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The goal of 3D surface simplification is to reduce the storage cost of 3Dmodels. A 3D animation model typically consists of several
3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation
models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to
reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM) has recently been identified
as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and
Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using
QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation
simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were
compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed
approach can preserve more contour features than Mohr’s method can at the same simplification ratio.

1. Introduction

The development of information technology has caused 3D
techniques to be applied often in numerous aspects of digital
life [1–5], especially computer graphics [6–9]. A major com-
ponent of 3D animation is 3D objects, and realistic animation
requires many frames, each containing numerous vertices
and triangles. Therefore, several surface simplification meth-
ods have been proposed to reduce the storage costs [10–16].

These simplification methods include vertex decimation
[17], vertex clustering [18], edge contraction [19], triangle
contraction [20], and quadric error metrics (QEM) sim-
plification [21]. QEM is one of the accurate methods for
simplifying static 3D models, providing low-error simplifi-
cations of high-resolution static models. Although QEM is
suited to simplifying static models, it cannot be applied alone
to simplify animation models directly. Because each frame
model in an animation is static, QEM must simplify one
of all frame models in an animation model first and then
simplify other frame models by following the simplification
sequence of the first simplified one if the animation model
has to be directly simplified by QEM. The errors caused

by simplification increase rapidly and the shape features are
destroyed easily, in spite of the fact that an animation model
can be simplified by the previous way, as shown in Figure 1.

To reduce these errors, Mohr and Gleicher [22] proposed
the deformation sensitive decimation (DSD) method. This
method is an extension of the QEM algorithm that involves
constructing a metamesh after summing the quadric errors
incurred by all frames. Because vertices with the same index
do not have the same local space coordinate in different frame
models, the quadric errors cannot only be summed. To solve
this problem, Mohr and Gleicher replaced the final row of
the pair’s summed quadric matrix 𝑄 with [0 0 0 1] and
used𝑄−1 to determine the optimal vertex position. However,
𝑄
−1 does not always exist. To resolve this problem, this paper

proposes a robust homogeneous coordinate transformation
(RHCT) that improves the DSD method.

2. Related Works

2.1. Quadric Error Metrics. Because the QEM method pro-
posed by Garland and Heckbert [21] has recently been
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Figure 1: Simplification results between the single-pose QEM and the DSDmethod. (a) Original model; (b) simplifying by single-pose QEM;
(c) the DSD method [22].

identified as one of themost effective simplificationmethods,
numerous experts have studied it, extending its applications
in level of detail (LOD) [23], radiosity rendering [23], and ani-
mation model simplification [22]. QEM involves contracting
vertex V

1

and vertex V
2

into a new vertex, V, the position of
which is obtained according to theminimal distance between
a vertex and the conjoining triangles, as shown in Figure 2.
This minimal distance represents the error of simplification.
This method enables the outer shape of a 3D model to be
retained after the model is simplified and reduces the errors
caused by surface simplification. The new estimated position
of V strongly influences changes in the surrounding triangles.

QEM involves measuring the error by using a quadric
metric as follows:

Error (V) = V𝑇 ⋅ (∑𝐾
𝑝

) ⋅ V, (1)

where V is an estimated point and 𝐾
𝑝

represents a quadric
metric defined by plane 𝑝: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. When 𝑎2 +
𝑏
2

+ 𝑐
2

= 1, the distance from any vertex V to the plane 𝑝 is
represented as (𝑝𝑇V)2 = V𝑇(𝑝𝑝𝑇)V = V𝑇𝐾

𝑝

V. In other words,
𝐾
𝑝

can be represented as follows, and the initial matrix𝑄 can
be obtained by conglomerating the planes for the triangles
meeting at V:

𝑄 = ∑

𝑝∈planes(V)
𝐾
𝑝

,

𝐾
𝑝

= 𝑝 ⋅ 𝑝
𝑇

=
[
[
[

[

𝑎
2

𝑎𝑏 𝑎𝑐 𝑎𝑑

𝑎𝑏 𝑏
2

𝑏𝑐 𝑏𝑑

𝑎𝑐 𝑏𝑐 𝑐
2

𝑐𝑑

𝑎𝑑 𝑏𝑑 𝑐𝑑 𝑑
2

]
]
]

]

,

(2)

where planes(V) indicates the triangles meeting at the vertex
V. When the vertex pair (V

1

, V
2

) is simplified into a new vertex
V, the matrix𝑄 of vertex V is converted into (𝑄

1

+𝑄
2

), where
𝑄
1

and 𝑄
2

are the quadric matrices of vertices V
1

and V
2

,
respectively. In other words, the cost of contraction is simply
computed as V𝑇(𝑄

1

+ 𝑄
2

)V. This method rapidly provides a
low-error solution for surface simplification.
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Figure 2: Surface simplification using quadric error metrics [21].

2.2. Deformation Sensitive Decimation. Although QEM fea-
tures advantages such as a high computation speed and a low
average error, it can be used to simplify only static models.
That is, QEM can obtain a good simplified result for one of
all frame examples in an animation but cannot work well for
each frame example at the same time. For example, in the
animation model containing five frame examples shown in
Figure 3(a), the first frame example is simplified first, and the
fifth frame example is simplified using the collapse sequence
based on the first frame example, as shown in Figure 3(b).The
first frame example can be simplified adequately by using this
approach, but the fifth frame example cannot.

To apply QEM in simplifying all frame examples in an
animation model, Mohr and Gleicher [22] proposed DSD
method.This method is used to generate the contraction cost
by considering all frame examples in an animation model.
Themethod involves tracking the error quadric and summing
the matrices per vertex for each frame example. The error
measurement is modified as follows:

𝑘

∑

𝑖=1

Ṽ𝑇
𝑖

(𝑄
𝑖,V
1

+ 𝑄
𝑖,V
2

) Ṽ
𝑖

, (3)

where 𝑘 is the number of frame examples, Ṽ
𝑖

represents the
new vertex formed by collapsing vertices V

1

and V
2

in the
𝑖th frame example, and 𝑄

𝑖,V
1

and 𝑄
𝑖,V
2

represent the error
quadrics of vertices V

1

and V
2

, respectively.
Experimental results indicated that when DSD is used to

simplify the animation model in Figure 3(c), the simplifica-
tion of the fifth frame example is superior to that generated
using the QEM of first frame example.
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(a) An animation model with five frame examples

(b) Using the QEM of example 1 only (c) Using the DSD

Figure 3: Simplification comparison between using the QEM of the first frame example and using the DSD [21].

2.3. Progressive Multiresolution Meshes. To apply QEM in
high degree of nonrigid deformation, Kircher and Garland
proposed a new multiresolution method to deform surfaces
[24]. This method comprises two major steps. First, a multi-
level mesh is created for the first framemodel in the deforma-
tion sequence. Each level is numbered in an increasing order
from fine to coarse, starting with𝑀

0

.This method uses QEM
to cluster all vertices in𝑀

0

, generate a simplified model𝑀
1

,
and complete the initial hierarchy𝐻

0

gradually.
In the second step, a reclustering algorithm is employed

to improve the time-varying hierarchies for each subsequent
frame model. To update the time-varying hierarchies, a swap
approach is used to recluster vertices; in other words, the (𝑖 +
1)th hierarchy 𝐻

𝑖+1

is generated from the 𝑖th hierarchy 𝐻
𝑖

,
and all swap operations varying from𝐻

𝑖

to𝐻
𝑖+1

are recorded,
as shown in Figure 4.

According to the experimental results [24], the simplifica-
tion errors generated by progressive multiresolution meshes

were between the DSD and Direct QSlim. Because this meth-
od updated hierarchies from the first frame hierarchy, the
models similar to the first frame model (frames 1, 13, 25, 37,
and 49) were simplified well. By contrast, the models that
greatly differed from the first frame model, such as frames
6, 18, 30, and 42, could not be simplified effectively using
progressive multiresolution meshes. Local maximal simplifi-
cation errors were observed in frames 6, 18, 30, and 42, and
these errors were nearly equal to those of the DSD.

Many studies have recently referenced DSD in proposing
numerous related works, including progressive multireso-
lution meshes [24], articulated meshes [25, 26], animation
key-frame extraction [27], and analytic error metrics [28].
However, one shortfall of theDSDmethod, the homogeneous
coordinate problem, must be resolved.

To manage homogeneous coordinates, DSD entails re-
placing the final row of the summed quadric matrix 𝑄 with
[0 0 0 1] and determining the 𝑄−1 to obtain the optimal
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Figure 4: Multiresolution representation proposed by Kircher and Garland [24].

vertex position. However, 𝑄−1 does not always exist. There-
fore, we propose a RHCT to improve the DSD method.

3. Robust Homogeneous
Coordinate Transformation

An animation model generally comprises several frame ex-
amples, and each frame example has a distinct pose. The
surface information, such as information on the position and
normal vector, of a vertex differs among frame examples. In
brief, the local coordinate system of a vertex varies among the
frame examples of an animation model. Before an animation
model is simplified, a vertex present in different frame ex-
amples should be transformed to one local coordinate space.
This transformation is conducted by applying the following
theorems.

Theorem 1 (Euler’s rotation [29]). In 3D space, the transform
for rotating a point around the origin of a plane is expressed as
follows:

𝑅
𝛽

=
[
[
[

[

cos𝛽 − sin𝛽 0 0

sin𝛽 cos𝛽 0 0

0 0 1 0

0 0 0 1

]
]
]

]

. (4)

Any rotation may be described using three angles. If the
rotations are written using rotation matrices𝐷, 𝐶, and 𝐵, then
a general rotation 𝐴 can be written as 𝐴 = 𝐵 × 𝐶 × 𝐷.

Theorem 2 (equivalence of an orthogonal matrix to a rota-
tion matrix [31]). A rotation matrix is a matrix that, when
multiplied by a vector, rotates that vector in its n-dimensional
domain. A rotation matrix is equivalent to an orthogonal
matrix, and an orthogonal matrix is defined as a matrix of
which the transpose is equal to its determinant, which is equal
to 1:

𝑄
−1

= 𝑄
𝑇

, |𝑄| = 1. (5)

According to Theorem 1, the matrices for rotation around
the 𝑥-axis by 𝛼, around the 𝑦-axis by 𝛽, and around the 𝑧-axis
by 𝛾 are expressed as

𝑅
𝛼,𝑥

=

[
[
[
[

[

1 0 0 0

0 cos𝛼 − sin𝛼 0

0 sin𝛼 cos𝛼 0

0 0 0 1

]
]
]
]

]

,

𝑅
𝛽,𝑦

=

[
[
[
[

[

cos𝛽 0 sin𝛽 0

0 1 0 0

− sin𝛽 0 cos𝛽 0

0 0 0 1

]
]
]
]

]

,

𝑅
𝛾,𝑧

=

[
[
[
[

[

cos 𝛾 − sin 𝛾 0 0

sin 𝛾 cos 𝛾 0 0

0 0 1 0

0 0 0 1

]
]
]
]

]

.

(6)

Theorem 3 (rotating a point around an arbitrary axis [30]).
Assume the axis of rotation is given by the unit vector: 𝑛 = 𝑎i+
𝑏j + 𝑐k. 𝑃(𝑥

𝑝

, 𝑦
𝑝

, 𝑧
𝑝

) is the point that is rotated by angle 𝜃 to
𝑃


(𝑥


𝑝

, 𝑦


𝑝

, 𝑧


𝑝

), as shown in Figure 5. The rotation transform is

[
[
[
[
[

[

𝑥


𝑝

𝑦


𝑝

𝑧


𝑝

1

]
]
]
]
]

]

=

[
[
[
[

[

𝑎
2

𝐾 + cos 𝜃 𝑎𝑏𝐾 − 𝑐 sin 𝜃 𝑎𝑐𝐾 + 𝑏 sin 𝜃 0

𝑎𝑏𝐾 + 𝑐 sin 𝜃 𝑏
2

𝐾 + cos 𝜃 𝑏𝑐𝐾 − 𝑎 sin 𝜃 0

𝑎𝑐𝐾 − 𝑏 sin 𝜃 𝑏𝑐𝐾 + 𝑎 sin 𝜃 𝑐
2

𝐾 + cos 𝜃 0

0 0 0 1

]
]
]
]

]

×

[
[
[
[

[

𝑥
𝑝

𝑦
𝑝

𝑧
𝑝

1

]
]
]
]

]

,

(7)

where𝐾 = 1 − cos 𝜃.

To transform the vertex in different frame examples to
one local coordinate space, the local coordinate spaces in
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Figure 5: Rotating a point about an arbitrary axis [30].

the first frame example are used as major coordinate spaces.
Each local coordinate laid on each frame example must be
transformed to that on the first frame example. Suppose
that the normal vector and tangent plane of a vertex V

𝑖,𝑗

in frame 𝑗 are notated in 𝑛
𝑖,𝑗

= [𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

1]
𝑇 and

𝑡
𝑖,𝑗

, respectively, and𝑀
𝑖,𝑗

represents the mesh of connecting

vertex V
𝑖,𝑗

. To transform the mesh 𝑀
𝑖,𝑗

to the coordinate
space of𝑀

𝑖,1

, the normal vector 𝑛
𝑖,𝑗

and tangent plane 𝑡
𝑖,𝑗

at
vertex V

𝑖,𝑗

must be transformed to 𝑛
𝑖,1

and 𝑡
𝑖,1

at vertex V
𝑖,1

.
According to Theorem 3, the vertex𝑀

𝑖,𝑗

can be transformed
to the local coordinate space of𝑀

𝑖,1

by rotating the normal
vector 𝑛

𝑖,𝑗

:

𝑇
𝑖,𝑗

=

[
[
[
[
[

[

𝑛
2

𝑥,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝐾 − 𝑛
𝑧,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
𝑥,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 + 𝑛
𝑦,𝑖,𝑗

sin 𝜃
𝑖,𝑗

0

𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝐾 + 𝑛
𝑧,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
2

𝑦,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 − 𝑛
𝑥,𝑖,𝑗

sin 𝜃
𝑖,𝑗

0

𝑛
𝑥,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 − 𝑛
𝑦,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 + 𝑛
𝑥,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
2

𝑧,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

0

0 0 0 1

]
]
]
]
]

]

, (8)

𝑇
−1

𝑖,𝑗

= 𝑇
𝑖,𝑗

𝑇

=

[
[
[
[
[

[

𝑛
2

𝑥,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝐾 + 𝑛
𝑧,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
𝑥,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 − 𝑛
𝑦,𝑖,𝑗

sin 𝜃
𝑖,𝑗

0

𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝐾 − 𝑛
𝑧,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
2

𝑦,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 + 𝑛
𝑥,𝑖,𝑗

sin 𝜃
𝑖,𝑗

0

𝑛
𝑥,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 + 𝑛
𝑦,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

𝐾 − 𝑛
𝑥,𝑖,𝑗

sin 𝜃
𝑖,𝑗

𝑛
2

𝑧,𝑖,𝑗

𝐾 + cos 𝜃
𝑖,𝑗

0

0 0 0 1

]
]
]
]
]

]

. (9)

Assume that the included angle between 𝑛
𝑖,𝑗

and 𝑛
𝑖,1

is
𝜃
𝑖,𝑗

= cos−1(𝑛
𝑖,𝑗

⋅ 𝑛
𝑖,1

). The cross product, 𝑛
𝑖,𝑗

= 𝑛
𝑖,𝑗

× 𝑛
𝑖,1

=

[𝑛
𝑥,𝑖,𝑗

𝑛
𝑦,𝑖,𝑗

𝑛
𝑧,𝑖,𝑗

1]
𝑇, is a vector orthogonal to the plane of

𝑛
𝑖,𝑗

and 𝑛
𝑖,1

. The transform matrix that rotates the normal
vector 𝑛

𝑖,𝑗

by angle 𝜃
𝑖,𝑗

around the axis 𝑛
𝑖,𝑗

is expressed as
(8). According toTheorem 2, the matrix 𝑇

𝑖,𝑗

is an orthogonal
matrix. In other words, the inverse matrix of 𝑇

𝑖,𝑗

exists and is
defined as (9).

All faces incident to vertex V
𝑖,𝑗

in different frame examples
can be transformed to the local coordinate space at vertex
V
𝑖,1

by using the matrix 𝑇
𝑖,𝑗

. This approach ensures that the
inverse transform matrix 𝑇−1

𝑖,𝑗

exists. Therefore, this method
can be used to identify the optimal contraction vertex when
DSD is used in summing the QEM to simplify an animation
model. The collapse cost for a pair becomes

𝑘

∑

𝑖=1

Ṽ𝑇
𝑖

(𝑇V
1
,𝑖

× 𝑄
𝑖,V
1

+ 𝑇V
2
,𝑖

× 𝑄
𝑖,V
2

) Ṽ
𝑖

, (10)

where 𝑘 is the number of frame examples, Ṽ
𝑖

is the new
vertex formed by collapsing vertices V

1

and V
2

in the 𝑖th
frame example, 𝑄

𝑖,V
1

and 𝑄
𝑖,V
2

represent the error quadrics
of vertices V

1

and V
2

, respectively, 𝑇V
1
,𝑖

is the matrix that
transforms all faces incident to V

1

from the 𝑖th frame example
to the first frame example, and 𝑇V

2
,𝑖

is the matrix that
transforms all faces incident to V

2

from the 𝑖th frame example
to the first frame example.

4. The Proposed Algorithm

The proposed algorithm refers to and amends DSD methods
and includes eight major steps described as follows.

Step 1 (calculate the QEM of each vertex V
𝑖,𝑗

). Its QEM is
𝑄(V
𝑖,𝑗

) = 𝑄
𝑗,V
𝑖

= Σ𝐾
𝑝

, where 𝑝 denotes the triangle plane
that contains the point V

𝑖,𝑗

, and𝐾
𝑝

represents 4 × 4 metric of
the plane 𝑝, as shown in (2).

Step 2 (calculate the transformation matrix and modify the
QEM). The transformation matrix 𝑇

𝑖,𝑗

shown in (8) must be
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(a) Original horse animation model (with 16842 triangles)

(b) Simplified horse animation model using the DSD (with 5000 triangles)

(c) Simplified horse animation model using the RHCT (with 5000 triangles)

Figure 6: Simplification results of the horse animation model (frame examples 1, 21, and 41).
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calculated, and then the new QEM is represented as follows.
Additionally, 𝑄(V

𝑖,𝑗

) will be 𝑄(V
𝑖,1

) when 𝑗 equals 1:

𝑄


(V
𝑖,𝑗

) = ∑

𝑝∈planes(V
𝑖,𝑗
)

𝑇
𝑖,𝑗

× 𝐾
𝑝

= 𝑇
𝑖,𝑗

× ( ∑

𝑝∈planes(V
𝑖,𝑗
)

𝐾
𝑝

) = 𝑇
𝑖,𝑗

× 𝑄 (V
𝑖,𝑗

) .

(11)

Step 3. Sum all QEMs of vertex V
𝑖

in different frame example:

𝑄


(V
𝑖

) =

𝑘

∑

𝑗=1

𝑄


(V
𝑖,𝑗

) . (12)

Step 4 (choose each (V
𝑚

, V
𝑛

) pair to calculate the minimum
error produced due to simplification). The (V

𝑚

, V
𝑛

) pair must
satisfy the following conditions:

(a) (V
𝑚

, V
𝑛

) is an edge or

(b) (V
𝑚

, V
𝑛

) is not an edge and ‖V
𝑚

− V
𝑛

‖ < 𝑡, where 𝑡
denotes a threshold value specified by the user.

Step 5. Choose the lowest error vertex-pair (V
𝑚

, V
𝑛

) as an
object of simplification.

Step 6. Contract the vertex-pair (V
𝑚

, V
𝑛

) into V and calculate
its QEM 𝑄(V), where 𝑄(V) = 𝑄(V

𝑚

) + 𝑄(V
𝑛

).

Step 7. Update all the information of the vertices adjacent to
V
𝑚

and V
𝑛

.

Step 8. Repeat the previous steps until the assigned number
of triangles is reached after simplification.

Through Steps 1–3 calculation, the summed QEM with
RHCT is obtained, and it is used to contract vertex pairs.
The experimental results presented here demonstrate that the
RHCT helps to truly reduce the error due to simplification.

5. Experimental Results

This study used the Intel Core i7-2670QM 2.2GHZ CPU,
which features 4GB of memory, as the main experimental
environment, and Visual C++ was used as a programming
development tool. Animation models of a horse, a camel,
and an elephant were the subjects of the experiment. Each
animated sequence comprised 48 frame examples. In the
experiment, the root mean square (RMS) errors generated
when usingDSD to simplify the three animationmodels were
compared with those generated by the proposed method.
The experimental results obtained when the horse model was
tested are shown in Figure 6, where Figure 6(a) is the original
model which consisted of 8431 vertices and 16842 triangles.
Figures 6(b) and 6(c) show the results obtained when the
horse model was simplified into 5000 triangles by using DSD
and the proposed method, respectively.

To estimate the distortion errors of simplified animation
models, this study usedMetro [32] to calculate the RMS error

Table 1: RMS error comparison for simplifying horse animation
model (unit: 10−3).

Triangles The DSD The RHCT Improvement rate
10000 0.316 0.316 0.0%
5000 1.796 0.828 53.9%
2000 5.650 2.051 63.7%
1000 12.186 3.322 72.7%
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Figure 7: RMS error comparison for simplifying horse animation
model.

for each simplified frame example in an animationmodel and
then to determine the mean of these RMS errors. Table 1 and
Figure 7 show the mean distortion errors that occurred when
the horse animation was simplified into 10000 triangles, 5000
triangles, 2000 triangles, and 1000 triangles by using the DSD
and RHCT methods. The RMS errors of the two methods
differed substantially when the models were simplified. The
proposed method produced 0.828 × 10−3 RMS errors when
it was used to simplify the horse model into 5000 triangles
and, compared with the model simplified using DSD and
the original model comprising 16842 triangles, reduced RMS
errors by 53.9% towithin an error range of 1.796× 10−3.When
the model was simplified into 2000 and 1000 triangles, the
proposed method achieved improvements of 63.7% and 72%,
respectively, compared with DSD.

According to the experimental results, when the horse
animation model was simplified into 5000 triangles by using
DSD, all simplified frame examples remained similar to the
original frame examples.However, the shape features deterio-
rated gradually when the horse examples were simplified into
2000 triangles by using DSD. RHCT was used to determine
a suitable vertex position for each simplified vertex pair
and retain more shape features than DSD,does as shown in
Figure 8.

Each original frame example in the camel model con-
tained 43813 triangles and 21887 vertices. Figure 9 shows the
original examples and the simplification results generated
using DSD and RHCT. Table 2 and Figure 10 show com-
parisons of the errors produced by DSD and the proposed
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(a) Simplifying by the DSD (2000 triangles) (b) Simplifying by the RHCT (2000 triangles)

Figure 8: The shape of horse hoof is destroyed gradually when simplifying by the DSD.

(a) Original camel animation model (with 43813 triangles) (b) Simplified camel animation model using the DSD (with 5000 triangles)

(c) Simplified camel animation model using the RHCT (with 5000
triangles)

Figure 9: Simplification results of the camel animation model (frame examples 3, 23, and 43).
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Figure 10: RMS error comparison for simplifying camel animation model.

(a) Simplifying by the DSD (2000 triangles) (b) Simplifying by the RHCT (2000 triangles)

Figure 11: The thigh shape of camel is destroyed after simplifying by the DSD.

Table 2: RMS error comparison for simplifying camel animation
model (unit: 10−3).

Triangles The DSD The RHCT Improvement rate
10000 1.852 0.494 73.3%
5000 6.243 0.845 86.5%
2000 9.599 1.834 80.9%
1000 15.715 3.294 79.0%

method; the table shows that the proposed method achieved
73–86% error reductions.

In addition, when the camel animation model was sim-
plified into 2000 triangles by using DSD, the outline of the
camel leg deteriorated severely. By contrast, the simplified
examples produced using the RHCT method retained their
major shapes, as shown in Figure 11.

In the experiment, besides taking the horse and camel
models for verification, the elephant animation model is
taken for experimental testing. The original elephant model
contained 84637 triangles and 42321 vertices. Figure 12 shows
the simplification results. Table 3 and Figure 13 show a com-
parison of the error produced using DSD and the proposed
method; when the elephant examples were simplified to
10000 triangles by using DSD, the mean RMS error was
0.002468. When the proposed method was used, the error
was 0.000751, which is 69.6% lower than that of DSD.

Table 3: RMS error comparison for simplifying elephant animation
model (unit: 10−3).

Triangles The DSD The RHCT Improvement rate
10000 2.468 0.751 69.6%
5000 4.779 1.390 70.9%
2000 10.909 2.920 73.2%
1000 17.370 4.957 71.5%

Moreover, when the model was simplified to 2000 triangles,
the proposed method reduced the error by 73.2% compared
with DSD.

Regarding the shape preservation of the simplified ele-
phant example, the shape of the trunk deteriorated severely
and even became hollow when the model was simplified
to 5000 triangles by using the DSD method, as shown in
Figure 14(a). By contrast, RHCT identified a suitable position
for the new vertex after simplifying a vertex pair. Therefore,
the outline of trunk was kept as intact as possible when
it was simplified using the proposed method, as shown in
Figure 14(b).

In addition, the progressive multiresolution meshes [24]
mentioned in Section 2 also provided wonderful simplifica-
tion results. This method reduced the local minimal simplifi-
cation errors of the models similar to the first frame model.
However, the local maximal simplification errors, which were
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(a) Original elephant animation model (with 84637 triangles)

(b) Simplified elephant animation model using the DSD (with 5000 triangles)

(c) Simplified elephant animation model using the RHCT (with 5000 triangles)

Figure 12: Simplification results of the elephant animation model (frame examples 5, 25, and 45).

nearly equal to those generated by the DSD, could not be
reduced. By contrast, RHCT reduced the considerable local
maximal simplification errors, as shown in Figure 15.

Moreover, to compare the appearance changes in the
simplified models, the experiment employed the tensor-
based perceptual distance measure (TPDM) [33] and mesh

structural distortion measure 2 (MSDM2) [34] to estimate
perceived quality. Both measures were executed in MEPP
software [35]. The obtained perceived quality values were
between 0 and 1, tending toward 1 when the visualization
of the measured objects differed and equaled 0 when they
were identical.This experiment simplified the horse sequence
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Figure 13: RMS error comparison for simplifying elephant animation model.

(a) Simplifying by the DSD (5000 triangles) (b) Simplifying by the RHCT (5000 triangles)

Figure 14: The elephant trunk is damaged and even hollow when simplifying by the DSD.
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Figure 15: Simplification error per frame for a 2000-triangle approximation of a galloping horse.

to 5000 triangles and used TPDM and MSDM2 to measure
the perception distortion, as shown in Tables 4 and 5 and
Figure 16.

According to the results in Table 4, the average perception
distortion caused by the simplification of the DSD was
0.14588, and the distortion was 0.12097 when the RHCT was
employed, a value that was 17.07% smaller than that obtained
using the DSD. In MSDM2, the DSD and RHCT produced
0.39796 and 0.33999 average perception distortions, respec-
tively, when they were employed to simplify the horse model

into 5000 triangles; in other words, the proposed method
achieved improvements of 11.87% to 16.68% compared with
the DSD.

6. Conclusions

The QEM method has recently been proven to be one of
themost effective simplificationmethods. DSD uses summed
QEM to simplify and reduce the storage cost of animation
models. It then uses revised quadric matrices to resolve
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(a) Original horse model (frame 1) (b) Simplifying by the RHCT (5000 triangles; TPDM
= 0.11536; MSDM2 = 0.32441)

(c) Simplifying by the DSD (5000 triangles; TPDM =
0.14417; MSDM2 = 0.38888)

Figure 16: Perceived quality comparison.

Table 4: Perceived quality comparison for simplified horse anima-
tion models using TPDM.

Frame The DSD The RHCT Improvement rate
1 0.14417 0.11536 19.98%
2 0.14574 0.1169 19.79%
3 0.14756 0.11965 18.91%
4 0.14641 0.12315 15.89%
5 0.14726 0.12353 16.11%
6 0.14799 0.1246 15.81%
7 0.14695 0.12536 14.69%
8 0.14601 0.1232 15.62%
9 0.14547 0.1233 15.24%
10 0.14529 0.11978 17.56%
11 0.1431 0.11931 16.62%
12 0.14455 0.11749 18.72%
Average 0.14588 0.12097 17.07%

the problem of homogeneous coordinates. However, the
revised quadricmatrices cannot be used to estimate a suitable
position for the contraction vertex formed by a vertex pair,
leading to severe deterioration of the outlines of simplified
animation models. To solve this problem, this paper pro-
poses using RHCT to determine the appropriate position
of the contraction vertex. Experimental results indicated
that the proposed method can reduce the errors caused by

Table 5: Perceived quality comparison for simplified horse anima-
tion models using MSDM2.

Frame The DSD The RHCT Improvement rate
1 0.38888 0.32441 16.58%
2 0.39903 0.3395 14.92%
3 0.40074 0.34292 14.43%
4 0.40216 0.34614 13.93%
5 0.40539 0.35548 12.31%
6 0.40217 0.35443 11.87%
7 0.39941 0.34918 12.58%
8 0.40186 0.34418 14.35%
9 0.39619 0.33311 15.92%
10 0.39283 0.3273 16.68%
11 0.3927 0.32993 15.98%
12 0.39418 0.33327 15.45%
Average 0.39796 0.33999 14.57%

simplification and enables the shape features of simplified
animation to be retained.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.



Journal of Applied Mathematics 13

Acknowledgments

The author thanks the anonymous reviewers for helping to
improve this paper. The author also thanks Professors Chas-
sery, Wang, and Torkhani for providing the TPDM codes.
Additionally, this research was supported by the National
Science Council, Taiwan, under Grants NSC98-2221-E-159-
019 and NSC100-2622-E-159-004-CC3.

References

[1] G. K. L. Tam, Z.-Q. Cheng, Y.-K. Lai et al., “Registration of 3D
point clouds andmeshes: a survey from rigid toNonrigid,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19,
no. 7, pp. 1199–1217, 2013.

[2] Y.-Z. Song, D. Pickup, C. Li, P. Rosin, and P. Hall, “Abstract art
by shape classification,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 8, pp. 1252–1263, 2013.

[3] M. Figueiredo, J. I. Rodrigues, I. Silvestre, and C. Veiga-Pires,
“A topological framework for interactive queries on 3D models
in the qeb,” The Scientific World Journal, vol. 2014, Article ID
920985, 10 pages, 2014.

[4] G. Mei, “Summary on several key techniques in 3D geological
modeling,” The Scientific World Journal, vol. 2014, Article ID
723832, 11 pages, 2014.

[5] J. T. Wang, Y. C. Chang, C. Y. Yu, and S. S. Yu, “Hamming code
based watermarking scheme for 3Dmodel verification,”Mathe-
matical Problems in Engineering, vol. 2014, Article ID 241093, 7
pages, 2014.

[6] Y. Seol, J. Seo, P.H. Kimz, J. P. Lewisx, and J. Noh, “Artist friendly
facial animation retargeting,” ACM Transactions on Graphics,
vol. 30, no. 6, article 162, 2011.

[7] D. Gerszewski and A. W. Bargteil, “Physics-based animation of
large-scale splashing liquids,” ACM Transactions on Graphics,
vol. 32, no. 6, article 185, 2013.

[8] T. Weise, S. Bouaziz, and H. L. M. Pauly, “Realtime perform-
ance-based facial animation,” ACM Transactions on Graphics,
vol. 30, no. 4, article 77, 2011.

[9] S. Sun and C. Ge, “A new method of 3D facial expression
animation,” Journal of Applied Mathematics, vol. 2014, Article
ID 706159, 6 pages, 2014.

[10] B.-S. Jong, J.-L. Tseng, W.-H. Yang, and T.-W. Lin, “Extracting
features and simplifying surfaces using shape operator,” in
Proceedings of the 5th International Conference on Information,
Communications and Signal Processing, pp. 1025–1029, Bangkok,
Thailand, December 2005.

[11] B.-S. Jong, J.-L. Tseng, and W.-H. Yang, “An efficient and low-
error mesh simplification method based on torsion detection,”
The Visual Computer, vol. 22, no. 1, pp. 56–67, 2006.

[12] X.-D. Sun and H.-B. Zhang, “Fast simplification of scanned
3D human body for animation,” in Proceedings of the 8th
International Conference on Computer Graphics, Imaging and
Visualization (CGIV '11), pp. 70–75, Singapore, August 2011.

[13] M. Larkin and C. O’Sullivan, “Perception of simplification arti-
facts for animated characters,” in Proceedings of the 8th Annual
Symposium on Applied Perception in Graphics and Visualization
(APGV ’11), pp. 93–100, August 2011.

[14] J. L. Tseng and Y. H. Lin, “Low-resolution surface simplification
using shape operators with large-scale surface analysis,” WIT

Transactions on Information and Communication Technologies,
vol. 58, pp. 105–113, 2014.

[15] E. Mendi, “A 3D face animation system for mobile devices,”
Journal of Intelligent and Fuzzy Systems, vol. 26, no. 1, pp. 11–18,
2014.

[16] J. L. Tseng and Y. H. Lin, “3D Surface simplification based on
extended shape operator,” WSEAS Transactions on Computers,
vol. 12, no. 8, pp. 320–330, 2013.

[17] T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, and I.
J. Trotts, “Constructing hierarchies for triangle meshes,” IEEE
Transactions onVisualization andComputer Graphics, vol. 4, no.
2, pp. 145–161, 1998.

[18] J. Rossignac and P. Borrel, “Multi-resolution 3D Approxima-
tions for Rendering Complex Scenes,” inModeling in Computer
Graphics: Methods and Applications, pp. 455–465, 1993.
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