (114)

Since 𝛼𝑛 → 0 and 𝑥
𝑛
𝑖

→ 𝑤, we get

⟨(𝑉 − 𝐼) 𝑝, 𝑤 − 𝑝⟩ ≤ 0, ∀𝑝 ∈ Ω. (115)

By Minty’s lemma, 𝑤 is a solution in Ω to the VIP (43). In
terms of the uniqueness of solutions of VIP (43), we deduce
that 𝑤 = 𝑞 and 𝑥

𝑛
𝑖

→ 𝑞 as 𝑛 → ∞. So, every weak
convergence subsequence of {𝑥

𝑛
} converges strongly to the

unique solution 𝑞 of VIP (43). Therefore, {𝑥
𝑛
} converges

strongly to the unique solution 𝑞 of VIP (43). This completes
the proof.

Corollary 20. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ,Θ1, Θ2 be
three bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and
let 𝜑 : 𝐶 → R be a lower semicontinuous and convex
functional. Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐴 : 𝐻 → 𝐻 and 𝐴𝑘, 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-
inverse strongly monotone, 𝜁𝑘-inverse strongly monotone, and
𝜂
𝑖
-inverse-strongly monotone, respectively, for 𝑘 = 1, 2 and

𝑖 = 1, 2. Let 𝑉 be a 𝛾-strongly positive bounded linear operator
with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-
strongly monotone operator with positive constants 𝜅, 𝜂 > 0.
Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with constant

𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅
2
) and 0 ≤ 𝛾𝑙 < 𝜏, where

𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume thatΩ := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴)∩

𝑆𝐺𝐸𝑃(𝐺) ∩ 𝐼(𝐵
1
, 𝑅
1
) ∩ 𝐼(𝐵

2
, 𝑅
2
) ∩ Γ ̸= 0 where 𝐺 is defined as

in Proposition CY. Let {𝑟
𝑛
} be a sequence in (0, 2𝜁] and {𝛼

𝑛
} a

sequence in (0, 1] such that lim
𝑛→∞

𝛼
𝑛
= 0. Let {𝑥

𝑛
} be the

sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆
2,𝑛
𝐵
2
) 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑥
𝑛
= (𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] , ∀𝑛 ≥ 1,

(116)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= ((2 − 𝜆

𝑛
𝐿)/4) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿))).

Suppose that the following conditions hold.

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻.
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦) +
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0.

(117)

(iii) 𝑠
𝑛
∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿)), lim

𝑛→∞
𝑠
𝑛
=

0 (⇔ lim
𝑛→∞

𝜆
𝑛
= (2/𝐿)).

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 = 1, 2 and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂

(0, 2𝜂
𝑖
), 𝑖 = 1, 2.

(v) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥𝑛} converges
strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 → 0) to a point 𝑞 ∈ Ω, which
is a unique solution in Ω to the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (118)

Corollary 21. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient∇𝑓. LetΘ,Θ

1
, Θ
2
be three

bifunctions from𝐶×𝐶 toR satisfying (H1)–(H4) and 𝜑 : 𝐶 →

R a lower semicontinuous and convex functional. Let 𝑅 : 𝐶 →

2
𝐻 be a maximal monotone mapping and let 𝐴 : 𝐻 → 𝐻

and 𝐴𝑘, 𝐵 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone, and 𝜉-inverse-strongly monotone,
respectively, for 𝑘 = 1, 2. Let𝑉 be a 𝛾-strongly positive bounded
linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅

2
) and

0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩ 𝐼(𝐵, 𝑅) ∩ Γ ̸= 0 where 𝐺 is
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defined as in Proposition CY. Let {𝑟
𝑛
} be a sequence in (0, 2𝜁]

and {𝛼
𝑛
} be a sequence in (0, 1] such that lim

𝑛→∞
𝛼
𝑛
= 0. Let

{𝑥
𝑛
} be the sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅,𝜌
𝑛

(𝐼 − 𝜌
𝑛
𝐵) 𝑢
𝑛
,

𝑥
𝑛
= (𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] ,

∀𝑛 ≥ 1,

(119)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= ((2 − 𝜆

𝑛
𝐿)/4) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (2/𝐿))).

Suppose that the following conditions hold

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(120)

(iii) 𝑠𝑛 ∈ (0, (1/2)) for each 𝜆
𝑛
∈ (0, (2/𝐿)), lim

𝑛→∞
𝑠
𝑛
=

0 (⇔ lim
𝑛→∞

𝜆
𝑛
= (2/𝐿));

(iv) ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and {𝜌

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉);

(v) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥
𝑛
} converges

strongly as 𝜆
𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→ 0) to a point 𝑞 ∈ Ω, which

is a unique solution in Ω to the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (121)

We next provide one example to illustrate Corollary 21.

Example 22. Let 𝐻 = R2 with inner product ⟨⋅, ⋅⟩ and norm
‖ ⋅ ‖ which are defined by

⟨𝑥, 𝑦⟩ = 𝑎𝑐 + 𝑏𝑑, ‖𝑥‖ = √𝑎2 + 𝑏2, (122)

for all 𝑥, 𝑦 ∈ R2 with 𝑥 = (𝑎, 𝑏) and 𝑦 = (𝑐, 𝑑). Let 𝐶 =

{(𝑎, 𝑎) : 𝑎 ∈ R} and𝐾(𝑥) = (1/2)‖𝑥‖2, for all 𝑥 ∈ R2. Clearly,
𝐶 is a nonempty closed convex subset of a real Hilbert space
𝐻 = R2. Let 𝑓 : 𝐶 → R be a convex functional with 𝐿-
Lipschitz continuous gradient ∇𝑓; for instance, putting 𝑆 =

{
2/3 1/3

1/3 2/3
} and𝑓(𝑥) = (1/2)⟨𝑆𝑥, 𝑥⟩, we obtain that ‖𝑆‖ = 1 and

∇𝑓 = 𝑆 with Lipschitz constant 𝐿 = 4. Put Θ = Θ
1
= Θ
2
= 0

and 𝜑 = 0. Then Θ,Θ
1
, Θ
2
are three bifunctions from 𝐶 × 𝐶

to R satisfying (H1)–(H4) and let 𝜑 : 𝐶 → R be a lower
semicontinuous and convex functional. Let 𝑅 : 𝐶 → 2

𝐻 be
a maximal monotone mapping, for instance, putting

𝑅V = {
𝑆V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶,
(123)

where 𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢, 𝑤⟩ ≥ 0, for all 𝑢 ∈ 𝐶}. It is

known that 𝑅 is maximal monotone and 0 ∈ 𝑅V if and only
if V ∈ 𝑉𝐼(𝐶, 𝑆). Put 𝐴 = {

3/5 2/5

2/5 3/5
}, 𝐵 = 0, 𝐴

1
= 𝐼 − 𝑆 =

{
1/3 −1/3

−1/3 1/3
}, 𝐴
2
= 𝐼 − 𝐴 = {

2/5 −2/5
−2/5 2/5 } . Then 𝐴 : 𝐻 → 𝐻

and 𝐴𝑘, 𝐵 : 𝐶 → 𝐻 are 𝜁-inverse strongly monotone with
𝜁 = (1/2), 𝜁𝑘-inverse strongly monotone with 𝜁𝑘 = (1/2) and
𝜉-inverse-strongly monotone with 𝜉 = (1/2), respectively, for
𝑘 = 1, 2. Also, put 𝜇 = 2, 𝑄 = 0, 𝑉 = (3/2)𝑆, and 𝐹 = (1/2)𝐼,
where 𝐼 is the identity mapping of R2. Then 𝑉 is a 𝛾-strongly
positive bounded linear operator with 𝛾 = (3/2). It is easy to
see that Ω := GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ 𝐼(𝐵, 𝑅) ∩ Γ = {0}

where 𝐺 is defined as in Proposition CY. Let {𝛼
𝑛
} ⊂ (0, 1],

{𝑟
𝑛
} ⊂ (0, 2𝜁], and {𝜌

𝑛
} ⊂ (0, 2𝜉] with 𝜁 = 𝜉 = (1/2); that is,

{𝛼
𝑛
}, {𝜌
𝑛
}, {𝑟
𝑛
} ⊂ (0, 1]. In this case, for any given 𝑥

1
∈ 𝐶, the

iterative scheme (119) is equivalent to the following one:

𝑢
𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 = 𝑃𝐶 (𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 = (1 − 𝑟𝑛) 𝑥𝑛,

V𝑛 = 𝐽𝑅,𝜌
𝑛

(𝐼 − 𝜌𝑛𝐵) 𝑢𝑛 = 𝐽𝑅,𝜌
𝑛

𝑢𝑛

= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝑆V
𝑛
) = 𝑢
𝑛
− 𝜌
𝑛
V
𝑛
,

𝑥𝑛 = (𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)]

= (𝐼 −
3

2
𝑠
𝑛
𝑆)𝑇
𝑛
𝑃
𝐶
(𝐼 − ]

1
𝐴
1
) 𝑃
𝐶
(𝐼 − ]

2
𝐴
2
) V
𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
)]

= (𝐼 −
3

2
𝑠
𝑛
𝑆)𝑇
𝑛
V
𝑛
+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
]

= (𝐼 −
3

2
𝑠𝑛𝑆)𝑇𝑛V𝑛 + 𝑠𝑛 (1 − 𝛼𝑛) 𝑇𝑛𝑥𝑛, ∀𝑛 ≥ 1,

(124)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
and 𝑠
𝑛
= ((2−𝜆

𝑛
𝐿)/4) ∈

(0, (1/2)) for each 𝜆
𝑛
∈ (0, (2/𝐿)) with 𝐿 = 4; that is, 𝑠

𝑛
=

((1 − 2𝜆
𝑛
)/2) ∈ (0, (1/2)) for each 𝜆

𝑛
∈ (0, (1/2)).

Next, taking into account V
𝑛
= 𝐽
𝑅,𝜌
𝑛

𝑢
𝑛
= (𝐼 + 𝜌

𝑛
𝑅)
−1
𝑢
𝑛
,

we get 𝑢
𝑛
∈ V
𝑛
+ 𝜌
𝑛
𝑅V
𝑛
, which leads to

𝑢𝑛 − V
𝑛

𝜌
𝑛

∈ 𝑅V𝑛 = 𝑆V𝑛 + 𝑁𝐶V𝑛. (125)

Hence, we have ⟨V
𝑛
−𝑢, ((𝑢

𝑛
−V
𝑛
)/𝜌
𝑛
)−𝑆V
𝑛
⟩ ≥ 0, for all 𝑢 ∈ 𝐶;

that is,

⟨𝑢 − V
𝑛
, 𝑢
𝑛
− 𝜌
𝑛
𝑆V
𝑛
− V
𝑛
⟩ ≤ 0, ∀𝑢 ∈ 𝐶, (126)

which immediately implies that V
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝑆V
𝑛
) = 𝑢
𝑛
−

𝜌
𝑛
V
𝑛
. Thus,

V𝑛 =
1

1 + 𝜌
𝑛

𝑢
𝑛
=
1 − 𝑟𝑛

1 + 𝜌
𝑛

𝑥
𝑛
. (127)

Also, note that

(1 − 𝜆
𝑛
) 𝑥
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) 𝑥
𝑛
= 𝑠
𝑛
𝑥
𝑛
+ (1 − 𝑠

𝑛
) 𝑇
𝑛
𝑥
𝑛
.

(128)
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So, we obtain

𝑇
𝑛
𝑥
𝑛
=
1 − 𝑠𝑛 − 𝜆𝑛

1 − 𝑠
𝑛

𝑥
𝑛
. (129)

On the other hand, we have

(1 − 𝜆
𝑛) V𝑛 = 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 = 𝑠𝑛V𝑛 + (1 − 𝑠𝑛) 𝑇𝑛V𝑛,

(130)

and hence

𝑇
𝑛
V
𝑛
=
1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠
𝑛

V
𝑛
=
1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠
𝑛

⋅
1 − 𝑟
𝑛

1 + 𝜌
𝑛

𝑥
𝑛
, (131)

which together with (124) implies that

𝑥𝑛 = (𝐼 −
3

2
𝑠𝑛𝑆)𝑇𝑛V𝑛 + 𝑠𝑛 (1 − 𝛼𝑛) 𝑇𝑛𝑥𝑛

= (𝐼 −
3

2
𝑠
𝑛
𝑆)

1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠𝑛

1 − 𝑟
𝑛

1 + 𝜌𝑛

𝑥
𝑛

+ 𝑠
𝑛
(1 − 𝛼

𝑛
)
1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠
𝑛

𝑥
𝑛

= (1 −
3

2
𝑠𝑛)

1 − 𝑠𝑛 − 𝜆𝑛

1 − 𝑠
𝑛

1 − 𝑟𝑛

1 + 𝜌
𝑛

𝑥𝑛

+ 𝑠
𝑛
(1 − 𝛼

𝑛
)
1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠𝑛

𝑥
𝑛

= [(1 −
3

2
𝑠
𝑛
)
1 − 𝑟
𝑛

1 + 𝜌
𝑛

+ 𝑠
𝑛
(1 − 𝛼

𝑛
)]

1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠
𝑛

𝑥
𝑛
.

(132)

It is clear that if 𝑠
𝑛
= ((1−2𝜆

𝑛
)/2) = ((1−2𝜆

𝑛
)/2) ∈ (0, (1/2))

for each 𝜆
𝑛
∈ (0, (1/2)), then, for {𝑟

𝑛
}, {𝛼
𝑛
}, {𝜌
𝑛
} ⊂ (0, 1], we

deduce from (132) that

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 = [(1 −

3

2
𝑠
𝑛
)
1 − 𝑟
𝑛

1 + 𝜌
𝑛

+ 𝑠
𝑛
(1 − 𝛼

𝑛
)]

1 − 𝑠
𝑛
− 𝜆
𝑛

1 − 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 −
3

2
𝑠
𝑛
)
1 − 𝑟
𝑛

1 + 𝜌𝑛

+ 𝑠
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

≤ (1 −
3

2
𝑠
𝑛
+ 𝑠
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

= (1 −
1

2
𝑠𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 .

(133)

Therefore, 𝑥
𝑛
= 0 for all 𝑛 ≥ 1. There is no doubt that {𝑥

𝑛
}

converges to the unique element 0 inΩ, which solves the VIP
(121).

4. Fixed Point Problems with Constraints

In this section, wewill introduce and analyze another implicit
iterative algorithm for solving the fixed point problem of
infinitely many nonexpansive mappings with constraints of

several problems: the GMEP (4), the SGEP (8), and finitely
many variational inclusions in a real Hilbert space. We prove
strong convergence theorem for the iterative algorithm under
mild assumptions.

Theorem 23. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let𝑁 be an integer. LetΘ,Θ

1
, Θ
2
be three

bifunctions from𝐶×𝐶 toR satisfying (H1)–(H4) and 𝜑 : 𝐶 →

R a lower semicontinuous and convex functional. Let𝑅𝑖 : 𝐶 →

2
𝐻 be a maximal monotone mapping and let 𝐴 : 𝐻 → 𝐻

and 𝐴
𝑘
, 𝐵
𝑖
: 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁

𝑘
-

inverse strongly monotone, and 𝜂
𝑖
-inverse-strongly monotone,

respectively, for 𝑘 = 1, 2 and 𝑖 = 1, 2, . . . , 𝑁. Let {𝑇
𝑛
}
∞

𝑛=1
be a

sequence of nonexpansive mappings on𝐻 and {𝜆
𝑛
} a sequence

in (0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑉 be a 𝛾-strongly positive
bounded linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a
𝜅-Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅

2
) and

0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume thatΩ :=

∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩ 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩ ∩

𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) ̸= 0

where 𝐺 is defined as in Proposition CY. Let {𝑟
𝑛
} be a sequence

in (0, 2𝜁] and let {𝛼
𝑛
} and {𝜎

𝑛
} be sequences in (0, 1]. Let {𝑥

𝑛
}

be the sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆𝑁−1,𝑛𝐵𝑁−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑥
𝑛 = (𝐼 − 𝜎𝑛𝑉)𝑊𝑛𝐺V𝑛

+ 𝜎
𝑛
[𝑊
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑊

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] , ∀𝑛 ≥ 1,

(134)

where 𝑊
𝑛 is the 𝑊-mapping defined by (9). Suppose that the

following conditions hold:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧𝑥 ∈ 𝐶 such that for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦) +
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(135)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
𝜎
𝑛
= 0;

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 = 1, 2 and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂

(0, 2𝜂
𝑖
), 𝑖 = 1, 2, . . . , 𝑁;

(v) 0 < lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥
𝑛
} converges

strongly to a point 𝑞 ∈ Ω, which is a unique solution in Ω to
the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (136)
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Proof. First of all, let us show that the sequence {𝑥
𝑛
} is well

defined. As lim
𝑛→∞

𝜎
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝑟
𝑛

≤

lim sup
𝑛→∞

𝑟
𝑛

< 2𝜁, we may assume, without loss of
generality, that {𝑟

𝑛
} ⊂ [𝑎, 𝑎] ⊂ (0, 2𝜁) and 𝜎

𝑛
‖𝑉‖ ≤ 1 for all

𝑛 ≥ 1. Utilizing the arguments similar to those in the proof of
Theorem 19, we get

󵄩󵄩󵄩󵄩𝐼 − 𝜎𝑛𝑉
󵄩󵄩󵄩󵄩 ≤ 1 − 𝜎𝑛𝛾. (137)

Put

Λ
𝑖

𝑛
= 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆
𝑖−1,𝑛

𝐵
𝑖−1
) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
)

(138)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ0
𝑛
= 𝐼, where 𝐼 is the identity

mapping on𝐻. Then we have V
𝑛 = Λ
𝑁

𝑛
𝑢𝑛.

Consider the following mapping 𝐺𝑛 on𝐻 defined by

𝐺
𝑛
𝑥 = (𝐼 − 𝜎

𝑛
𝑉)𝑇
𝑛
𝐺Λ
𝑁

𝑛
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥

+ 𝜎
𝑛
[𝑇
𝑛
𝑥 − 𝛼
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥) − 𝛾𝑄𝑥)] , ∀𝑥 ∈ 𝐻, 𝑛 ≥ 1.

(139)

Since 𝐴
𝑘
is 𝜁
𝑘
-inverse-strongly monotone with 0 ≤ ]

𝑘
≤ 2𝜁
𝑘

for 𝑘 = 1, 2, repeating the same arguments as in the proof
of Theorem 19 we deduce that 𝐺 is a nonexpansive mapping
on𝐻. Utilizing the arguments similar to those in the proof of
Theorem 19, we deduce that, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎

𝑛
𝛼
𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(140)

Since 0 < 1 − 𝜎
𝑛
𝛼
𝑛
(𝜏 − 𝛾𝑙) < 1, 𝐺

𝑛
: 𝐻 → 𝐻 is a

contraction. Therefore, by the Banach contraction principle,
𝐺
𝑛
has a unique fixed point 𝑥

𝑛
∈ 𝐻, which uniquely solves

the fixed point equation

𝑥
𝑛
= (𝐼 − 𝜎

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜎𝑛 [𝑊𝑛𝑥𝑛 − 𝛼𝑛 (𝜇𝐹 (𝑊𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] .

(141)

This shows that the sequence {𝑥𝑛} is defined well.
It is easy to see the VIP (43) has only one solution in Ω.

Below we use 𝑞 ∈ Ω to denote the unique solution of the VIP
(43).

Now, let us show that {𝑥
𝑛
} is bounded. In fact, take 𝑝 ∈ Ω

arbitrarily. Repeating the same arguments as in the proof of
Theorem 19 we obtain

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩

2
, (142)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

,

(143)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ ]
1
(]
1
− 2𝜁
1
)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2
,

(144)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜎𝑛𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

= (1 − 𝜎
𝑛 (𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(145)

From (145) we conclude that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

2

𝛾 − 1
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩) . (146)

Hence {𝑥
𝑛
} is bounded. So, according to (142) and (143)

we know that {𝑢
𝑛
}, {V
𝑛
}, {𝐺V
𝑛
}, {𝑊
𝑛
𝐺V
𝑛
}, {𝑊
𝑛
𝑥
𝑛
}, {𝑄𝑥

𝑛
}, and

{𝐹𝑊
𝑛
𝑥
𝑛
} are bounded.

Repeating the arguments similar to those of (68), (76),
(78), (93), and (97) in the proof ofTheorem 19 we obtain that
‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖Λ𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
‖ → 0, ‖𝑥

𝑛
− V
𝑛
‖ → 0,

‖V
𝑛
− 𝐺V
𝑛
‖ → 0 and ‖V

𝑛
− 𝑊
𝑛
V
𝑛
‖ → 0 as 𝑛 → ∞. In

addition, note that
󵄩󵄩󵄩󵄩V𝑛 −𝑊V

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩V𝑛 −𝑊𝑛V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛V𝑛 −𝑊V

𝑛

󵄩󵄩󵄩󵄩 . (147)

So, from ‖V
𝑛
− 𝑊
𝑛
V
𝑛
‖ → 0 and [15, Remark 3.2] it follows

that

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 −𝑊V
𝑛

󵄩󵄩󵄩󵄩 = 0. (148)

Further, we show that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. Indeed, since {𝑥

𝑛
}

is bounded, there exists a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} which

converges weakly to some𝑤. Note that lim
𝑛→∞

‖𝑥
𝑛
−𝑢
𝑛
‖ = 0.

Hence 𝑢
𝑛
𝑖

⇀ 𝑤. Since 𝐶 is closed and convex, 𝐶 is weakly
closed. So, we have 𝑤 ∈ 𝐶. On the other hand, it is easy
to see that 𝑢

𝑛
𝑖

⇀ 𝑤, V
𝑛
𝑖

⇀ 𝑤, and Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀ 𝑤, where
𝑚 ∈ {1, 2, . . . , 𝑁}. Repeating the same arguments as in the
proof of Theorem 19, we obtain that 𝑤 ∈ ∩

𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) ∩

GMEP(Θ, 𝜑, 𝐴). Next let us show that 𝑤 ∈ SGEP(𝐺) ∩
∩
∞

𝑛=1
Fix(𝑇
𝑛
). As a matter of fact, from ‖V

𝑛
− 𝐺V
𝑛
‖ → 0,

‖V
𝑛
−𝑊V
𝑛
‖ → 0, V

𝑛
𝑖

⇀ 𝑤 and Lemma 10, we deduce that𝑤 ∈

SGEP(𝐺) and𝑤 ∈ Fix(𝑊) = ∩
∞

𝑛=1
Fix(𝑇
𝑛
) (due to Lemma 12).

Hence we get 𝑤 ∈ SGEP(𝐺) ∩ ∩∞
𝑛=1

Fix(𝑇
𝑛
). Therefore, 𝑤 ∈

∩
∞

𝑛=1
Fix(𝑇
𝑛
)∩GMEP(Θ, 𝜑, 𝐴)∩SGEP(𝐺)∩∩𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) =: Ω.

This shows that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω.
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Finally, we prove that {𝑥
𝑛
} converges strongly to 𝑞 ∈ Ω,

which is the unique solution inΩ to the VIP (136). In fact, we
note that, for 𝑤 ∈ Ω with 𝑥

𝑛
𝑖

⇀ 𝑤,

𝑥
𝑛
− 𝑤 = (𝐼 − 𝜎

𝑛
𝑉) (𝑊

𝑛
𝐺V
𝑛
− 𝑤)

+ 𝜎
𝑛
[𝛼
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑤)

+ (𝐼 − 𝛼𝑛𝜇𝐹)𝑊𝑛𝑥𝑛 − (𝐼 − 𝛼𝑛𝜇𝐹)𝑊𝑛𝑤]

+ 𝜎
𝑛
[(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤] .

(149)

Utilizing the arguments similar to those in the proof of
Theorem 19, we obtain that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎

𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩,

(150)

which hence leads to

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2
≤
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥

𝑛
− 𝑤⟩

𝛾 − 1
. (151)

In particular, we have

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
⟨(𝐼 − 𝑉)𝑤 + 𝛼

𝑛
𝑖

(𝛾𝑄 − 𝜇𝐹)𝑤, 𝑥
𝑛
𝑖

− 𝑤⟩

𝛾 − 1
.

(152)

Since 𝑥𝑛
𝑖

⇀ 𝑤 and lim𝑛→∞𝛼𝑛 = 0, it follows from (152) that
𝑥𝑛
𝑖

→ 𝑤 as 𝑖 → ∞.
Now we show that 𝑤 solves the VIP (136). As a matter of

fact, from (142) and (145) we obtain that, for any 𝑝 ∈ Ω,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎

𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜎𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

= (1 − 𝜎𝑛 (𝛾 − 1))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝛼𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑥

𝑛
− 𝑝⟩ ,

(153)

which immediately implies that

⟨(𝑉 − 𝐼) 𝑝 + 𝛼𝑛 (𝜇𝐹 − 𝛾𝑄) 𝑝, 𝑥𝑛 − 𝑝⟩ ≤ 0. (154)

Since 𝛼
𝑛 → 0 and 𝑥𝑛

𝑖

→ 𝑤, we get

⟨(𝑉 − 𝐼) 𝑝, 𝑤 − 𝑝⟩ ≤ 0, ∀𝑝 ∈ Ω. (155)

By Minty’s lemma, 𝑤 is a solution in Ω to the VIP (136). In
terms of the uniqueness of solutions of VIP (136), we deduce
that 𝑤 = 𝑞 and 𝑥

𝑛
𝑖

→ 𝑞 as 𝑛 → ∞. So, every weak
convergence subsequence of {𝑥

𝑛
} converges strongly to the

unique solution 𝑞 of VIP (136). Therefore, {𝑥
𝑛
} converges

strongly to the unique solution 𝑞 of VIP (136).This completes
the proof.

Corollary 24. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let Θ,Θ1, Θ2 be three bifunctions from
𝐶 × 𝐶 to R satisfying (H1)–(H4) and let 𝜑 : 𝐶 → R be a
lower semicontinuous and convex functional. Let𝑅𝑖 : 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐴,𝐴𝑘 : 𝐻 →

𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone, and 𝜂𝑖-inverse strongly monotone,
respectively, for 𝑘 = 1, 2 and 𝑖 = 1, 2. Let {𝑇𝑛}

∞

𝑛=1
be a sequence

of nonexpansive mappings on 𝐻 and let {𝜆𝑛} be a sequence
in (0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑉 be a 𝛾-strongly positive
bounded linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a
𝜅-Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅

2
) and

0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛) ∩ 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩ 𝐼(𝐵1, 𝑅1) ∩

𝐼(𝐵2, 𝑅2) ̸= 0 where 𝐺 is defined as in Proposition CY. Let {𝑟𝑛}
be a sequence in (0, 2𝜁] and {𝛼𝑛} and {𝜎𝑛} sequences in (0, 1].
Let {𝑥𝑛} be the sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆
2,𝑛
𝐵
2
) 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑥
𝑛
= (𝐼 − 𝜎

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜎𝑛 [𝑊𝑛𝑥𝑛 − 𝛼𝑛 (𝜇𝐹 (𝑊𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] , ∀𝑛 ≥ 1,

(156)

where 𝑊
𝑛
is the 𝑊-mapping defined by (9). Suppose that the

following conditions hold:
(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and

its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that, for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦) +

1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(157)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
𝜎
𝑛
= 0;

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 = 1, 2 and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂

(0, 2𝜂
𝑖
), 𝑖 = 1, 2;

(v) 0 < lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥
𝑛
} converges

strongly to a point 𝑞 ∈ Ω, which is a unique solution in Ω to
the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (158)
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Corollary 25. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let Θ,Θ

1
, Θ
2
be three bifunctions from

𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 : 𝐶 → R a lower
semicontinuous and convex functional. Let 𝑅 : 𝐶 → 2

𝐻 be a
maximal monotone mapping and let 𝐴,𝐴

𝑘
: 𝐻 → 𝐻 and 𝐵 :

𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁
𝑘
-inverse strongly

monotone, and 𝜉-inverse strongly monotone, respectively, for
𝑘 = 1, 2. Let {𝑇𝑛}

∞

𝑛=1
be a sequence of nonexpansive mappings

on𝐻 and {𝜆𝑛} a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1). Let𝑉 be
a 𝛾-strongly positive bounded linear operator with 𝛾 > 1. Let𝐹 :
𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-stronglymonotone operator
with positive constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-
Lipschitzian mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < (2𝜂/𝜅2)
and 0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩ 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩ 𝐼(𝐵, 𝑅) ̸= 0

where 𝐺 is defined as in Proposition CY. Let {𝑟
𝑛
} be a sequence

in (0, 2𝜁] and {𝛼
𝑛
} and {𝜎

𝑛
} sequences in (0, 1]. Let {𝑥

𝑛
} be the

sequence generated by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅,𝜌
𝑛

(𝐼 − 𝜌
𝑛
𝐵) 𝑢
𝑛
,

𝑥
𝑛
= (𝐼 − 𝜎

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜎
𝑛
[𝑊
𝑛
𝑥
𝑛
− 𝛼
𝑛
(𝜇𝐹 (𝑊

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] , ∀𝑛 ≥ 1,

(159)

where 𝑊
𝑛 is the 𝑊-mapping defined by (9). Suppose that the

following conditions hold:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;

(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧𝑥 ∈ 𝐶 such that, for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧
𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦) +

1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(160)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
𝜎
𝑛
= 0;

(iv) ]
𝑘 ∈ (0, 2𝜁𝑘), 𝑘 = 1, 2 and {𝜌𝑛} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉);

(v) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.Then {𝑥𝑛} converges
strongly to a point 𝑞 ∈ Ω, which is a unique solution in Ω to
the VIP:

⟨(𝐼 − 𝑉) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, ∀𝑝 ∈ Ω. (161)
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