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We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and
continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem,
the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong
convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit
iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its

strong convergence under mild assumptions.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert
space H and let P be the metric projection of H onto C.
Let S : C — H be a nonlinear mapping on C. We denote
by Fix(S) the set of fixed points of S and by R the set of all
real numbers. A mapping V is called strongly positive on H
if there exists a constant y > 0 such that

(Vx, x) = yllx|>, Vx € H. Q)

A mapping S : C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

sc-Syl<Llx-sl, veyec. @

In particular, if L = 1, then S is called a nonexpansive
mapping; if L € [0, 1), then S is called a contraction.

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP):
find a point x € C such that

(Ax,y—-x) >0, VyeC. 3)

The solution set of VIP (3) is denoted by VI(C, A).

Let ¢ : C — Rbe areal-valued function, A: H - H
a nonlinear mapping, and ® : C x C — R a bifunction. The
generalized mixed equilibrium problem (GMEP) introduced
in [1] is to find x € C such that

O(xy)+9(y) -9 +(Ax,y-x) >0, VyeC. (4)

We denote the set of solutions of GMEP (4) by
GMEP(0G, ¢, A).

We assume as in [1] that ® : C x C — R is a bifunction
satisfying conditions (H1)-(H4) and ¢ : C — R is a lower
semicontinuous and convex function with restriction (H5),
where

(H1) O(x,x) =0forall x € C;
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(H2) © is monotone, that is, O(x, y) + ©(y, x) < 0 for any

x,y €G;
(H3) © is upper-hemicontinuous, that is, for each x, y, z €
C)
limsup® (tz + (1 -1)x,¥) <O (x,y); (5)
t—0*

(H4) ©(x,-) is convex and lower semicontinuous for each
x €C;

(H5) foreach x € Handr > 0, there exist a bounded subset
D, c Cand y, € Csuch that, foranyz € C\ D,,

®(Z>yx)+¢(yx)—§0(z)+%(yx—z,z—x> <0. (6)

Given a positive number, r > 0. Let S$®"”) :H — Cbe
the solution set of the auxiliary mixed equilibrium problem;
that is, for each x € H,

SO () = {yEC:@(y,Z)‘f'(P(Z)_(P(y)

+%(K' (y) =K' (x),z-y) 20,Vz € C}.

(7)

In particular, whenever K(x) = (1/2)|Ix|*, for all x €
H, S£®"”)(x) is rewritten as Tr@"”)(x).

Let ®,,0, : CxC — Rbe two bifunctionsand A, A, :

C — H two nonlinear mappings. Consider the following

system of generalized equilibrium problems (SGEP) [2]: find
(x*,y") € C x C such that

0, (x*,x)+<A1y*,x—x*>+i<x* -y x-x") >0,
V1
Vx € C,
* * * 1 * * *
€, (¥, 7)) +(AxxTy =y )+ (T =Ty =y 20,
2

Yy eC,
(8)

where v, > 0 and v, > 0 are two constants.
In 2010, Ceng and Yao [2] transformed the SGEP into a
fixed point problem in the following way.

Proposition CY (see [2]). Let ®,,0, : Cx C — R be
two bifunctions satisfying conditions (HI)-(H4) and let A, :
C — H be (-inverse-strongly monotone for k = 1,2. Let
v € (0,20}) for k = 1,2. Then, (x*, y*) € C x C is a solution
of SGEP (8) if and only if x* is a fixed point of the mapping
G : C — Cdefined by G = T)N(I — v AT (I = ,A,)
where y* = sz)z (I —v,A,)x". Here, we denote the fixed point
set of G by SGEP(G).
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Let {T,}7°, be an infinite family of nonexpansive map-
pings on H and {A,};? a sequence of nonnegative numbers
in [0, 1]. For any n > 1, define a mapping W,, on H as follows:

Un,n+1 =1,
Un,n = AnTnUn,nH + (1 - An) I,

Un,n—l = )Ln—lTn—lUn,n + (1 - An—l) I

Ui = MTUpper + (1= M) L, )

Upgeer = Mecr T U + (1= A y) L

Upr = A TU, 5 + (1-1,)1

Wn = Un,l = A1T1Uvn,2 + (1 - AI)I
Such a mapping W, is called the W-mapping generated by
T,T,1>...»Tiand A, A, 5. A,

Let Q : H — H be a contraction and V a strongly
positive bounded linear operator on H. Assume that ¢ :
H — Ris alower semicontinuous and convex functional,
that ®,0,,0, : H x H — R satisfy conditions (H1)-
(H4), and that A,A,,A, : H — H are inverse-strongly
monotone. Let the mapping G be defined as in Proposition
CY. Very recently, Ceng et al. [3] introduced the following
hybrid extragradient-like iterative scheme:

z, = Si?"”) (x, —r,Ax,),

Xn1 = Ky (u + nyn) + ﬁnxn

+((1-B)I-a,(I+uV))W,Gz,, V¥n=0,

(10)

for finding a common solution of GMEP (4), SGEP (8), and
the fixed point problem of an infinite family of nonexpansive
mappings {T,},°, on H, where {r,} < (0,00),{a,}, {B,} ¢
(0,1), v € (0,2;), k = 1,2, and xy,u € H are given. The
authors proved the strong convergence of the sequence {x,,} to
apointx”™ € Q := N>, Fix(T,) N GMEP(O, ¢, A) N SGEP(G)
under some suitable conditions. This point x* also solves the
following optimization problem:

in® Liup -
min= (Vx, x) + S llx —ul” - h(x), (OP1)
where h: H — Ris the potential function of yQ.
Let B be a single-valued mapping of C into H and R a
multivalued mapping with D(R) = C. Consider the following
variational inclusion: find a point x € C such that

0 € Bx + Rx. 11)

We denote by I(B,R) the solution set of the variational
inclusion (11). In 1998, Huang [4] studied problem (11) in
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the case where R is maximal monotone and B is strongly
monotone and Lipschitz continuous with D(R) = C = H.
Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C:

minimize {f (x) : x € C}. (12)

We denote by I' the set of minimizers of CMP (12).

Very recently, Ceng and Al-Homidan [5] introduced an
implicit iterative algorithm for finding a common solution
of the CMP (12), finitely many GMEPs and finitely many
variational inclusions, and derived its strong convergence
under appropriate conditions.

Algorithm CA (see [5, Theorem 18]). Let C be a nonempty
closed convex subset of areal Hilbert space H. Let f : C — R
be a convex functional with L-Lipschitz continuous gradient
Vf.Let M, N be two integers. Let ®, be a bifunction from
C x C to R satisfying (H1)-(H4) and ¢ : C — R U
{+o0} a proper lower semicontinuous and convex function,
where k € {1,2,...,M}. LetR; : C — 2H be a maximal
monotone mapping and let A, H — H and B;

C — H be yg-inverse strongly monotone and #;-inverse
strongly monotone, respectively, where k € {1,2,...,M}, i €
{1,2,...,N}. Let F : H — H be a «-Lipschitzian and #-
strongly monotone operator with positive constants x,# > 0.
LetQ: H — H be an [-Lipschitzian mapping with constant
I > 0.Let0 < p < (271/K2) and 0 < yl < 71, where
7 =1- /1 - u(2n — px?). Let {x,,} be a sequence generated
by

u, = T‘SJ\?,TWM) (I _ TM,nAM) Tr(Sivll;l Pv-1)

X (I =1y pApa) Tr(il’%) (I =r,A1) %,

Vo = ]RN,AW (I - /\N,nBN) ]RN_I,AN_M (13)

x (I - /\N—LnBN—l) TRy, (I- /\1,n31) Uy,

X, = $,yQx, + (I - s,uF) T,v,, ¥Yn=x>1,

where Po(I-A,Vf) = s,I+(1-s,)T, (here T, is nonexpansive,
s, = ((2-A,L)/4) € (0,(1/2)) for each A,, € (0,(2/L))), and
the following conditions hold:

(i) s, € (0,(1/2)) foreach A,, € (0,(2/L)), lim,,_, s, =0
(e lim,_, A, = (2/L));

(i) {A;,} € [a, ] € (0,27;), for all i € {1,2,..., N}
(iii) {re,} € [ep fi] € (0,2p), for all k € {1,2,..., M}

Motivated and inspired by the above facts, we first
introduce and analyze one implicit iterative algorithm for
finding a solution of the CMP (12) with constraints of
several problems: the GMEP (4), the SGEP (8), and finitely
many variational inclusions in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithm
under suitable conditions. The iterative algorithm is based on
Korpelevich’s extragradient method, hybrid steepest-descent

method in [6], viscosity approximation method, averaged
mapping approach to the GPA in [7], and strongly positive
bounded linear operator technique. On the other hand, we
also propose another implicit iterative algorithm for finding
a fixed point of infinitely many nonexpansive mappings with
the same constraints. We derive its strong convergence under
mild assumptions.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and | - [|, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x,, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,(x,) to denote the weak w-limit set of the sequence {x,,};
that is,

w, (%)

= {x € H : x,, —x for some subsequence {xni} of {xn}}.

(14)
Recall that a mapping A : C — H is called
(i) monotone if
(Ax - Ay, x—y) 20, Vx,yeC; (15)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax-Ap,x-y) znlx -y, vxyeC (1)

(iil) a-inverse-strongly monotone if there exists a constant
a > 0 such that

(Ax - Ay, x - y) =z o|Ax - Ay|", Vx,yeC. (17)

It is obvious that if A is a-inverse-strongly monotone,
then A is monotone and (1/«)-Lipschitz continuous.

The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point P-x € C satisfying the property

o= Berl = inf el = 0. gy

Some important properties of projections are gathered in the
following proposition.

Proposition 1. For given x € H and z € C,
()z=Pxe(x-2,y-2)<0, forall y € C;

.. 2 2
i)z = Px o |x-Z| < lx -yl -

ly - z|%, for all y € C;
(iii) (Pox — Poy,x — ) = |Pox — Peyl, for all y € H.

Consequently, P is nonexpansive and monotone.



If A is an ac-inverse-strongly monotone mapping of C into
H, then it is obvious that A is (1/«)-Lipschitz continuous. If
A < 2a, then it is easy to see that I — AA is a nonexpansive
mapping from C to H.

Definition 2. A mapping T : H — H is said to be
(a) nonexpansive if

|Tx = Ty| < x-yll. Vx yeH; (19)
(b) firmly nonexpansive if 2T' — I is nonexpansive, or

equivalently, if T' is 1-inverse strongly monotone (1-
ism),

x -y Tx-Ty) > |Tx - Ty|*, Vx, ye H; (20)
Y Y Y Y

alternatively, T' is firmly nonexpansive if and only if T can be
expressed as

T:%(I+S), (1)

where S : H — H is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if T is nonexpansive, then I-T is
monotone. It is also easy to see that a projection P is 1-ism.

Definition 3. A mapping T : H — H is said to be an
averaged mapping if it can be written as the average of the
identity I and a nonexpansive mapping; that is,

T=01-a)l+asS, (22)

where ¢ € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T is «-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged mappings.

Proposition 4 (see [8]). LetT : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T
is (1/2)-ism.
(ii) IfT is v-ism, then, fory > 0, yT is (v/y)-ism.

(iii) T is averaged if and only if the complement I-T is v-ism
forsomev > 1/2. Indeed, for« € (0,1), T is a-averaged
ifand only if I = T is (1/2a)-ism.

Proposition 5 (see [8]). Let S,T,V : H — H be given
operators.

(i) fT = (1 - a)S+ aV for some « € (0,1) and if S is
averaged and V' is nonexpansive, then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement
I T is firmly nonexpansive.
(iii) IfT = (1 - «)S + &V for some o € (0,1) and if S is
firmly nonexpansive and V is nonexpansive, then T is
averaged.
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(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {Ti}f\_j 1
is averaged, then so is the composite T, ---Ty. In
particular, if T} is o, -averaged and T, is «,-averaged,
where oy, «, € (0,1), then the composite T, T, is «-
averaged, where o« = &, + &, — & ;.

(v) If the mappings {Ti}f\:] , are averaged and have a
common fixed point, then

N
(VFix (T;) = Fix (T, -+ Ty). (23)

i=1

The notation Fix(T) denotes the set of all fixed points of the
mapping T; that is, Fix(T) = {x € H : Tx = x}.
By using the technique in [9], we can readily obtain the
following elementary result.

Proposition 6 (see [3, Lemma 1 and Proposition 1]). Let C be
a nonempty closed convex subset of a real Hilbert space H and
letgp : C — Rbealower semicontinuous and convex function.
Let ® : Cx C — R be a bifunction satisfying the conditions
(H1)-(H4). Assume that

(i) K : H — R is strongly convex with constant > 0
and the function x — (y — x, K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) foreachx € H andr > 0, there exists a bounded subset
D, cCand y, € C such that, forany z € C\ D,,

O(z,y) +9 () —9(2) + %(K' (2) -K' (x),y, - 2) <0.
(24)

Then the following hold:

(a) foreach x € H, S$®‘(")(x) +0;
(b) Sie"”) is single-valued;

(©) 859‘@ is nonexpansive if K' is Lipschitz continuous with
constant v > 0 and

<K’ (%) - K' (xz) Uy = Uy)

< (K" (u;) =K' (uy),u; —uy), V(x,,%,) € HxH,

(25)
where u; = $©9) (x;) fori = 1,2;
(d) foralls,t >0andx e H
(K' (8%9x) - K' (5%9x) 8P x — 5% x)
(26)

< SR (K (50x) - K (), 509 - 50Px)

(e) Fix(S®?) = MEP(O, 9);
(f) MEP(®, ) is closed and convex.
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Remark 7. In Proposition 4, whenever ® : CxC — Risa
bifunction satistying the conditions (H1)-(H4) and K(x) =
(1/2)||x|1%, for all x € H, we have for any x, y € H,

2
"558"’)))6 _ Si(w))’“ < <S£®"p)x _ Si@«p)y)x _ y> (27)
(856"") is firmly nonexpansive) and

S£®>‘P)

s—t
SOy — S;G’q))x” < ls=1 x - x” ,
s (28)

Vs, t >0, x € H.

In this case, S$®’¢) is rewritten as Tr@"”). If, in addition, ¢ = 0,

then Tr@"”) is rewritten as Tr® ; see [2, Lemma 2.1] for more
details.

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 8. Let X be a real inner product space. Then there
holds the following inequality:

I+ P <IxlP+2(px+y), VxyeX. (29

Lemma 9. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 1(i)) implies

ueVI(C,A) & u=P-(u—-AAu), A>0. (30)

Lemma 10 (see [10, demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma 11 (see [11, Lemma 3.2]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,},>,
be a sequence of nonexpansive self-mappings on C such that
N2 Fix(T,) #0 and let {A,} be a sequence in (0,b] for some
b € (0,1). Then, for every x € C and k > 1 the limit
lim,, _, U, X exists where U, is defined as in (9).

Lemma 12 (see [11, Lemma 3.3]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,},°,
be a sequence of nonexpansive self-mappings on C such that
N2 Fix(T,) #0, and let {A,)} be a sequence in (0,b] for some
b € (0,1). Then, Fix(W) = N2 Fix(T,).

The following lemma can be easily proved and, therefore,
we omit the proof.

Lemma13. Let V: H — H be a y-strongly positive bounded
linear operator with constant’y > 1. Then fory — 1 > 0,

(V-Dx-(V-Dyx-y)=F-1)|x-y,
Vx,y € H.

(31)

That is, V — I is strongly monotone with constant’y — 1.

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0, 1]andlet y > 0. Associating with a nonexpansive mapping
T:C — H,we define the mapping T* : C — H by

T'x := Tx - \uF (Tx), Vx €C, (32)

where F : H — H is an operator such that, for some
positive constants x,# > 0, F is k-Lipschitzian and #-strongly
monotone on H; that is, F satisfies the conditions

(Fx—Fy,x—y) = qlx -y
(33)

|Fx = By| < xflx - 5],

forall x,y € H.

Lemma 14 (see [12, Lemma 3.1]). T is a contraction provided
O<u< (211/1c2); that is,

”TAx - T’\y” <(1-M)|x-y|, YxyeC, (34)

where T = 1 — |1 — u(2n — ux?) € (0, 1].

We observe that since F is x-Lipschitzian and #-strongly
monotone on H, we get 0 < n < . Hence, whenever 0 <

Y < (211/K2), we have 7 = 1 — /1 — (25 — ux?) € (0,1]. Also

in Lemma 14, put F = (1/2)I and ¢ = 2. Then we know that
k=n=(1/2),0<pu=2< (27}/1(2) =4and71=1.

Recall that a set-valued mapping R : D(R) ¢ H — 2" is
called monotoneifforall x, y € D(R), f € R(x)and g € R(y)

imply
(f-gx-y) =0 (35)

A set-valued mapping R is called maximal monotone if R is
monotone and (I + AR)D(R) = H for each A > 0, where I
is the identity mapping of H. We denote by G(R) the graph
of R. It is known that a monotone mapping R is maximal if
and only if, for (x, f) € H x H, {f — g,x — y) > 0 for every
(y,9) € G(R) implies f € R(x).

Let A: C — H be a monotone, k-Lipschitz-continuous
mapping and let Nv be the normal cone to C at v € C; that
is,

Nev={weH: {(v-u,w) >0,Yu € C}. (36)
Define
Ty — Av+ Ngv, %f veC, (37)
@, ifv¢cC.

It is well known that T' is maximal monotone and 0 € T if
and only if v € VI(C, A).

Assume that R : D(R) ¢ H — 2 is a maximal
monotone mapping. Then, for A > 0, associated with R, the
resolvent operator Jp 5 can be defined as

Jaax = (I +AR)'x, Vx e H. (38)

From Huang [4] (see also [13]), there holds the following
property for the resolvent operator J ) : H — D(R).



Lemmal5. Jy, issingle-valued and firmly nonexpansive; that
is,

Tppx = Jrpaysx—y) 2 "IR,)Lx - IR,A)’HZ) Vx,y € H.
(39)

Consequently, J , is nonexpansive and monotone.

Lemma 16 (see [14]). Let R be a maximal monotone mapping
with D(R) = C. Then for any given A > 0, u € C is a solution
of problem (11) if and only ifu € C satisfies

u=Jg, (u—ABu). (40)

Lemma 17 (see [13]). Let R be a maximal monotone mapping
with D(R) = C and let B : C — H be a strongly monotone,
continuous, and single-valued mapping. Then for each z € H,
the equation z € (B+ AR)x has a unique solution x; for A > 0.

Lemma 18 (see [14]). Let R be a maximal monotone mapping
with D(R) = Cand B: C — H a monotone, continuous, and
single-valued mapping. Then (I + A(R + B))C = H for each
A > 0. In this case, R + B is maximal monotone.

3. Convex Minimization Problems
with Constraints

In this section, we will introduce and analyze one implicit
iterative algorithm for finding a solution of the CMP (12)
with constraints of several problems: the GMEP (4), the
SGEP (8), and finitely many variational inclusions in a real
Hilbert space. We po prove strong convergence theorem for
the iterative algorithm under suitable conditions.

Theorem 19. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let f : C — R be
a convex functional with L-Lipschitz continuous gradient Vf.
Let ©,0,, ®, be three bifunctions from C x C to R satisfying
(HI)-(H4) and ¢ : C — R a lower semicontinuous and
convex functional. Let R, : C — 2" be a maximal monotone
mapping and let A : H — H and let A;,B;, : C - H
be {-inverse strongly monotone, {}.-inverse strongly monotone,
and »n;-inverse-strongly monotone, respectively, for k = 1,2
andi = 1,2,...,N. Let V be a y-strongly positive bounded
linear operator with y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants xk,n1 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant 1 > 0. Let 0 < p < (2n/x”) and

\J1 — p(2n — ux?). Assume that

Q := GMEP(®, 9, A\NSGEP(G)NNY, I(B;, R;)NT # @ where G
is defined as in Proposition CY. Let {r,,} be a sequence in (0, 2(]
and {«,} a sequence in (0, 1] such thatlim,, _, . «, = 0. Let {x, }
be the sequence generated by

0 <yl <1, wherer =1-

u, = S£n®"") (I-r,A)x,

Vi = TR (I- AN,nBN) ]RN,I,AN,L,,

x (I- AN—I,nBN—l) “IRoAL, (I- )‘1,n31) Uy,
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x,=(-s,V)T,Gv,

+ Sy [Tnxn -, (‘th (Tnxn) - nyn)] » Vnzl,

(41)

where Po(I-A,Vf) = s, 1+(1-s,)T, (here T, is nonexpansive,
s, = (2-2A,L)/4) € (0,(1/2)) for each A, € (0,(2/L))).
Suppose that the following conditions hold.

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

0(3,2) +9(2) -9 () + (K () - K (1),2,- ) <O
(42)

(iii) s, € (0,(1/2)) for each A,, € (0,(2/L)), lim,, , s, =
0 (e lim,_, A, = (2/L));

(iv) v € (0,2¢), k = 1,2 and {};,} C
(0’2’11')) l= 1)2)-~‘7N;

(v) 0 < liminf

la,b] ¢

noocoln < limsup, _, r, < 2C.

Assume that S£®"”) is firmly nonexpansive. Then {x,} converges
strongly as A, — (2/L) (& s, — 0) to a point q € Q, which
is a unique solution in Q) to the VIP:

(I-V)g,p-q) <0, VpeQ. (43)

Proof. First of all, let us show that the sequence {x,,} is well
defined. Indeed, since Vf is L-Lipschitzian, it follows that
Vf is 1/L-ism. By Proposition 4(ii) we know that, for A >
0, AVf is (1/AL)-ism. So by Proposition 4(iii) we deduce that
I — AVf is (AL/2)-averaged. Now since the projection P is
(1/2)-averaged, it is easy to see from Proposition 5(iv) that
the composite Po(I — AVf) is ((2 + AL)/4)-averaged for A €
(0, (2/L)). Hence we obtain that, for each n > 1, Po(I - A, Vf)
is ((2 + A, L)/4)-averaged for each A, € (0, (2/L)). Therefore,
we can write

2-AL. 2+A,L
Po(I=AVf) = =1+ +4” T,=s,+(1-s,)T,

(44)

where T, is nonexpansive and s, := s,(4,) = ((2-1,L)/4) €
(0,(1/2)) for each A, € (0, (2/L)). It is clear that

2
/\n—>z<=>sn—>0. (45)

Aslim,_, s, =0and 0 < liminf,_, r, <limsup, _, .7, <
2{, we may assume, without loss of generality, that {r,} c
[a,a] ¢ (0,20) and s,|V]| < 1 forall m > 1. Since V is a
y-strongly positive bounded linear operator on H, we know
that

VI =sup{{Vu,u) :ue H,|ul| =1} >y > 1. (46)
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Taking into account that s, ||V < 1 for all n > 1, we have
(I-s,V)uu)=1-s,(Vuuy>1-s5,|V]| 20, (47)
thatis, (1 - 8,)I — s,V is positive. It follows that
I1=s,V| =sup {{(I-s,V)u,u) :u € H,|ul =1}
=sup{l —s,(Vu,u) :u € H,|u| =1} (48)
<1-s,y.
Put
Ain = ]R,-,/\,-,,, (I - Ai,nBi) ]R,-_I,A,-_M

x (I~ Ai—l,nBifl) e ]Rl,)tl,,, (I- Al,nBl)

(49)

foralli € {1,2,...,N}, and A(L = I, where I is the identity
mapping on H. Then we have v, = ANu,.
Consider the following mapping G,, on H defined by

n

Gux = (I-5,V) T,GAYSO? (I -r,A) x

VxeH, n>1,
(50)

+s, [Tnx -y (."lF (Tnx) - ny)] >

wheres, = ((2-1,L)/4) € (0,(1/2)) foreach A,, € (0, (2/L)).
Since A is {j-inverse-strongly monotone with 0 < v, < 20
for k = 1,2, we deduce that. for any x, y € H,

|Gx -Gyl

T (1= A )Ty (- 9A,) x
STO (I =9 A) T (1 -7,4,) |
<|(T=-7mA) T (1-9,4,)x
(I AT (1= %A
= [T (1= %,4,) x - T (I - %,4,) y]
oy [A T (1= 9,A) x — AT (I-9,4,) y][
<701~y A)x - T = v, AYy| 49, (0 - 20,)
X |4 T = v,4,)x - AT (1 - ,A,)|]
<701 - A )x - T - v, Ay
< ”(I - ,A)x - (I - vaz)y”2
=[x = ) = v, (Ayx ~ Az)/)llz
< x - )’”2 + 5 (v, = 28,) || Ayx — Az)’nz

< Jx-o.
(51

By the nonexpansivity of S£®’¢) and Lemma 14 we obtain from
(41), (48), and (51) that forall x, y € C

"an - Gny“
< |(1-s,V) (T, GAYSO? (1-7,A)) x
~T,GAYSEOP (I -1,4) y|
+s, ||(I - “m”F) Tnx - (I - anMF) Tny"
+ 5,0,y [|Qx - Qy
< (1 - Sn?)
x |T,GANSE? (1 -r,4) x
1GNNS (1 - ),
+ 5, (1= 0,7) =y + s,00,91 | x =y
< (1 - Sn?)
x |[GAYSOP (1 - 1,A) x - GAYSOP (1 -1,4) ¥
+5, (1—a,7) |x = y|| + s,y |x - ¥
< (1 - Sn?)
X "AgSif)’q’) (I-r,A)x— AI:SS?"’)) (I-r,A) y"
+5, (1—a,7) |x = y|| + s,y |x - ¥
< (1 - Sn?)
x "(I = AnnBy) Al;filsi?w (I-r,A)x
~(I = AnuBn) AIZ_IS%@’(P) (I-r,4) J’"
+5, (1—a,7) |x = y|| + s,y |x - ¥
< (1 - sn?)
x AN (1 -1, A) x = AYISOO (I-1,4)

+5, (1—a,7) ||x = y|| + s,y |x - ¥

< (1=s5,7) [ASS27 (1= 1,4) x = ASS 0P (1 -7,4) 5]
5, (1= a,7) [x =y + .1 |x = ¥

= (1= 5,7) SO (1-1,4) x =S (1~ 1, 4) |
+5, (1= a,7) [ =y + s,y | =

< (1=s,7) (1= r,A) x - (I -7,4) y|

+5, (1—a,7) [|x = y|| + s,y |x - ¥



<(U=s9) [ =y +5,(1-a,7) |x - 5]
+su0 ¥l [l = ¥
< (1=s,)[x -yl
+ 5, (1= u7) [ =yl + su0,p0 [ =
= (1=s,0, (z=yD)) [ -y
(52)

Since0 < 1 -s,4,(r—9yl) < 1,G, : H - Hisa
contraction. Therefore, by the Banach contraction principle,
G,, has a unique fixed point x,, € H, which uniquely solves
the fixed point equation

Xn = (I - SnV) TnGvn + Sy [Tnxn -y, (lblF (Tnxn) - nyn)] .
(53)
This shows that the sequence {x,,} is defined well.
Note that
V-Dx—-(V-Dyx-yyzF-1)|x-y|"
( ra=yz G-l o

Vx,y € H.

That is, V — I is (y — 1)-strongly monotone for y — 1 > 0.
Moreover, it is clear that V — I is Lipschitz continuous. So the
VIP (43) has only one solution in Q). Below we use g € Q to
denote the unique solution of the VIP (43).

Now, let us show that {x,} is bounded. In fact, take p € Q
arbitrarily. Then from the nonexpansivity of S£®"") and {r,} C
[a,a] c (0,20) we have

Jut, - pIf

Si,,@,q)) (I - rnA) Xn — Sin@)’(l’) (I - rnA) P“z

< | = r,A)x, - (T =7, )|

= |, = p) = rulAx, - AP

= |x, - pIf - 21,(x, - p, Ax, - Ap) (55)
+ralAx, - Ap|” < |lx, - pl’
- 2r,8|Ax, - Ap|* + 13| Ax, - Ap|’

= lxu = pI* + 7, (ra = 20) | Ax, - Ap]®

<%, -l

Since p = Jg.a, (I = A;,B)p, A\,p = p and B; is n-inverse

strongly monotone, where A;, € (0,2#;), i € {1,2,..., N}, by
Lemma 15 we deduce that for eachn > 1
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“Vn - P||2 = ”AIZ“n - p"z

< [, o]

= ”]Ri’Ai,n (I- /\i,nBi)Airzlun - ]Ri’)‘i,n (- /\i’”Bi)P”Z
< ||~ A, BIN w, - (1 A, B)p|

LN L1

< A5y =l + A (i - 201)

x[BA" u, - Bp|
2
< u - pl

+ Aip (Miw = 211) "BiA:l”n - BiP"2

< Ju, - ol
(56)
Combining (55) and (56), we have
Iv.. = pll < %, - £l (57)

Since p = Gp = T,)'(I = v AT (I = v,A,)p, Ay s {-
inverse-strongly monotone for k = 1,2, and 0 < v, < 2 for
k = 1,2, we deduce that, for any n > 1,

IGv, — ol

T, (I-nA,) ng (I-745)v,

1

STO (1=, A) T (I-2,4,) p||
<[ T-nA) T2 (1-9,4,)v,
(=% AT - n,A)p|
=1 (1= %4,) v, - Ty (I -v,4,) p]
vy [ATO (1= 9,A) v, AT (I-9,4,) p]|
< |11 = 9,40, - T =%, A)p| + 9 (v, - 20,)
x| A T = 9,457, - AT - ,4,)p|
< |11 - vy A, - T - v,A)p|]
< (T =9 A5v, — (I -v,4,)p|°
= [, - p) = m:(Ayv, - Ayp)|]
< va = oI+ (7, - 20) [ 4,v, - Asplf

< v - I
(58)
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Thus, utilizing Lemmas 8 and 14, from (41), (43), (55), (56),
and (58) we have
%, - oI’
= (1 = 5,V) (T, Gv,, - p)
+ 8, [Tx, = e, (WF (Tx,.) = yQx,,) = pl
+I=s,V)p - (1 =-s,)p[f
= (1 = 5,V) (T, Gv,, - p)
+ 5, o, (yQx,, — pFp) + (I - o, uF) T x,,
— (I = auF) T, p] +s5,(I = V)p|
= (1 = 5,V) (T, Gv,, - p)
+ 5, [or,y (Qx,, — Qp) + (I — a,uF) T, x,,
—(I = a,uF)T,p]
+,[(1=V)p +a,(yQ - uP)pl|’
< |I(1 = 5,V) (T, Gv,, - p)
+ 5, [y (Qx, = Qp) + (I - &, uF) T,yx,,
~(I - auF)T,p] |
+25,{(I = V) p+a, (yQ = uF) p,x,, = p)
< [I(1 = s,V) (T, Gv,, - p)|
+ 5y [leeyy (Qx,, = Qp) + (I - o, uF) T, x,
(I - auF) T,p|]’
+25,((I = V) p + &, (yQ - pF) p, x,, = p)
<[(1=5,7) |Gy, - pl
5, (ol x5, = pll + (1 = &,7) [, = )]
+25,{(I = V) p+ o, (yQ = uF) p,x,, = p)
< [(1=5,9)1Gv, = pl + 5, (1 = &, (x = D) [}, = ]’
+25,((I = V) p + &, (yQ - yF) p> x, — p)

_ (-, (r—yl
|- amten - pl syttt

2
xn_p“
+25n <(I_V)p+an(yQ_.uF)p’xn_p>

(1 — % (T B Vl))z "x _ PHZ

< (1 - Sn?) "Gvn - p“Z + sn’_/
+25n<(I_V)p+an(yQ_#F)p’xn _p>

< (1 - Sn?) "Gvn - P“Z * 8 (1 % (T - VZ)) "xn B p”Z

9
+25,((I = V) p +a, (yQ - pF) p> x,, = p)
< (1=5,7)[Gv, = pIf + s,llx - pI
+25, (I = V) p+a, (yQ—uF) p.x, — p)
< (1=5,9) [va = 21" + sallx, - 2l
+2s5,{(I - V) p+a, (yQ = uF) p,x,, = p)
< (1= 5.9) s = pI* + sallx - 2l
+25,((I = V) p +a, (yQ - pF) p> x, = p)
=(1=5,(7-1) %, - pI’
+2s5, (|0 = V) p| + | (vQ = uF) pl)) 1% - Pl
(59)

which implies that

2
y-1
Hence {x,} is bounded. So, according to (55) and (57)
we know that {u,}, {v,},{Gv,}, {T,,Gv,},{T,x,},{Qx,}, and
{FT,x,} are bounded.

Next let us show that [lu, — x,| — 0, v, —u,l| — 0,
lv,~Gv, Il — Oand|lv,—P-(I-(2/L)Vf)v,| — 0asn — oo.
Indeed, combining (55) and (59), we obtain

Ix. - p| < (Ja-vyp| +(yQ-uF)pl). (60)

%, - ol
< (1=5,9) [, = oI + sall - oI’
+25,((I = V) p + @, (yQ - uF) p, x, = p)
< (1=5,9) [ = I + 7 (r, = 20) | A, - Ap|’]
+5,]lx, - pl’
+25,((I = V) p + o, (yQ - uF) p, x, = p)
<(1=s5,(7-1) %, - pI’
+ (1= 5,9)7, (1, —20) | Ax,, - Ap|”
+25, (|1 = V) p| + | (vQ = uF) pl)) 1%, - Pl
< %, - 2l
+(1=5,9)7, (r, - 20) | Ax,, - Ap|

+25, (|0 =) pll + |(yQ - uF) p|)) %, -
which immediately yields

(61)

>

(1-5,7) a2 ~a)|Ax, - Ap’
< (1 - sn)_/) Ty (2( - rn) "Axn - Ap"2 (62)

<25, (|1 =) pll + [(vQ - #F) pl)) |, - Il
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From lim,_, s, = 0 and the boundedness of {x,} we
conclude that

Jim [Ax, - Ap[ = o0. (63)

Furthermore, from the firm nonexpansivity of S£®"”), we have

et - pI

2
SOOI - 1,A)x, = SOOI - 1, A)p|

< <(I_ rnA) Xn — (I_rnA)p’un _p>

- % [T = 7, 4%, = (I = 1, )p|* + | - o’
_“(I - rnA) Xy~ (I - rnA) p- (un - P)||2] (64)

<

[l = oI + = I

N =

||, = u, — r,(Ax, - Ap)“z]

1
=5 [l - Pl + = pI* = 6, = |
+2rn<Axn - AP) Xn— un> - ri"Axn - Apllz] >
which leads to
I, = oI < %, = pI* = 1% =

+ Zrn "Axn - AP" "xn - un" .

(65)

From (59) and (65), we get
% = 21" < (1= 5,) et = I + sallx = I
+25,((I = V) p +a, (yQ - uF) p, x, = p)
<(1-s.7)
x [l = I = 1% = el
+2r, [ Ax,, = Ap|l %, - u] |
+slx, - ol
+2s, (|- V) p[[ + | (yQ = F) pl)) |, - Pl
<(1-s,(7-1) |~ - pl’
= (1= 5,7) s = ol
+2r, |Ax,, = Ap|| |x, = 1
+25, (|0 = V) p|l + | (yQ = F) p|)) 1% -
< o= I° = (1= 5,9) 0, — |
+2r, |Ax, = Ap|| |x, =

+25, (| =v) pl + |(vQ - uF) pl)) | - ]
(66)
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which hence implies that
(1 - Sn?) "xn - Mn"2
<2r, ||Axn - Ap“ Hxn - un”

+25, (10 = V) pll + |(yQ - wF) pl) I, = pll -~ (67)
< 2a||Ax,, - Ap| |x, - u,

+ 25, (| = V) pl + |(yQ = wF) pl) |, - -

Since lim, , s, = 0 and {x,} and {u,} are bounded
sequences, it follows from (63) that

lim |x, —u,| = 0. (68)

n—oo
Next we show that lim, _, [|IB;A"u, — B;pl = 0,i =

1,2,...,N.As amatter of fact, combining (55), (56), and (59),
we have

I, - I
— 2 2
< (1 - Sny) ”Vn - p” + 5n"xn - p”
+25n <(I_V)p+‘xn (YQ_MF)P’xn _p>
< (1 - Sn?) ["un - P||2 + /\i,n (Ai,n - 27]1‘)
i 2
x| B, — Bip|[ ] + sullx - oI
e 26, (00 - V) ol + 102 - ) o) I, -
< (1 - Sn?)
i— 2
X ["xn - Pllz + i (Ai = 21) “BiAnlun - BiP“ ]
+ Sn”xn N P"2
+25, (|0 = V) pl + |(yQ - uF) pl)) |, -
= (1=5, (7= 1)) 0~ I’
+ (1 - Sn?) )Li,n (/\i,n - 2’71’) "BiAi;lun - Bip"2
+25, (| =v) pl + |(vQ - uF) pl)) |, -
< ”'xn - p"2 + (1 - Sn?) Ai,n (/\i,n - 2’11)
x|B.A% w, - Bp|

+25, (1T =V) pll + [(vQ = F) o) |1 = 2l
(69)

which leads to
(1= 5,9) Aiw (217 = Ai0) "BiAi;l”n - BiP”Z

<25, (| = V) p| + |(yQ — wF) p|)) %, - p| -

(70)
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Since lim, s, = 0,{A;,,} < [a,b] < (0,211),i =
1,2,...,N, and {x,} is bounded, it follows that

) i1
Jim B, — Bip] =0. 71
Also, by Lemma 15, we obtain that for each i € {1,2,..., N}

i 2
Anun _P"

= "]R,.,/\,.,H(I - Ai,nBi)Ai;Il“n - ]R,.,/\,.,W(I - /\i,nBi)P"z
< <(I - Ai,nBi) Air:lun - (I - A B) P’ Ainun - p>

imi

= > (=BT , — =2, B[+ [, - o

ini

—“(I — BNy = (1= A,,B)p = (N, - P)“z)
<5 (105 = ol + [~ ol
A, — A = A (B, - Bp)[)

; 2
Anun _p"

1 2
<L (o= oI+

A';1u,l - Ainun - /\,-),I(B,-A';lu,l - Bip)||2> ,

(72)
which yields
|A" 1w, ~ p| <, - oI
Ay = N, = Ay (B, - Bp)
= o, = pIP = % o1, = o
-2 |Bn, = Bip
+2M, (A, = A, BAT ', — Bip)

A1 Al 2
n Unp = DUy

<y~ pI -

i-1 i
+2A, (A w, — A,

B u, - Bip)) .
(73)

Thus, utilizing Lemma 8, from (41), (55), (56), (59), and (73)
we have

I, - oI’
S (1 - Sn?) ||Vn - p”Z + Sn"xn - p”Z
+25,{I = V) p+a, (yQ - uF) p, X, = p)
— i 2
< (1 - Sn))) ”Anun - p" + Sn"xn - p”Z

+25,((I-V) p+a,(yQ - uF) p,x, — p)

11
< (1 - Sn?)
X [”un - p"2 - "A’;lun - Ainun"2
F20, A = A | | BN s, - Bip ]

2
+ Sn"xn - P”
+2s, (| = V) p|| + «, [|(yQ = uF) p) |x, - |

< (1= 5,7) s = oI = 45w, — i

i-1 i
20, A, u, - Nu,

BN, u, - BiP" ]

+ 5,0, = p|* + 25, (| = V) p|| + 5, | (yQ - wF) p]))
x ||x, = p|
<(1-s,(y-1))

— 2
% = ol - (1= 5,7)

i-1 i
AN, u, - AN,

+2A;, ||A’; u, - Ainun” ||Bl.A’; 'u, - B p||
+2s, (|(1 = V) p|| + &, [ (yQ = wF) p) || x, - P

Al Al 2
n Un — 12Uy

= ||xn - p"2 - (1 - Sn?)

+21;,

i—1 i
An Uy — Anun”

B u, - Bip|

1" n n

+ an (”(I_ V)p" Ty, ”(YQ_MF) P”) ||xn _p" >

(74)
which leads to
(1 - Sn?) Ai;“n - Ainun"z
<2, A% w, - Ainun” 'BiA';lun - Bip“ (75)
+2s, (| = V) pl| + o, [(yQ = F) p|}) [1x - £
Since lim, , s, = 0,{A;,} < [a,b] c (0,211),i =
1,2,..., N and {x,} and {u,} are bounded sequences, it
follows from (71) that
nli_)rrg() A’;lun - Ainun =0. (76)
From (76) we get
"”n - Vn" = ”Aonun - AIr\Z”n"
< A(Lun - Alnun" + Alnun - Aznun"
(77)

+...+

n

N-1 N
A un—Anun"
— 0 asn-— o0o0.

Taking into account that ||x,, — v,|| < lIx,, — u, | + lu,, — v, |, we
conclude from (68) and (77) that

nleréo "xn - Vn“ =0. (78)
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On the other hand, for simplicity, we write p = TS 2(I -
V,A,)p, ¥, = TSZ(I - 2A,)v, and w, = Gy, = Tfl)l(l -
v,A )V, forall n > 1. Then

p=Gp=T," (I-7A,)p
(79)
=T, (I-vA) T, (I-v,A,)p.

We now show that lim,_, IGv, — v,| = 0, that is,
lim, _, o llw, — v,| = 0. As a matter of fact, for p € Q, it
follows from (56), (57), and (59) that

B
< (1= |Gv, = pI* + s,llx, - oI
+25, (I =V) p + &, (yQ = yF) p, x, = p)
= (1=s9) |lwn = pII” + salls - 2l
+2s, (I - V) p + &, (yQ = pF) p, X, — p)
< (1= 5,7 |w, - plI* + sullx, - pI’
+2s, (| = V) p[[ + | (yQ = wF) p|)) |, - |
<(1-s7)
< [I7, = BI” + v, (v = 28) A7, - A, 5]
+ 5., = I + 25, (| - V) pll + |(vQ - uF) p|)
x [, = p|
<(1-s.7)
X [""n - P"2 + 9, (v, =28,) Ay, - AzP"2
(= 20) A7, - 4,5]]
+ sl = pI” + 25, (1= V) || + [ (yQ - wF) )
x [, = p|
<(1-s7)
X ["xn = plI* + v (0= 20) [ Agv, = Aspl’
v (v =28) 14,7, - A B + s.lx, - oI
+2s, (|- V) p[[ + | (yQ = wF) pl)) |, - |
=(1=s, 7= 1)) %0 - pI" + (1= 5,7)
x [, (v, = 25,) [ A5y, = Asp]
+vy (v - 28,) A7, - A11~7||2]

+25, (| =V) pll + |(yQ = F) pI) x4 - £

Abstract and Applied Analysis

< %, - ol + (1= 5,7)
X [”2 (v, = 28,) [| Ay, - AzP"2
+v (v, = 20;) "Alvn - A1ﬁ||2]

+28, (1= V) pll + |(vQ = ) o) |1 = 2
(80)

which immediately implies that
(1-s,7) [Vz (28, =) Az, - AzP”2
+v1 (26 =) A7, - Ahﬁllz] (81)
< 2s, (|0 = vy pll + | (yQ - wF) pl)) |, - Pl »

Since lim,, _, s, = 0, v, € (0,2{;), k = 1,2 and {x,} is
bounded, it follows that

nll»ngo "szn - AzP“ =0, lim "Alvn - Alﬁ" =0.

n—o00
(82)
Also, in terms of the firm nonexpansivity of TVGk * and the -

inverse strong monotonicity of A, for k = 1,2, we obtain
from v, € (0,2(;), k = 1,2, and (58) that

%, - B’
= 101 Ay, - T (1 - v, A)p|
<{(I=74A3)v, = (I -,4,) p.7, - P)
= 210724, - U=, Apf + 7, -
T =945, - U= %,A)p - @, - PI]

<

(v = oI + 7 - B

| =

N =7 = (A, - Ayp) - (p - DI

o [ R L G e AR
+ 29 ((vu = ¥,) = (P = P)» Ayv, = Asp)
v A, - Aypl]

Jw, - oI

= |10 @ - A, - T2 - nA DB

<((I-7A4))%,-(I-7A4,)pw,-p)

= % (I =409, = @ =»ADB| + |w, - oI

T = A), T =%ADF - (w, - pI]
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1
< 2 (7= B + - oI

@ —w) + (- P

20, (AT, AB 5, - w,) + (p - D)
4,5, - 4,5
S R T i
@, - w) + (o~ DI
V20, (A%, A (5, w,) + (o P)) .
(83)
Thus, we have
7= 31" < I = 6l = 107 =70 - (o= PP
# 20, (5, %) ~ (p~ B), Ay~ Asp) (89
Az, - Azl
n%—ﬂPQM—NWWW—w>+@—@W
#2417, - 4,5 |G, - w) + (o P
(85)

Consequently, from (57), (80), and (84) it follows that
"xn - P“Z < (1 - Sn?)
x [”@z - :5”2 +; (v —24,) ”Alvn - A1§||2]

+s,lx, = oI’

+2s, (|1 = V) p[| + | (yQ = wF) pl)) |, - P
< (1 - Sn?)

x[[7, = BII* + sullx. - oI

+2s, (|0 =V) p|l + | (yQ = wF) p|)) |1x. -
< (1 - Sn?)

X [”Vn - P”Z - ”(Vn _vn) - (P - ﬁ)llz

+ 21/2 <(Vn - Vn) -

A2P||2] + sn“xn - P"2

+2s, (|0 =V) p|l + | (yQ = F) p|)) |1x. -
< (1 - Sn?)

(p-P), A, — Ayp)

_v§||A2Vn -

Ry I (A Rl
+2v, "(Vn - Vn) - (p - ﬁ)" "AZVn - A2p" ]

+ Sn“xn - P||2
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+2s5, (|1 = V) pl| + | (vQ = F) pl)) %, = Pl
<(l-s,(y-1))
= pI” = (1= ) |0 = %) = (p - DI
+2%, (v, = %,) ~ (p - D) IIsz Ayp|
+2s, (|1 = V) pl| + | (vQ = ) pl)) %, - Pl
< Jxa = ol = (1= 5.9 (v,
+29, |(v, = 9,) -

~7)-(p-p)|°
(p- D)1 Asvn - Asp|
+2s, (|1 = V) p|| + [ (yQ = uF) p) |, = 21>

(86)
which hence leads to
(1= |0 =70 - (p - DI
<29, | (v, = %) = (p = D) 1Az, — Aspl| (87)

+25, (| =) pl + |(yQ - wF) pl)) |, - -

Since lim,, _, s, = 0 and {x,},{v,}, and {¥,} are bounded
sequences, we conclude from (82) that

lim |(v, -7¥,) -

n— 00

(p-p)|=0. (88)
Consequently, from (57), (80), and (85) it follows that
e
< (1= 5,7) fw, = pI* + sullx, - oI
+25, (I(T=V) p|l + | (yQ = wF) p|)) |, - £

SO—%ﬂNm—PW—W%—w0+@—ﬁW

2, A7, = A7 - w,) + (p - DI |
5.l = ol + 25, (1T =) ol + [ (yQ - ) pl)
x|, =
<(1-s.7)

x [Ixu = pI = |G~ w) + (- DI

29, A7, - AP - w,) + (P - DI |
+ sl = oI + 25, (1= V) p + |(yQ - wF) p]))
x |lx, = pll
<(1-s,(y-1))
x|x, = pl = (1= 5,9 |F, - w,) + (p - P’
+ 29 A7, = A | | (7 —w,) + (p - P
+2s, (|2 = V) p|| + [(yQ = wF) p|) |x. - P
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<fx = o’ - (1= 5P | T, - w) + (o - P’
+2v, [A,7, - A, pl | (7, - w,) + (- D)
+2s, (| = V) pll + |(yQ ~ wF) pI) |, 2l
(89)
which hence yields
(1= @~ w) + (=PI
<20 |47, = A p| |7, - w,) + (p - P)| (90)
+2s, (12 = V) pl| + |(yQ = wF) pl]) | = Pl

Since lim,, s, = 0 and {x,}, {w,}, and {¥,} are bounded

sequences, we conclude from (82) that
nhj’go "(vn - wn) + (P - ﬁ)“ =0. (2]
Note that

”Vn - wn” < “(Vn —’17,1) - (P _ﬁ)“ + ”('1771 - wn) + (P - ﬁ)" .
(92)

Hence from (88) and (91) we get
Jim_|lv, = G, [ = lim_|v, -w,|=0. (93)

n— o0

Also, it is clear from (41) that

x, - T,Gv,
(94)
=Sy [Tnxn -, (!’lF (Tnxn) - nyn) - VTnGVn] .
So, it follows from lim,, _, s, = 0 that
Jim_|x, - T,Gv,[ = 0. (95)
Observe that
"Vn - Tnvn"

< vn = xall + 0 = TG + (TG, = Tl (96)
< "Vn - xn“ + ”xn - TnGvn" + "Gvn - Vn” :
Hence, from (78), (93), and (95) we have
Jim [V, = Tva|| = 0. (97)
It is easy to see that
"PC (I - /\nvf) Vi = Vn"
= |lsuvn + (1= s,) T = vl
(98)
= (1 - sn) "Tnvn - Vn"

< ||Tnvn - vn" ,
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where s, = ((2-1,L)/4) € (0,(1/2)) foreach A,, € (0, (2/L)).
Hence we have

-2

< ||PC (1 - %w) v, — P (I= A, V) v,
+[1Pc (1= 4,9F) v, = v,

<|(r-2vr) - -2,50)v,

+ "PC (I - Anvf) Vo = Vn“

2
< (5= 2) I Gl + [T = wl.

From the boundedness of {v,},s, — 0 (e A, — (2/L))
and | T,v,, — v,[l = 0 (due to (97)), it follows that

=0. (100)

. 2
nlgl(l)o v, — P (I - va> v,

Furthermore, we show that w,(x,) ¢ Q. Indeed, since
{x,} is bounded, there exists a subsequence {xni} of {x,}
which converges weakly to some w. Note that lim,_, . Ilx, —
u,| = 0 (due to (68)). Hence u, — w. Since C is closed
and convex, C is weakly closed. So, we have w € C. From
(68), (76), and (78) we have that U, = W, v, — w and
A u, — w, wherem € {1,2,..., N}. First, we prove that

w € NY_ I(B,,,R,,). However, the argument to show that w
lies in I(B,,, R,,) is quite standard by using maximality and
hence is omitted. Next, we show that w € GMEP(®, ¢, A). In
fact, from u,, = Sﬁ?"”)(l - r,A)x,, we know that

®(un>y)+¢(y)_¢(un)+ <Axn’y_un)

1, , (101)
+—(K (u,)-K (x,),y-u,) 20, VyeC.
rn
From (H2) it follows that
1
¢ () =9 (1) + (Axp y ) +
(102)

X <K, (un)_K, (xn)’y_un> 2 ®()/>1/ln),

Yy eC.

Replacing n by n;, we have

@ (y) - (u,)+(Ax,,y - u,)

+<K (uni)_K (xm)’y_un,-> 2®(y’”n,-)> (103)

Tni

Vy eC.
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Putu, =ty + (1 —t)wforallt € (0,1] and y € C. Then, from
(103) we have

(U, — u,, , Auy)

> (ut - uni,AuQ -9 (ut) +o (u”i)

! _ !
B <”t—”n,.>Axn,.> B <K (”m) K (xni)’ut_un,->

+0 (ut,uni)

> <ut — Uy, Au, - Auni>

+(uy — u,, Au, — Ax, ) — @ (u,) + ¢ (“n,-)

’ _ !
_<K (uni) K (xni),ut_uni>+®(ut’uni)'

rni

(104)

Since ||uni - X, | — 0Oasi — o0, we deduce from the
Lipschitz continuity of A and K’ that IIAuni - Ax, | — 0

and IIK'(u,,i) - K'(xni)ll — 0asi — oo. Furthermore, from
the monotonicity of A, we have (u, —u,,, Au, — Au,, ) > 0. So,

from (H4), the weakly lower semicontinuity of ¢, ((K ’(”n,-) -
K'(xnx_))/rni) — 0,and u, — w,we have

as i — 00.
(105)

(u, —w, Auy) = —¢ (u,) + ¢ (W) + O (uy, W),

From (H1), (H4), and (105) we also have
0=0 (u,u)+o ()¢ (u)

<10 (u, y) + (1 - 1) O (u, w) + tg (y)
+(1-1) ¢ (w) - ¢ (u,)

=t[0(u, y) + o (¥) - 9 (u)]

+(1-1) [0 (4, w) + ¢ (W) — ¢ (W) — ¢ ()]

<t[®(u,y) +o(y) -9 (u)]

+(1— 1) (uy - w, Au,)

=t[0(upy) + o (y) =@ ()] + (1 - 1) t{y - w, Au,),
(106)

and hence
0<0(upy) +o(y) - )+ (1-1)(y-w Aw). (107)
Lettingt — 0, we have, for each y € C,
0<0(wy)+9(y)-9wW) +(Aw,y -w).  (108)

This implies that w € GMEP(O, ¢, A). In addition, let us show
that w € SGEP(G) N I. As a matter of fact, from (93), (100),
Vy — W, and Lemma 10, we deduce that w € SGEP(G) and
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w € Fix(Po(I-(2/L)Vf)) = VI(C, Vf) = I'. Hence we get w €
SGEP(G) NI Therefore, w € GMEP(®, ¢, A) N SGEP(G) N
ﬂf\:]ll(Bi, R;) NT =: Q. This shows that w,,(x,) C Q.

Finally, we prove that {x,} converges strongly as A,, —
(2/L) (& s, — 0)toq € Q, which is the unique solution
in Q to the VIP (43). In fact, we note that, for w € Q with
X, — W,

x,—w=(I-s,V)(T,Gv,-w)
+ S, [(Xn)/ (an - Qw) + (I - (xmuF) Tnxn

- (I - “muF) an]

(109)

+s, [I-V)w+a, (yQ — uF) w].

By (48), (57), and Lemma 14, we obtain that

6, = w|®
= ((I-5,V) (T, Gv, —w) , x, -~ w)
+ 5, [,y ((Qx, — Qu) , x,, — w)
(I - i) T, — (I~ auF) T, x, — w))]
+5,{I = V)w +a, (yQ - uF) w, x, - w)
< (1= 5,7)T,Gv, = w] |, - w|
+ 5, [0y Q= Qu 1, - w
+(1 - a7) |, - w]’]
+5,((I = V)w+a, (yQ - pF) w, x,, - w)
< (1= 5,9) v, —w] %, - ]
+ 5, [yl = wl” + (1 - a,7) [, - w]]
+5,((I -V)w+a, (yQ - uF) w, x,, — w)
< (1=5,9) [, — w|”
+ 5, [y, = wl + (1= a,7) [, - ]
+5,((I - V)w +a, (yQ - uF) w, x,, -~ w)
= (1= 5,7) [xn —w]* + 5, (1 = e, (7 = D)) x5, —
+5,(I=V)w +a, (yQ — uF) w, x, — w)
< (1= 5,7) s = 0l + 5,1, - 0]
+5,{I=V)w +a, (yQ - uF) w, x, - w)
= (1=, - 1)) |, —w[’

+s5,(I-V)w+a, (yQ - uF) w, x,, — w),
(110)
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which hence leads to

(I-V)w+a, (yQ — yuF) w, x,, — w)

%, - w| < o1 (111)
In particular, we have
I1-Vv -uF)w,x, —
"xni _ w'|2 < (( )w + (xn,- (VQ ‘M )w xni w> ) (112)

y-1
Since x,, — w and lim = 0, it follows from (112) that
X, — wasi — 0o.

Now we show that w solves the VIP (43). As a matter of
fact, from (55) and (59) we obtain that, for any p € Q,

Tl—’OO(XH

% = oI < (1= 5.9) [ = Pl + sl - 2l

+2s5, (I - V) p+a, (yQ—uF) p:x, - p)
< (1=5,9) | = pI* + sallx, - 2l

+25,((I = V) p+ o, (yQ - uF) p,x, = p)
= (=5, (7= 1) |x, - oI’

+2s5, (I -V) p+a, (yQ - uF) px, - p)
< %, - oI

+25,((I = V) p + &, (yQ - uF) p> x, = p),

(113)
which immediately implies that
(V-Dp+a,(uF —yQ) p:x, —p) <0.  (114)
Since o, — Oand x, — w, we get
(V-Dpw-p)<0, VpeQ. (115)

By Minty’s lemma, w is a solution in Q to the VIP (43). In
terms of the uniqueness of solutions of VIP (43), we deduce
that w = gand x, — gasn — o00. So, every weak
convergence subsequence of {x,} converges strongly to the
unique solution g of VIP (43). Therefore, {x,} converges
strongly to the unique solution g of VIP (43). This completes
the proof. O

Corollary 20. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ©,0,,0, be
three bifunctions from C x C to R satisfying (H1)-(H4) and
let ¢ : C — R be a lower semicontinuous and convex
functional. Let R, : C — 2" be a maximal monotone
mapping and let A : H — Hand A;,B; : C — H be (-
inverse strongly monotone, (.-inverse strongly monotone, and
n;-inverse-strongly monotone, respectively, for k = 1,2 and
i=1,2. Let V be ay-strongly positive bounded linear operator
withy > 1. Let F : H — H be a k-Lipschitzian and »-
strongly monotone operator with positive constants k,1 > 0.
Let Q : H — H be an I-Lipschitzian mapping with constant
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I > 0.Let0 < pu < (2y/k*) and 0 < yl < 1, where
T =1-11 — u(2y — px?). Assume that Q :== GMEP(O, ¢, A)n
SGEP(G) N I(B,, Ry) N I(B,, R,) N T # @ where G is defined as
in Proposition CY. Let {r,} be a sequence in (0,2(] and {,} a
sequence in (0, 1] such that lim, _, e, = 0. Let {x,} be the
sequence generated by

u, = Sin@"p) (I-r,A)x,
YV = ]RZ,AL,, (I - Az,nBz) ]RI,AM (I - )Ll,nBl) Up>
x, = (I-s,V)T,Gv,

+3s, [Tnxn -y (”F (Tn‘xn) - nyn)] » vnzl,

(116)

where Po(I-A,Vf) = s,1+(1-s,)T, (hereT, is nonexpansive,
s, = (2-24,L)/4) € (0,(1/2)) for each A,, € (0,(2/L))).
Suppose that the following conditions hold.

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H.

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that for any y ¢ D,,

0(3,2) +9(2) - 9() + ~(K' () - K (1),2, - ) < 0.
(117)

(iii) s, € (0,(1/2)) for each A,, € (0,(2/L)), lim,, , s, =
0 (e lim,_, A, = (2/1)).

() v € (0,20), k = 1,2 and {A,,} ¢
(0) 2’11')’ i: 1) 2

(v) 0 < liminf, _, 7, <limsup, , 7, < 2(.

[ai, bi] C

Assume that S£®"P) is firmly nonexpansive. Then {x,} converges
stronglyas A, — (2/L) (& s, — 0) to a point q € Q, which
is a unique solution in Q) to the VIP:

((I-V)gp—q) <0, VpeQ. (118)
Corollary 21. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ®, ©, ©, be three
bifunctions from Cx C to R satisfying (H1)-(H4) and ¢ : C —
R a lower semicontinuous and convex functional. LetR : C —
2" be a maximal monotone mapping and let A : H — H
and A,B : C — H be (-inverse strongly monotone, (-
inverse strongly monotone, and &-inverse-strongly monotone,
respectively, fork = 1,2. Let V be a y-strongly positive bounded
linear operator with’y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants k,11 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant 1 > 0. Let 0 < u < (2n/«*) and

0 <yl < 1, wheret = 1 — |1 —u@y— px?). Assume that

Q := GMEP(©, 9, A) N SGEP(G) N I(B,R) NI # 0 where G is
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defined as in Proposition CY. Let {r,} be a sequence in (0, 2{]
and {a,,} be a sequence in (0, 1] such that lim,,_, o, = 0. Let
{x,} be the sequence generated by

u, = Sﬁ?"p) (I-r,A)x,,

Yy = ]R,p,, (I - pnB) Uy,
Xp = (I - SnV) TnGvn + Sy [Tnxn -y (ll/lF (Tnxn) - nyn)] >

Vn>1,
(119)

where Po(I-A,Vf) = s,1+(1-s,)T, (hereT, is nonexpansive,
s, = (2 -2,L)/4) € (0,(1/2)) for each A,, € (0,(2/L))).

Suppose that the following conditions hold

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that for any y ¢ D,,

O (y.2) +o(z) —9(¥)
L, , (120)
+;<K (y)-K (x),zx—y><0;

(iii) s, € (0,(1/2)) for each A, € (0,(2/L)), lim,, , s, =
0 (e lim,_, A, = (2/L));

(iv) v € (0,20,), k= 1,2 and {p,}  [a,b] c (0,28);

(v) 0 < liminf

noooln < limsup, | 7, <2C.

Assume that S£®"P) is firmly nonexpansive. Then {x,} converges
stronglyas A, — (2/L) (& s, — 0) to a point q € Q, which
is a unique solution in Q) to the VIP:

((I-V)gp—q) <0,

We next provide one example to illustrate Corollary 21.

Vp e Q. (121)

Example 22. Let H = R? with inner product (-,-) and norm
| - || which are defined by

lxll = Va? + b3, (122)
forall x,y € R* with x = (a,b) and y = (c,d). Let C =
{(a,a) : a € Rt and K(x) = (1/2)|x])?, for all x € RZ.Clearly,
C is a nonempty closed convex subset of a real Hilbert space
H = R Let f : C — R be a convex functional with L-
Lipschitz continuous gradient Vf; for instance, putting S =
{ 373 33} and £(x) = (1/2)(Sx, x), we obtain that ||S| = 1 and
Vf = S with Lipschitz constant L = 4. Put® = ®, =0, =0
and ¢ = 0. Then ©, ®,, ®, are three bifunctions from C x C
to R satistfying (H1)-(H4) and let ¢ : C — R be a lower
semicontinuous and convex functional. Let R : C — 2 be
a maximal monotone mapping, for instance, putting

Ry = Sv + Nev, %fvEC,
0, ifv¢C,

(x,y) =ac+bd,

(123)
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where Nov = {w € H: (v—u,w) >0, for all u € C}. It is
known that R is maximal monotone and 0 € Rv if and only

ifv e VIC,S). Put A = {3233}, B =0,A =1-8 =

{705 A, =1-4a={2, 70} ThnA:H - H
and A;,B : C — H are {-inverse strongly monotone with
{ = (1/2), {}-inverse strongly monotone with {; = (1/2) and
&-inverse-strongly monotone with & = (1/2), respectively, for
k=1,2.Also,puty =2,Q =0,V =(3/2)S,and F = (1/2)],
where I is the identity mapping of R”. Then V is a y-strongly
positive bounded linear operator with y = (3/2). It is easy to
see that QO := GMEP(0, ¢, A) N SGEP(G) N I(B,R) N T = {0}
where G is defined as in Proposition CY. Let {,} < (0,1],
{r,} € (0,2¢], and {p,} c (0,2&] with { = & = (1/2); that is,
{a, 1, {p,}> {r,} € (0, 1]. In this case, for any given x, € C, the
iterative scheme (119) is equivalent to the following one:

Uy

SO (1, A) %, = P11y A) 3, = (1 1) %
Vo = IRy, (I-p,B)u, = JR,p, tn

= P (thy, = PuSV) = thy = P>
x,=(-s,V)T,Gv,

+ 5, [T,x, = o, (uF (T,x,.) = yQx,)]
= (1= 358) TP (1= 94, Po(1-1,4,) v,

+ 5, [Tx, = ouuF (T,x,,)]

3
= (I - F S) T, v, +s,[T,x, —a,T,x,]

n

n

= (I - %s S) T, +s,(1-a,)T,x, VYnx1,

(124)
where Po(I-A, Vf) =s,I+(1-s,)T,ands, = ((2—-A1,L)/4) €
(0,(1/2)) for each A,, € (0,(2/L)) with L = 4; thatis, s, =
((1-2A,)/2) € (0,(1/2)) for each A,, € (0, (1/2)).

Next, taking into account v, = Jp, u, = (I + R,
we get u,, € v, + p,Rv,, which leads to

Uy, = Vy

€ Rv, =Sv,+ Ngv,. (125)

Pn

Hence, we have (v, —u, (u,—v,)/p,)-Sv,) = 0, for all u € C;
that is,

(w—=v,,u,—p,Sv,—v,) <0, VYueC, (126)
which immediately implies that v, = P-(u,, — p,Sv,) = u, —

PuVy,- Thus,

1 _1-r,

n

e (127)

Vu

= u, = X
L+p, L+p,
Also, note that

(1 - An) Xn = PC (I - /\nvf) Xy = S$pXy + (1 - Sn) Tnxn'
(128)
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So, we obtain

1-s,—-A
Tnxnz li—snx"'
n

(129)

On the other hand, we have

(1 - /‘n) Vn = PC (I - Anvf) Vi = SpVp t (1 - Sn) Tnvn’

(130)
and hence
1-5s,-A 1-s,-A, 1-
Ty, = - nvn = 5 ok T Xy (131)
1-s5s, 1-s5s, 1+p,
which together with (124) implies that
3
X, = <I - ES”S> T, +s,(1-a,)T,x,
3 1-s,-A,1-
:(I_—SHS)#_Y‘”X:”
2 1-s5, 1+p,
1-s,—-A
+sn(1—ocn)#xn
1-s,
3 1-s,-A, 1-
=<1——5n>#—r’1xn
2 1-s, 1+p,
1-5s,-A
+5n(1_ n) 1f$n . n
3 1- 1-s, —-A
=[<1——sn> r”+sn(1—ocn) Lxn.
2 1+p, 1-s,
(132)

Itis clear thatif s, = ((1-2A,,)/2) = ((1-2A,))/2) € (0,(1/2))
for each A,, € (0,(1/2)), then, for {r,}, {,}, {p,} < (0,1], we
deduce from (132) that

bl = [ (1= 30) T2 + s (=) | =22 s
<(1-35) T e =) ol
<(1- 250, sl
=(1-35) Il
(133)

Therefore, x,, = 0 for all # > 1. There is no doubt that {x,}
converges to the unique element 0 in ), which solves the VIP
(121).

4. Fixed Point Problems with Constraints

In this section, we will introduce and analyze another implicit
iterative algorithm for solving the fixed point problem of
infinitely many nonexpansive mappings with constraints of
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several problems: the GMEP (4), the SGEP (8), and finitely
many variational inclusions in a real Hilbert space. We prove
strong convergence theorem for the iterative algorithm under
mild assumptions.

Theorem 23. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ©®, ©,, ®, be three
bifunctions from Cx C to R satisfying (H1)-(H4) and ¢ : C —
R a lower semicontinuous and convex functional. LetR; : C —
2H be a maximal monotone mapping and let A : H — H
and Ay, B; : C — H be (-inverse strongly monotone, (-
inverse strongly monotone, and n;-inverse-strongly monotone,
respectively, fork = 1,2 and i = 1,2,...,N. Let {T,},, be a
sequence of nonexpansive mappings on H and {A,)} a sequence
in (0,b] for some b € (0,1). Let V be a y-strongly positive
bounded linear operator with’y > 1. Let F : H — H be a
k-Lipschitzian and n-strongly monotone operator with positive
constants «,n7 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant 1 > 0. Let 0 < u < (2n/«*) and

0 <yl < 1, whereT = 1—|1 — u(2n — ux?). Assume that Q :=

N, Fix(T,) N GMEP(®, ¢, A) N SGEP(G) NN I(B;, R;) #0
where G is defined as in Proposition CY. Let {r,} be a sequence
in (0,2¢] and let {a,} and {o,} be sequences in (0,1]. Let {x,}
be the sequence generated by

u, =800 (1= 1,4) %,
Vo = ]RN,ANM (I - AN,nBN) ]RN,l,AN,m

X (I = An_1nBnor) JrA,, (I = A1By) thys
x, = (I-0,V)W,Gv,

Vn > 1,
(134)

+0y [ann -y (.MF (ann) - nyn)] >

where W, is the W-mapping defined by (9). Suppose that the
following conditions hold:

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C
and z,, € C such that for any y ¢ D,,

1
O (32:) + ¢ (2:) =@ (7) + —(K' () =K' (), 2, = ) < 0
(135)
(i) lim,,_, &, = 0 and lim 0,=0;
(iv) v € (0,20), k = 1,2 and {A;,} < [a,b] C
0,2,), i=1,2,...,N;

(v) 0 < liminf

n— 00

n—oo'n

r, <limsup, , 1, <2(.

Assume that 89 is firmly nonexpansive. Then {x,} converges
strongly to a point q € Q, which is a unique solution in Q) to
the VIP:

(136)

(I-V)g:p-q) <0, VpeQ.
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Proof. First of all, let us show that the sequence {x,} is well
defined. As lim, , o, = 0and 0 < liminf, |, 1, <
limsup, , 7, < 2{, we may assume, without loss of
generality, that {r,} ¢ [a,a] c (0,2() and 0, |V]| < 1 for all
n > 1. Utilizing the arguments similar to those in the proof of
Theorem 19, we get

-0,V <1-0,7. (137)

Put

Ain = ]R,-,)t,-,n (I - Ai,nBi) ]Ri,l,)t,-,l,,,

x (I - /\i—l,nBi—l) TR, (I- /\1,;131)

(138)

foralli € {1,2,...,N}, and A(L = I, where I is the identity
mapping on H. Then we have v, = AN u,.
Consider the following mapping G,, on H defined by

G,x = (I-0,V) T,GAYSO? (I - 1,4) x

VxeH, n>1.
(139)

+0o, [Tnx -y (/’lF (Tnx) - ny)] >

Since A is {}.-inverse-strongly monotone with 0 < v < 2{;
for k = 1,2, repeating the same arguments as in the proof
of Theorem 19 we deduce that G is a nonexpansive mapping
on H. Utilizing the arguments similar to those in the proof of
Theorem 19, we deduce that, for any x, y € H,

2
|Gux = Gy||” < (1= 0,0, (= 91)) |x - |- (140)
Since0 < 1-o,0,(t-9y) < 1,G, : H - Hisa
contraction. Therefore, by the Banach contraction principle,
G,, has a unique fixed point x,, € H, which uniquely solves
the fixed point equation

x, = (I-0,V)W,Gv,
(141)
+ 0y [Wn'xn -y (.MF (ann) - nyn)] .

This shows that the sequence {x,,} is defined well.

It is easy to see the VIP (43) has only one solution in Q.
Below we use g € Q to denote the unique solution of the VIP
(43).

Now, let us show that {x,} is bounded. In fact, take p € Q
arbitrarily. Repeating the same arguments as in the proof of
Theorem 19 we obtain

"un - P"2 < “xn - p"2 Ty, (rn - 2() "Axn - Ap”z’ (142)
v, = pl* < | A%, - 2

i 2
< e~ P”2 + Aip (Ai = 21) ”BiAlnlun - BiP" ,
(143)
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1Gv = I
2
< |1 (1= 7,4,) v, - T (1-%,4,) p|
+ v (v, - 20)) (144)

x A, TOHT = v, A ), - A, TN - v, A p|
< v, = pI + 72 (9= 20) |4,v, - Asp|
I = pl* < (1= 0,7) |Gy, = oI + 0%, = oI

+25,{(I = V) p + &, (yQ - yF) p, x, — p)

< (1=0,9) v = pII* + oulx, - oI
+25,((I = V) p + o, (yQ = uF) p> x, = p)

=(1-0,(F-1) %, - p|’
+20, (|1 = V) p|| + [(yQ - uF) p)

x [, = pl-
(145)
From (145) we conclude that
2
lew =Pl < 5=5 (AT=V P+ [GQ-uE) pD). - 146)

Hence {x,} is bounded. So, according to (142) and (143)
we know that {u,}, {v,}, {Gv,}, (W,Gv,}, {W,x,},{Qx,}, and
{FW,x,} are bounded.

Repeating the arguments similar to those of (68), (76),
(78), (93), and (97) in the proof of Theorem 19 we obtain that
lx, = u,l = 0, 1A w, = Al — 0, [lx, = v, — 0,
lv, - Gv,] — Oand|v,-Ww,| — O0Oasn — oo.In
addition, note that

v, = W, || < [[v = Wl + [W,v, = W] .- (147)

So, from |v,, — W, v, — 0 and [15, Remark 3.2] it follows
that
Jim [v,, = Ww,| = o. (148)
Further, we show that w,(x,) ¢ Q. Indeed, since {x,}
is bounded, there exists a subsequence {x,} of {x,} which
converges weakly to some w. Note thatlim,, _, . [|x,—u,]| = 0.
Hence u, — w. Since C is closed and convex, C is weakly
closed. So, we have w € C. On the other hand, it is easy
to see that u, — w,v, — w,and AVZ,.”n,. — w, where
m € {1,2,...,N}. Repeating the same arguments as in the
proof of Theorem 19, we obtain that w € NN, I(B,R;) N
GMEP(O, ¢, A). Next let us show that w e SGEP(G) n
Ny, Fix(T,). As a matter of fact, from |lv, - Gv,| — 0,
lv,-Wv,Il — 0, Vy — w and Lemma 10, we deduce that w €
SGEP(G) and w € Fix(W) = N2, Fix(T,,) (due to Lemma 12).
Hence we get w € SGEP(G) n N2, Fix(T,). Therefore, w €
N, Fix(T,)NGMEP(®, ¢, A)NSGEP(G)NNY, I(B,, R;) =: Q.
This shows that w,,(x,) € Q.
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Finally, we prove that {x,} converges strongly to g € Q,
which is the unique solution in Q to the VIP (136). In fact, we
note that, forw € Q with x, — w,

x,-w=(I-0,V)(W,Gv, -w)
+ 0y [(xny (an - QLU)
+ (I - anMF) ann - (I - (xnn"lF) an]

+0,[I-V)w+a, (yQ-uF)w].
(149)

Utilizing the arguments similar to those in the proof of
Theorem 19, we obtain that

"xn - w“2 < (1 — Oy (? - 1)) "xn - “’HZ

+0,(I-V)w+a, (yQ - uF) w, x,, — w),
(150)

which hence leads to

(I-V)w+a, (yQ — yuF) w, x,, — w)
y-1 .

%, - w]” < (151)

In particular, we have

(I-V)w+a, (yQ - pF)w, x, —w)
y-1 .

[, —wl <
(152)

Since x, — wand lim,,_, ,,a, = 0, it follows from (152) that
X, — wasi — 0o.

Now we show that w solves the VIP (136). As a matter of
fact, from (142) and (145) we obtain that, for any p € Q,

% = 2I” < (1= 0,9) it = 2l + 0ull = I
+20,((I-V) p+a, (yQ - uF) p.x, - p)
< (1=0,9) %, = plI” + oullx, — oI’
+20, (I-V) p+a, (yQ - uF) p, x, = p)
=(1-0,(7-1) |x, - pl’
+20, ((I-V) p+a, (yQ - uF) p.x, = p)

< - o
+20, (I =V) p+a,(yQ-uF) p.x, = p)>
(153)
which immediately implies that
(V-Dp+a,(uF -yQ) px,—p) <0 (154)
Sincea, — Oandx, — w,we get
(V-Dpw-p)<0, VpeQ. (155)
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By Minty’s lemma, w is a solution in Q to the VIP (136). In
terms of the uniqueness of solutions of VIP (136), we deduce
that w = gand x, — gasn — o00. So, every weak
convergence subsequence of {x,} converges strongly to the
unique solution g of VIP (136). Therefore, {x,} converges
strongly to the unique solution g of VIP (136). This completes
the proof. O

Corollary 24. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let ©,©,, ®, be three bifunctions from
C x C to R satisfying (HI)-(H4) and let ¢ : C — R bea
lower semicontinuous and convex functional. LetR; : C — 27
be a maximal monotone mapping and let A,A;, : H —
H and B; : C — H be {-inverse strongly monotone, (.-
inverse strongly monotone, and n;-inverse strongly monotone,
respectively, fork = 1,2 and i = 1,2. Let {T,},°, be a sequence
of nonexpansive mappings on H and let {A,} be a sequence
in (0,b] for some b € (0,1). Let V be a y-strongly positive
bounded linear operator with’y > 1. Let F : H — Hbea
k-Lipschitzian and n-strongly monotone operator with positive
constants k,n7 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant 1 > 0. Let 0 < p < (2y/x) and

0 <yl < 1, wheret = 1 — |1 —u(2y — pux?). Assume that

Q :=n72 Fix(T,) N GMEP(®, ¢, A) N SGEP(G) N (B, R;) N
I(B,, R,) #+0 where G is defined as in Proposition CY. Let {r,}
be a sequence in (0,2(] and {w,} and {0, } sequences in (0, 1].
Let {x,} be the sequence generated by

u, = Sin@"p) (I-r,A)x,
Vn = ]Rz’Az,n (I - A2,nBZ) ]Rl’Al,n (I - /\l,nBl) Up>
x, = (I -0,V)W,Gv,

Vn=>1,
(156)

where W, is the W-mapping defined by (9). Suppose that the
following conditions hold:

+ 0y [ann - (."lF (ann) - nyn)] >

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, ¢ C
and z,. € C such that, forany y ¢ D,,

0(3,2) +9(2) -9 () + (K () - K (1), 2, - ) <O

(157)
(iii) lim,, _, &, = 0 and lim,,_, 0, = 0;
() » € (0,2), k = 1L,2and {A,} < [ab]
0,21, i=1,2

(v) 0 < liminf, _, 1, <limsup,_, 7, < 2(.

Assume that S£®"”) is firmly nonexpansive. Then {x,} converges
strongly to a point q € Q, which is a unique solution in Q) to
the VIP:

(I-V)g,p—q) <0, VpeQ. (158)
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Corollary 25. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let ©®, ®,, ©®, be three bifunctions from
C x C to R satisfying (HI)-(H4) and ¢ : C — R a lower
semicontinuous and convex functional. Let R : C — 2" be a
maximal monotone mapping and let A, A, : H — Hand B:
C — H be (-inverse strongly monotone, (-inverse strongly
monotone, and &-inverse strongly monotone, respectively, for
k =1,2. Let {T,};2, be a sequence of nonexpansive mappings
on H and {A,)} a sequence in (0, b] for some b € (0, 1). Let V be
ay-strongly positive bounded linear operator with’y > 1. Let F :
H — H beax-Lipschitzian and n-strongly monotone operator
with positive constants xk,n1 > 0. Let Q : H — H be an I-
Lipschitzian mapping with constant1 > 0. Let 0 < p < (257/x%)

and 0 <yl < 7, where T = 1 — |1 — u(2n — px?). Assume that
Q= N2, Fix(T,) N GMEP(®, ¢, A) N SGEP(G) N I(B,R) #0
where G is defined as in Proposition CY. Let {r,} be a sequence
in (0,2{] and {w,} and {o,} sequences in (0,1]. Let {x,,} be the
sequence generated by

U, = s£n®>fﬂ) (I - rnA) Xn>
Yy = ]R,p,, (I - PnB) Uy
x, = (I-0,V)W,Gv,

Vn>1,
(159)

+ 0y [ann -y ([/{F (ann) - nyn)] >

where W, is the W-mapping defined by (9). Suppose that the
following conditions hold:

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, ¢ C
and z,. € C such that, forany y ¢ D,,

0 (3,2 +9(2) -9 () + +(K' () - K (1),2,- ) <O
(160)

(iii) lim, _, &, = 0 and lim 0,=0;

(iv) v, € (0,20,), k= 1,2 and {p,}  [a,b] c (0,28);

(v) 0 < liminf, _, ,r, <limsup, , 7, < 2(.
Assume that S£®"”) is firmly nonexpansive. Then {x,} converges
strongly to a point q € Q, which is a unique solution in Q) to
the VIP:

(I-V)gp-q) <0,

Vp e Q. (161)
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