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In order to consider the uncertainty and correlation of wind power in multiobjective transmission network expansion planning
(TNEP), this paper presents an extended point-estimation method to calculate the probabilistic power flow, based on which the
correlative power outputs of wind farm are sampled and the uncertain multiobjective transmission network planning model is
transformed into a solvable deterministic model. A modified epsilon multiobjective evolutionary algorithm is used to solve the
above model and a well-distributed Pareto front is achieved, and then the final planning scheme can be obtained from the set
of nondominated solutions by a fuzzy satisfied method. The proposed method only needs the first four statistical moments and
correlation coefficients of the output power of wind farms as input information; the modeling of wind power is more precise
by considering the correlation between wind farms, and it can be easily combined with the multiobjective transmission network
planning model. Besides, as the self-adaptive probabilities of crossover and mutation are adopted, the global search capabilities
of the proposed algorithm can be significantly improved while the probability of being stuck in the local optimum is effectively
reduced. The accuracy and efficiency of the proposed method are validated by IEEE 24 as well as a real system.

1. Introduction

With the increasing complexity of power system, trans-
mission network expansion planning needs to consider
multiple objectives, such as investment cost, security, and
network losses. Since these objectives may be conflicting
with each other, it is hard for the a priori approaches,
such as weighted method and goal programming [1–3], to
reach a good trade-off between different objectives and find
the global optimal plan. With the advantages of handling
incommensurable objectives with conflicting relations and
the powerful global search abilities, multiobjective evolu-
tionary algorithms (MOEAs), such as SPEA [4], NSGA2
[5], are gaining increasing popularity among researchers
and practitioners [6] and have been widely used in the
TNEP [7–10]. MOEA is an iterative search algorithm, and
the computational time to achieve the final result is closely
related to the complexity of evaluation of objective function.
Because TNEP is a nonlinear, nonconvex, and mixed integer

optimization problem, and if the uncertainty of power system
is also considered, it can be very difficult to solve; thus, a
suitable method to handle uncertainty is also necessary in the
multiobjective TNEP.

There are many uncertain factors affecting the TNEP,
and one of the current research focuses is wind power [11,
12]. With the benefits of assessing network operation over a
variety of working conditions in a computationally efficient
manner, probabilistic power flow (PPF) [13] that is based on
different techniques has been widely applied to model the
intermittency and volatility of wind power in TNEP [9, 14–
17]. These techniques can be classified into three main cate-
gories [18]: Monte Carlo simulation (MCS) [15, 19], analytical
methods [14], and approximate methods [9]. MCS can reach
high accuracy, but it requires a large number of simulations
to attain convergence. Analytic methods are computationally
effective; however, it requires the linear relationship between
the output variable and input random variable, which is
not consistent with the actual situation of power system
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[20]. Point-estimate method as an approximate method was
proposed by Hong in 1998 [21]. Since this method not only
requires less information on input data but also can achieve a
balance between the accuracy of the results and the efficiency
of the computational procedure, it provides an effective tool
to calculate the PPF and makes the combination of MOEA
and PPF solved by point-estimate method possible.

Although much work has been done to handle the
influence of wind power in TNEP, the correlation between
wind farms is seldom considered [12]. In real operation, the
outputs of wind farms that are distributed geographically
close to each other may increase or decrease at the same
time, and the effect of such correlation between wind farms
cannot be neglected in the power flow on the network, so it
is imperative to consider the correlation between wind farms
when modeling the wind power in TNEP [8, 9].

In this paper, we establish a multiobjective TNEP model
considering the investment cost and network losses cost as
well as the sum of the line overload capacity both under the
normal operation and single contingency condition. Based
on the proposed model, an extended 2𝑚 + 1 point-estimate
method is used to deal with the uncertainty and correlation
of wind power. With the same computational process as in
the associated deterministic problems, and only requiring
2𝑚 + 1 calculation (𝑚 represents the number of variables),
this method has low computational burden and can easily
be combined with the multiobjective TNEP model. Besides,
only the first four statistical moments of wind power are
required as input information, and the correlation between
wind farms is considered; the modeling of wind power is
more simple and accurate. After transforming the uncertain
multiobjective model into a solvable deterministic model,
a modified 𝜀-MOEA is applied to obtain the final optimal-
Pareto front. Since probabilities of crossover and mutation
in the proposed algorithm are updated in each iteration,
depending on the fitness value of population, the global
search capability is strengthened and the probability of being
stuck in the local optimum is reduced. Finally, the final plan
can be achieved from the set of nondominated solutions by a
fuzzy satisfying method.

The rest of the paper is organized as follows. After the
wind power is modeled, an extended 2𝑚 + 1 point-estimate
method is described in Section 2. In Section 3, the math-
ematical formulation of the TNEP and a decision making
method are introduced, followed by Section 4 presenting the
proposed multiobjective optimization algorithm. Section 5 is
devoted to show the capabilities of the proposed method by
case study. Finally, conclusions are given in Section 6.

2. Modeling

2.1. Wind Model Based on the 2𝑚 + 1 Point-Estimate Method.
In the previous work, Weibull distribution is widely used
to sample the wind speed [22, 23], and the parameters of
the distribution can be derived from the mean and standard
deviation of historical wind speed [24]. The relationship
between the available power of wind turbine generator and

the wind speed is commonly characterized by the following
function:

𝑃
𝑤
=

{{{{

{{{{

{

0 𝑉 < 𝑉ci, 𝑉 > 𝑉co
𝑃rate (𝑉 − 𝑉ci)

(𝑉rate − 𝑉ci)
𝑉ci ≤ 𝑉 < 𝑉rate

𝑃rate 𝑉rate ≤ 𝑉 ≤ 𝑉co,

(1)

where 𝑃rate is the rated power of wind turbine, 𝑉ci, 𝑉rate, and
𝑉co are the cut-in, rated, cut-out wind speed, respectively.

The formulation above is a piecewise function, so it is
hard to obtain the distribution of the wind turbine output.
In this paper, we adopt the yearly historical outputs of wind
farms as input data, and the distribution of wind farm output
is described by its first four statistical moments, including
the mean value, standard deviation, skewness, and kurtosis,
in which the skewness is a measure of the extent to which
a probability distribution of a real-valued random variable
“leans” to one side of the mean, and the kurtosis is a measure
of both the “peakedness” of the distribution and the heaviness
of its tail. These four statistics can be obtained from the
historical wind power data easily; given the historical wind
speed data, the output power of wind farm can be achieved
by (1).

In order to improve the accuracy of the modeling of
wind power generation by considering the spatial correlation
among the adjacent wind farms, here we use the variance-
covariance matrix, which can be easily achieved from the
yearly curve of output from wind farms, to characterize such
correlation between wind farms.

2.2. Probabilistic Power Flow Solved by 2𝑚 + 1 Point-Estimate
Method considering the Correlation of Input Data. Basic
theory of point-estimate method is introduced in [21]. The
procedure of using point-estimate method to solve PPF is
as follows: firstly, concentrate the statistical information of
the input random variable on 𝑘 points and weights for
each variable by its first few central moments, where 𝑘 is
determined by the user; then use these points to calculate the
deterministic power flow; finally, the statistical information
of output random variables can be obtained by the weight
sum of each deterministic result. Since relatively accurate
results can be achieved while keeping the low computational
burden, PPF solved by point-estimate method was widely
used to handle uncertain factors in power system now [9,
25, 26]. Among different point-estimate schemes proposed
by Hong [21], 2𝑚 + 1 point-estimate method shows the best
performance on solving probabilistic power flow problem
[18].

Although most of the input random variables in power
system are statistically dependent, the previous work, how-
ever, has sidestepped it. To consider dependencies among the
input random variables when calculating the PPF, an orthog-
onal transformation is used to transform the dependent input
random variables into the independent ones, and then it can
be processed readily through 2𝑚+1 point-estimate methods.
PPF solved by the extended point-estimate method [27] is as
follows.
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(1) Input the first four statistical moments of the𝑚 input
random variables (𝑋 = [𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
]), including

the means 𝜇
𝑋
, standard deviations 𝛿

𝑋
, skewness 𝜆

𝑋,3

and kurtosis 𝜆
𝑋,4

, as well as the variance-covariance
matrix 𝐶

𝑋
.

(2) Decompose𝐶
𝑋
by Cholesky decomposition to obtain

an inferior triangular matrix 𝐿, 𝐶
𝑋
= 𝐿𝐿
𝑇.

(3) Set the iteration count 𝑙 = 1, Initialize 𝐸(𝑌)
(1)

= 0,
𝑌 = 𝐻(𝑋).

(4) Transform the first four central moments of the input
variables as follows:

𝜇
𝑍
= 𝐿
−1

𝜇
𝑋
,

𝐶
𝑍
= 𝐿
−1

𝐶
𝑋
(𝐿
−1

)
𝑇

= 𝐼,

𝜆
𝑍𝑙,3

=

𝑚

∑

𝑟=1

(𝐿
−1

𝑙𝑟
)
3

𝜆
𝑋𝑟,3

𝛿
𝑋𝑟
,

𝜆
𝑍𝑙,4

=

𝑚

∑

𝑟=1

(𝐿
−1

𝑙𝑟
)
4

𝜆
𝑋𝑟,4

𝛿
𝑋𝑟
.

(2)

(5) Calculate the concentrations ((𝑍
𝑙,𝑘
, 𝜔
𝑙,𝑘
), 𝑘 = 1, 2, 3)

in the transformed space according to the following
equation:

𝜉
𝑙,𝑘

=
𝜆
𝑍𝑙,3

2
+ (−1)

3−𝑘
√𝜆
𝑍𝑙,4

−
3

4
𝜆
2

𝑍𝑙,3
, 𝑘 = 1, 2,

𝜉
𝑙,3

= 0,

𝜔
𝑙,𝑘

=
(−1)
3−𝑘

𝜉
𝑙,𝑘

(𝜉
𝑙,1

− 𝜉
𝑙,2
)
, 𝑘 = 1, 2,

𝜔
𝑙,3

=
1

𝑚
−

1

𝜆
𝑍𝑙,4

− 𝜆
2

𝑍𝑙,3

,

𝑍
𝑙,𝑘

= 𝜇
𝑍𝑙

+ 𝜉
𝑙,𝑘

⋅ 𝛿
𝑍𝑙
, 𝑘 = 1, 2.

(3)

(6) Construct the transformed points in the form (𝑍
𝑘

𝑙
=

(𝜇
𝑍1
, 𝜇
𝑍2
, . . . 𝑍

𝑙,𝑘
, . . . , 𝜇

𝑍𝑚
), 𝑘 = 1, 2, 3), and convert

the points into the original space by applying the
inverse transformation; that is,𝑋𝑘

𝑙
= 𝐿𝑍
𝑘

𝑙
, 𝑘 = 1, 2, 3.

(7) Solve a deterministic DC power flow for each of the
three points (𝑌𝑘

𝑙
= 𝐻(𝑋

𝑘

𝑙
), 𝑘 = 1, 2, 3), updating the

following equation:

𝐸(𝑌)
(𝑙+1)

≅ 𝐸(𝑌)
(𝑙)

+

3

∑

𝑘=1

(𝜔
𝑙,𝑘

× 𝐻(𝑋
𝑘

𝑙
)) . (4)

(8) Since 𝑚 of 3𝑚 points are at the same point
(𝜇
𝑋1

, 𝜇
𝑋2

, . . . 𝜇
𝑋𝑘

, . . . , 𝜇
𝑋𝑚

), so after 2𝑚+1 iterations,
approximation of the mean value of 𝑌 is 𝜇

𝑌
≅

∑
𝑚

𝑙=1
∑
3

𝑘=1
𝜔
𝑙,𝑘

× 𝐻(𝑋
𝑘

𝑙
).

3. Mathematical Formulation

3.1. Transmission Planning Formulation. Economic and secu-
rity criteria are themost important factors in the transmission
expansion planning. Based on [28], in this paper, the invest-
ment cost andnetwork losses cost aswell as the sumof the line
overload capacity both under the N security check and “N-
1” security check are chosen as the objective functions. The
proposed multiobjective programming model is as follows.

3.1.1. Objective Functions

(a) Investment Cost. Consider.

min 𝑓
1
= 𝑘 (𝑟, 𝑛) ∑

𝑙∈Ω

𝐶
𝑙
𝑥
𝑙
, (5)

where 𝐶
𝑙
is the cost of the added line 𝑙 and 𝑥

𝑙
is the binary

decision variable, in which “0” represents the candidate line
is not added, while “1” represents the candidate line is added.
Ω is the set of candidate lines. 𝑘(𝑟, 𝑛) is funds coefficient of
recovery calculated by

𝑘 (𝑟, 𝑛) =
𝑟(1 + 𝑟)

𝑛

((1 + 𝑟)
𝑛

− 1)
, (6)

where 𝑟 is the discount rate and 𝑛 is the year limit of discount.

(b) Amount of Line Overload Capacity. Consider.

min 𝑓
2
= 𝛽
1
∑

𝑘∈Γ

Overload
𝑘
+ ∑

𝑚𝑛∈Ψ

∑

𝑘∈Γ

Overload𝑚𝑛
𝑘

, (7)

Overload
𝑘
= {

0
𝑃𝑘

 ≤ 𝑃
𝑘

𝑃𝑘
 − 𝑃
𝑘

𝑃𝑘
 > 𝑃
𝑘
,

(8)

where𝑃
𝑘
is the active power flow of line 𝑘,𝑃

𝑘
is themaximum

capacity of line 𝑘, and Overload
𝑘
and Overload𝑚𝑛

𝑘
are the

overload capacity of line 𝑘 under normal operation without
contingencies and single contingency condition in which line
𝑚𝑛 is out of service, respectively. Γ is the set of overload
lines; Ψ is the set of selected contingencies. 𝛽

1
is the penalty

coefficient. Generally, to guarantee that the final solutions
have no load curtailment in normal operation, the value of
𝛽
1
should be large enough.

(c) The Cost of Network Losses. Consider.

min𝑓
3
= 𝑇 ∑

𝑘∈Ω(0)

𝐶
𝑒
𝑅
𝑘
𝑃
2

𝑘
, (9)

where 𝐶
𝑒
is unit electricity price, 𝑅

𝑘
is resistance of line 𝑘, 𝑃

𝑘

is the active power flow of line 𝑘 in normal operation, 𝑇 is
the annual network losses hour, and Ω(0) is the set of both
existing and candidate lines.

3.1.2. Constraints. The constraints of the above multiobjec-
tive optimization problem are as follows.
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Network under normal conditions:

𝐵𝜃 = 𝑃
𝐺
− 𝑃
𝐷
,

𝐵
𝑙
𝐴𝜃 = 𝑃

𝑘
,

𝑃𝑘
 ≤ 𝑃
𝑘
.

(10)

Network under single contingency conditions:

𝐵
𝑚𝑛

𝜃
𝑚𝑛

= 𝑃
𝐺
− 𝑃
𝐷
,

𝐵
𝑚𝑛

𝑙
𝐴
𝑚𝑛

𝜃
𝑚𝑛

= 𝑃
𝑚𝑛

𝑘
,

𝑃
𝑚𝑛

𝑘

 ≤ 𝑃
𝑘
,

(11)

where 𝑃
𝐺
is the column vector of generated active powers,

𝑃
𝐷
is the column vector of predicted loads, 𝐵 is the nodal

admittance matrix, 𝐵
𝑙
is the diagonal matrix formed by

susceptances of all the network lines, 𝐴 is the branch-node
incidence matrix, and 𝜃 is the phase angle column vector
of nodal voltage. Superscript 𝑚𝑛 denotes the parameters or
variables under the single contingency after outage of line𝑚𝑛.

In the above constraints, the constraint (10) represents
the active power balance at node and the operational limit of
each transmission line under normal operational conditions.
In single line contingency (e.g., when the line is cut off),
the constraint (10) is transformed into the constraint (11) to
guarantee the single contingency security or N-1 security.
For objective function (7), both constraints (10) and (11)
are active; when minimizing the cost of network losses in
objective function (9), only constraint (10) applies.

3.2. Decision Making. A set of nondominated solutions will
be obtained after solving the TNEPmodel. To choose the final
plan, a fuzzy satisfying method based on the distance metric
method is adopted to help the plannermake the decision.The
fuzzy sets are defined by a linear membership functions as
follows:

𝜇
𝑓𝑖
(𝑋) =

{{{{

{{{{

{

0 𝑓
𝑖
(𝑥) > 𝑓

max
𝑖

𝑓
max
𝑖

− 𝑓
𝑖
(𝑥)

𝑓
max
𝑖

− 𝑓
min
𝑖

𝑓
min
𝑖

≤ 𝑓
𝑖
(𝑥) ≤ 𝑓

max
𝑖

1 𝑓
𝑖
(𝑥) < 𝑓

min
𝑖

.

(12)

The membership value ranges from 0 to 1, which represents
the satisfied degree of membership in a fuzzy set. After
assigning membership function to each objective of every
solution in the Pareto-optimal front, the decision maker
needs to choose the desirable level 𝜇

𝑑𝑖
for each objective, and

the final solution can be achieved by solving the following
optimization problem:

min
𝑋∈Solutionset

𝑚

∑

𝑖=1


𝜇
𝑑𝑖
− 𝜇
𝑓𝑖
(𝑥)



𝑛

, 𝑛 ≥ 1. (13)

Since the value of |𝜇
𝑑𝑖

− 𝜇
𝑓𝑖
(𝑥)| ranges from 0 to 1, so

a larger 𝑛 means the final scheme is less sensitive to the
desirable level [7].

Population Archive population

Crossover and mutation

Epsilon dominanceUsual dominance

p e

New offspring c

Figure 1: 𝜀-MOEA procedure.

4. Optimization Method

MostMOEAsdeveloped in the past decade are either good for
achieving well-distributed solutions at the expense of a large
computational effort or computationally fast at the expense
of obtaining a not-so-accurate distribution of solutions [6].
In order to find a good compromise between the diversity
of the final solutions and the computational time, here we
choose the 𝜀-MOEA to solve the proposed multiobjective
optimization problem.

4.1. 𝜀-MOEA Method. 𝜀-MOEA was developed by Deb et
al. in 2005 [6] based on the work of Laumanns et al. who
first proposed the 𝜀-dominance concept [29]. Like most of
the multiobjective evolutionary algorithms, the basic idea
of 𝜀-MOEA to obtain the final Pareto-optimal front is an
iterative search algorithm through several operations such
as reproduction, crossover, and mutation. Figure 1 shows the
iterative procedure of 𝜀-MOEA. Firstly, a population 𝑃(0) is
initialized by a set of solutions which are randomly selected
from the feasible solution space, and the fitness value of each
solution is evaluated. At the same time, the nondominated
solutions from 𝑃(0) are used to form an archive population
𝐸(0), and the iteration count 𝑡 is set at zero. Secondly,
the solutions 𝑝 and 𝑒 are, respectively, selected from the
population 𝑃(𝑡) and 𝐴(𝑡) to create a new solution 𝑐 through
crossover and mutation. Then, the populations 𝑃(𝑡) and 𝐴(𝑡)

are updated by usual dominance criterion and 𝜀 dominance
criterion, respectively, using the solution 𝑐. This iterative
search procedure is running until the terminated condition is
satisfied. Finally, the obtained archive members are reported
as the final solutions.

Different from the existing MOEAS, the 𝜀-MOEA is
preferable mainly in two aspects. One is that it uses a steady-
state evolutionary algorithm (EA) in which every offspring
is compared with the parent population as soon as it is
created, rather than a generational evolutionary algorithm
in which all 𝑁 population members (offspring) are created
before comparing them with parent solutions. So, the parent
population can be updated in a steady-state manner which
provides better chances for creating good offspring solutions.
The other is that it implements the 𝜀-dominance concept to
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Figure 2: The 𝜀-dominance concept.

update the archive population. The difference between the 𝜀-
dominance and the usual domination concept is illustrated in
Figure 2, in which the whole objective space (2 dimension)
is divided into hyperboxes, each having 𝜀

𝑗
size in the jth

objective, and 𝜀
𝑗
represents the allowable tolerance in the

jth objective set by user. In Figure 2, it can be seen that the
solution 𝑃 by the usual domination concept only dominates
the region PECFPwhile solution by 𝜀-dominance is the entire
regionABCDA. Both solutions are in theminimization sense.
It is clear that the 𝜀-dominance criterion does not allow two
nondominated solutions with a difference less than 𝜀

𝑖
in the

𝑖th objective to be both present in the final archive, such as
point 𝑔 and point ℎ in Figure 2, thereby allowing a good
diversity to be maintained in the final Pareto-optimal front.
Besides, it allows the user to choose a suitable 𝜀

𝑖
depending

on their desired resolution in the 𝑖th objective, so it also has
a practical significance.

Because the value of 𝜀 is closely related to the Pareto-
optimal front of the archive population, and the final
Pareto-optimal front of real-world multiobjective problem is
unknown, it is hard for the user to choose an appropriate
value of 𝜀. In this paper, we adopt a self-adaption strategy for
the parameter 𝜀 [30] to solve this problem. It is described in
the following equation:

𝜀 = 𝜀
0
(
𝑃

𝑃

)

1/(𝑚−1)

, (14)

where 𝜀
0
is a predefined value by the user, 𝑚 is the

total number of objectives, and 𝑃 and 𝑃
 are the current

and expected number of the nondominated solutions in
the archive population, respectively. By applying the self-
adaption 𝜀 in the 𝜀-MOEA, we could achieve the expected
number of nondominated solutions approximately with a
well distributed front.

Another performance improvement technique of the
original 𝜀-MOEA in this paper is the use of self-adaptive
probabilities of crossover and mutation to achieve the

P

f

Pmax

fmaxfavg

Pmin

Figure 3: The adaptive adjusting curve of 𝑃
𝑐
and 𝑃

𝑚
.

twin goals of maintaining diversity among populations and
strengthening the convergence capacity of algorithm. The
expressions for crossover and mutation take forms as follows
[31]:

𝑃
𝑐
=

{{{{{{{{{{

{{{{{{{{{{

{

(𝑃
𝑐max − 𝑃

𝑐min)

×(1+exp(9.903438(

2 (𝑓−𝑓avg)

(𝑓max−𝑓avg)
− 1)))

−1

+𝑃
𝑐min

𝑓 ≥ 𝑓avg
𝑃
𝑐min 𝑓 < 𝑓avg,

(15)

𝑃
𝑚

=

{{{{{{{{{{

{{{{{{{{{{

{

(𝑃
𝑚max − 𝑃

𝑚min)

×(1+exp(9.903438(

2 (𝑓−𝑓avg)

(𝑓max−𝑓avg)
− 1)))

−1

+𝑃
𝑚min

𝑓 ≥ 𝑓avg
𝑃
𝑚min 𝑓 < 𝑓avg,

(16)

𝑓 = − (𝑓
1
+ 1000𝑓

2
+ 𝑓
3
) , (17)

where 𝑃
𝑐max, 𝑃𝑐min are the predefined maximum and min-

imum probabilities of crossover. 𝑃
𝑚max, 𝑃𝑚min are the pre-

defined maximum and minimum probabilities of mutation.
The fitness value 𝑓 in (15) is the biggest of the selected
parent individuals, such as 𝑝 and 𝑒 in Figure 1, which can
be obtained from (17). While the 𝑓 in (16) is the fitness
value of the individual chosen to mutate. 𝑓

1
, 𝑓
2
, and 𝑓

3
are

the objective function values mentioned before. 𝑓avg is the
average fitness value of the archive population. The dynamic
change of 𝑃

𝑐
and 𝑃

𝑚
is illustrated by Figure 3, in which

𝑃
𝑐max and 𝑃

𝑚max are represented by 𝑃max; 𝑃min represents
𝑃
𝑐min and 𝑃

𝑚min; 𝑃 represents the current probabilities of
crossover and mutation. Since the variation of probabilities
of crossover and mutation depends on the fitness value
of the solutions, the solutions with high fitness value are
protected, and the solutions with subaverage fitness are
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disrupted to reproduce good ones. Thereby, the self-adaptive
probabilities of crossover and mutation will guarantee the
modified 𝜀-MOEA to converge to the global optimum in
fewer generations and get stuck at a local optimum fewer
times than the original one with constant probabilities of
crossover and mutation.

4.2. Proposed Algorithm. Figure 4 shows the flowchart of the
proposed algorithm for the multiobjective TNEP problem.
The algorithm begins with the initialization of the population
𝑃(0), in which the candidate lines of each solution coded
by binary variable are generated by random number. Then,
using the PPF based on the extended 2𝑚 + 1 point-estimate
method, the cost of network losses and the amount of line
overload capacity under normal operation as well as single
contingency conditions are evaluated. Having the investment
cost calculated by (5), the initial archive population 𝐸(0) can
be obtained by the nondominated solutions from the 𝑃(0).
After the initialization of 𝑃(0) and 𝐸(0), the algorithm starts
to perform iterative search for the final optimal front, the
procedure is the same as mentioned in part A, the difference
is the self-adaptive probabilities of crossover, and mutations
need to be updated based on the fitness value of the solutions.
Besides, when using the new solution to update the archive
population, if the amount of line overload capacity of new
solution under normal and single contingency condition
exceeds the 20% of total load capacity, it will be discarded
directly without the judgment of the 𝜀-dominance concept
Because the security criteria of the solution are not satisfied in
the practical engineering, it will not be chosen by the planner
in the final decision making stage. This searching process is
iterated until the termination criterion is satisfied, and the
final archive members are reported as the obtained solutions.
Upon the final optimal front obtained from the modified
𝜀-MOEA, finally, the fuzzy satisfying method is implemented
to select the final optimal solution based on the preference of
the planner.

5. Case Study

5.1. IEEE 24-Bus Test System. In this section, amodified IEEE
24-bus test system is used to demonstrate the performance
of the proposed algorithm. Assume that the system will be
expanded for future conditions with the generation and load
demand increasing by 2.2 times their original values, that is,
load level of 6720MW and generation level of 7490MW.This
system has 32 generators, 38 existing lines, and 89 candidate
lines (including substations). The candidate lines which can
be added in 29 existing right-of-ways and ten new right-of-
ways are limited to three and two, respectively; up to four
transformers can be installed in the substations; all data of
the candidate lines can be found in [7]. Unit electricity price
and the annual network losses hours as well as discount rate
and period are based on [28].

The test system is divided into two regions, namely, the
northern region with nodes 1–10 and the southern region
with nodes 11–24, and three wind farms are integrated to each
region. In order to investigate the effects of thewind power on
the test system, five different cases are designed.

Table 1: Wind power input data of test system.

Wind farm
integration node

Mean
(MW)

Standard
deviation
(MW)

Skewness Kurtosis

1 103.4 66 0.9269 3.6858
2 100.7 63.2 1.0265 3.5026
7 102.1 65.5 0.9604 3.2001
15 101.7 71.7 1.0385 3.2713
18 96.1 69.6 1.1253 4.2175
23 102.3 82.7 1.4435 4.4517

Case 1. The test system is only supplied by the conventional
units.

Case 2. Partial conventional units are replaced by wind
energy, and the total wind energy penetration is 5% of all load
capacities for the years to come, and the outputs ofwind farms
are independent.

Case 3. The correlation among wind farms is considered;
other conditions are the same as Case 2.

Case 4. The total wind energy penetration is 10%; other
conditions are the same as Case 2.

Case 5. The total wind energy penetration is 15%; other
conditions are the same as Case 3.

In Case 2, conventional units in nodes 1, 2, 7, 15, 18, and
23 are replaced by wind turbines, and input data of six wind
farms are shown in Table 1. In Case 3, wind farms within
the same region are correlated with a correlation coefficient
0.8; the correlation coefficient between two regions is 0.1.The
wind energy penetration of Case 4 is 1.5 times of Case 2, so
the mean value and standard deviation of wind farms in Case
4 will be increased by 1.5 times the value in Table 1, and the
skewness and kurtosis remain the same.

From Table 1, it can be seen that the input data of wind
farms are just the first four statisticalmoments of wind power.
Since the input information of wind power is a large number
of discreet data and the probability distribution function is
hard to obtain, the relatively simple input data will provide
convenience molding wind power.

Figure 5(a) shows the final results of Cases 2 and 3
achieved by the proposed method. The optimal-Pareto front
of Case 2 is located in front of the optimal front of Case 3, and
this spatial relationship in three-dimensional space is more
clearly reflected in Figure 5(b). Such relationship indicates
that, as the correlation between wind farms is considered,
the intermittency and volatility of wind power will increase,
so more investment cost is required to reach the balance
between economic and security criteria of power system.

Final results of Cases 4 and 5 are presented in Figure 6,
and the same conclusion can be obtained as in Figure 5.
However, it can be noticed that the distance between the
Pareto-optimal front of Cases 4 and 5 is wider than that
between Cases 2 and 3; the reason is that with the increasing
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Figure 4: Flowchart of the proposed algorithm.

penetration of wind power, the influence of the correlation
between wind farms will be more significant on the transmis-
sion network.

Since the final results of the proposed method are a set
of nondominated solutions, the decision making analysis

method needs to be applied to obtain the final optimal plan.
Table 2 shows the final scheme of Cases 1, 3, and 5 obtained
by the fuzzy satisfying method, when the desirable level for
each objective set by planer is 0.6, 1, and 0.7, respectively. As
can be seen from Table 2, compared to Cases 3 and 5, due to
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Figure 5: Final results of Cases 2 and 3.
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Figure 6: Final results of Cases 4 and 5.

Table 2: Final plan of Cases 1, 3, and 5.

Scheme Investment cost
(M$)

Amount of line
overload (MW)

Network losses
cost (M$)

Case 1 940.7418 2.55659 1235.44
Case 3 1189.26 20.0876 1184.35
Case 5 1279.66 21.5414 1247.85

the absence of wind power in Case 1, the security criterion
of transmission network, which is reflected by the amount
of line overload, can still be guaranteed with less investment.
And as the figure of Cases 3 and 5 shows, with the increasing
integration of wind power, more investment is required to
reach the same security criterion.This conclusion can also be
drawn in Figure 7, that the final Pareto-optimal front of Cases
1, 3, and 5 in the trade-off graph is clearly ranked one by one
with the increasing integration of wind power. Figure 8 shows
the final planning result of Case 5, inwhich transmission lines
around wind farms and important loads are strengthened.

5.2. Real Test System. The proposed method is applied to
a 220 kV practical power system in the south of China
as well. This system has 233 buses, 452 existing lines, and
164 candidate lines. It is assumed that five years later the
total installed capacity will be 4729MW and the total load
is 4158MW. There are four wind farms integrated into
the system, including three wind farms with correlation
coefficient 0.6 in thewest and one in the northeastern, and the
correlation between wind farms within two regions is 0.1; the
total penetration of wind farm is 15% of the installed capacity.
Table 3 presents the input data of the four wind farms. Unit
electricity price, the annual network losses hours, discount
rate, and period also adopt values in part A.

Two models, one considering the correlation between
wind farms while the other not, are solved by the pro-
posed method, and the final Pareto-optimal front in two-
dimensional space is shown in Figure 9. As can be seen from
Figure 9(a), while at the same level of line overload, the
investment of the second model is smaller than that of the
first model considering wind power correlation. However,
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Figure 7: Trade-off graphs of Cases 1, 3, and 5.
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the consideration of wind power correlation leads to a less
ideal but more realistic situation, and the result achieved by
model 1 is more reliable compared to model 2. Besides, in
Figures 9(a) and 9(b), there are five points concentrating in
the lower right corner with a clear distance away from the
others.These five points represent planning schemes inwhich
several expensive long distance lines are chosen. Though the
investments are large, these lines can tremendously change
the original transmission structure, and the distribution of
power flow can be well improved, so the network loss costs
of these five solutions are relatively low.

Table 3: Wind power input data of practical system.

Wind farm Mean
(MW)

Standard
deviation
(MW)

Skewness Kurtosis

1 200.01 165.33 1.243 3.674
2 165.37 60.73 1.308 3.970
3 300.75 123.8 0.868 2.494
4 63.47 52.78 1.155 3.198

Table 4: Final planning scheme of the real test system.

Desirable level Investment
cost (M$)

Amount of
line

overload
(MW)

Network
losses cost

(M$)

0.2 1 1 18390.9 30.7138 1663.62
0.4 1 1 17740.4 68.3243 1719.06
0.6 1 1 12395 33.4318 1956.2

Assuming the planner has high requirements on the
security of transmission system and wants to minimize the
network losses cost, Table 4 shows the final plan of the
accuratemodel under different desirable level for investment.

Figure 10 shows the final planning scheme in Table 4
when the desirable level for investment is 0.2. As can be
seen from Figure 10, transmission lines around wind farms
1, 2, and 3 are strengthened to improve the security of
transmission system. Since the output power ofwind farm4 is
small and the existing lines satisfied the security requirement,
there are no new added lines around wind farm 4. Besides,
because two expensive long distance lines are added, the
distribution of power flow is well improved and the network
losses cost is relatively low.
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6. Conclusion

This paper established a multiobjective TNEP model, in
which the investment cost and network losses cost as well as
the line overload capacity both under the normal operation
and single contingency condition are considered. To handle
the uncertainty and correlation of wind power in TNEP
model, an extended 2𝑚 + 1 point-estimate method is applied
to transform the uncertain model into a solvable determinis-
tic model. Then, a modified 𝜀-MOEA and a fuzzy satisfying
method are used to achieve the final planning scheme. This
method has the following advantages.

(1) The input data is very simple, because only the first
four statistical moments and correlation coefficients
of output power of wind farms are required.

(2) The model is more precise by considering the corre-
lation between wind farms, and it has been demon-
strated by the final results of IEEE 24 and real power
system.

(3) Since the final results are a set of nondominated solu-
tions, planners can flexibly choose the final planning
scheme according to the practical situation.

Because of considering the N-1 check in the objec-
tive function, the evaluation of objective function is time-
consuming. In our next work, the proposed method will be
further improved by the application of parallel computation
method.
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