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This paper investigates the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators.
A finite-state Markovian process is given to govern the transition of the jumping parameters. The finite-time 𝐻

∞
controller via

state feedback is designed to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable.
Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic control performance of discrete-time
Markov jump systems are derived in the form of linear matrix inequalities. Finally, a numerical example is provided to illustrate
the effectiveness of the proposed approach.

1. Introduction

During the past several decades, the issue of finite-time con-
trol has drawn increasing attention of academic researchers
in the area of control field, and various results have been
reported. To this end, a considerable amount of research has
been carried out; see Hong et al. [1]; He and Liu [2, 3]; Li
et al. [4]; Song et al. [5]; Lan et al. [6]. Among the proposed
solutions, state feedback control is an important approach
to improve finite-time control performance. For instance,
by using both state feedback and dynamic output feedback
control, finite-time control of the robot system is studied in
Hong et al. [7]. Furthermore, based on dynamic observer-
based state feedback and Lyapunov-Krasovskii functional
approach, the finite-time𝐻

∞
control problem for time-delay

nonlinear jump systems was addressed in the work of He and
Liu [2, 3, 8].

On the other hand, more and more attention has been
paid to the study of actuator saturation due to its practical and
theoretical importance. Therefore, various approaches were
investigated to handle systems with actuator saturation, such
as in the work of Cao and Lin [9]; the stability of discrete-
time systems with actuator saturation was analyzed by a
saturation-dependent Lyapunov function. By introducing a
time-varying sliding surface, the robust stabilization problem
of linear unstable plants with saturating actuators was studied

in Corradini and Orlando [10]. Furthermore, the controller
design method of Markov jumping systems subject to actu-
ator saturation was presented in Liu et al. [11]. Via dynamic
anti-windup fuzzy design, the robust stabilization problem
of state delayed T-S fuzzy systems with input saturation was
proposed in Song et al. [12]. Other results can refer to [13–17]
and references therein.

It is well known that the control problem of Markov
jump systems has also been extensively studied and a large
variety of control problems have been widely investigated,
for instance, the stabilization of Markov jump systems with
time delays [18–24], robust control [25], control of singular
Markov systems [26], control of discrete-time stochastic
Markov jump systems [27, 28], and fuzzy dissipative control
for nonlinear Markovian jump systems [29]. Furthermore,
robust stability for uncertain delayed neural networks with
Markov jumping parameters was analyzed in Li et al. [30].
Robust𝐻

∞
filter was designed for uncertain discrete Markov

jump singular systems with mode-dependent time delay in
Ma and Boukas [31]. Delay-dependent robust stabilization
problem for uncertain stochastic switching systems with
distributed delays was studied in Shen et al. [32]. Via
retarded output feedback, passivity-based control problem
for Markov jump systems was addressed in Shen et al. [33].
Observer based finite-time 𝐻

∞
control problem of discrete-

time Markov jump systems was studied in Zhang and
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Liu [34]. However, to the best of our knowledge, the problem
of finite-time stabilization of discrete-time stochastic systems
has not been fully investigated and it is the main purpose of
our study.

In this paper, the attention is focused on the finite-
time 𝐻

∞
control problem of discrete-time Markov jump

systems with actuator saturation. A state feedback controller
is designed to ensure the stochastic finite-time boundedness
and stochastic finite-time stabilization of the resulting closed-
loop system for all admissible disturbances. The desired
controller can be designed via solving a convex optimization
problem. Finally, a numerical example is employed to show
the effectiveness of the proposed method.

Notation. Throughout the paper, for symmetric matrices 𝑋
and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
𝐼 is the identitymatrix with appropriate dimension.Thenota-
tion 𝑁𝑇 represents the transpose of the matrix 𝑁; 𝜆max(𝑀)

(resp.,𝜆min(𝑀))means the largest (resp., smallest) eigenvalue
of the matrix 𝑀; (Ω,F,P) is a probability space; Ω is the
sample space, F is the 𝜎-algebra of subsets of the sample
space, and P is the probability measure on F;E{⋅} denotes
the expectation operator with respect to some probability
measure P. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symbol ∗ is used to denote
amatrix which can be inferred by symmetry,He{𝐴} = 𝐴𝑇

+𝐴.

2. Preliminaries and Problem Description

2.1. Preliminaries. Throughout this paper, we will use the
following definitions and lemmas.

Lemma 1 (see [12]). For the matrix 𝐾
𝑖
and the system Σ, the

appropriate matrix 𝐿
𝑖
∈ R𝑚×𝑛 is given if 𝑥(𝑘) is in the set

𝐷(𝑢
𝑜
), where𝐷(𝑢

𝑜
) is defined as follows:

𝐷(𝑢
𝑜
) = {𝑥 (𝑘) ∈ R

𝑛

; −𝑢
0(𝑘)

≤ (𝐾
𝑖(𝑘)

− 𝐿
𝑖(𝑘)
) 𝑥 (𝑡) ≤ 𝑢

0(𝑘)
,

𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚} ;

(1)

then for any diagonal positive matrix 𝑇 ∈ R𝑚×𝑚, we derive

𝜓(𝑢 (𝑘))
𝑇

𝑇 (𝜓 (𝑢 (𝑘)) − 𝐿
𝑖
𝑥 (𝑘)) ≤ 0. (2)

Lemma 2 (see [32]). For the given symmetric matrix 𝑆 ∈

R(𝑛+𝑚)×(𝑛+𝑚):

𝑆 =
[

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

, (3)

where 𝑆
11
∈ R𝑛×𝑛, 𝑆

12
∈ R𝑛×𝑚, and 𝑆

22
∈ R𝑚×𝑚; the following

conditions are equivalent:

(1) 𝑆 < 0,
(2) 𝑆

11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Definition 3 (see [34]). The resulting closed-loop system
(12) is stochastic finite-time stable (SFTB) with respect to
(𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, and 𝑁 ∈ 𝑍

𝑘≥0
if

there exists state feedback controller such that

𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
󳨐⇒ 𝐸{𝑥

𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)}

< 𝜖
2

, ∀𝑘 ∈ {1, 2, . . . , 𝑁} .

(4)

Definition 4 (see [34]). The resulting closed-loop system (12)
is said to be stochastic𝐻

∞
finite-time stable via state feedback

with respect to (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, 𝛾 >

0, and 𝑁 ∈ 𝑍
𝑘≥0

if the system (11)-(12) is SFTB with respect
to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) and under the zero-initial condition the

output 𝑧(𝑘) satisfies

𝐸 {Σ
𝑁

𝑗=0
𝑧
𝑇

(𝑗) 𝑧 (𝑗)} ≤ 𝛾
2

𝐸 {Σ
𝑁

𝑗=0
𝑤

𝑇

(𝑗) 𝑤 (𝑗)} , (5)

for any nonzero 𝑤(𝑘) which satisfies (10), where 𝛾 is a
prescribed positive scalar. Moreover, the state feedback con-
troller (11) is called𝐻

∞
controller of MJS (12).

2.2. Problem Description. Consider the following discrete-
time Markov jump system (Σ) in the probability space
(Ω,F,P):

𝑥 (𝑘 + 1) = 𝐴 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐺 (𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐷
1
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐷
2
(𝑟 (𝑘)) 𝑤 (𝑘) ,

(6)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑧(𝑘) ∈ R𝑙 is the controlled
output, and sat(𝑢(𝑘)) ∈ R𝑚 is the saturated control input.
𝑤(𝑘) ∈ 𝐿

𝑝

2
[0 + ∞) is the external disturbances. {𝑟(𝑘)} is a

discrete-time Markov process and takes values from a finite
set 𝑆 = {1, 2, . . . ,N} with transition probabilities given by

Pr (𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘
= 𝑖) = 𝜋

𝑖𝑗
, (7)

where 𝜋
𝑖𝑗
≥ 0, for ∀𝑗, 𝑖 ∈ 𝑆, and Σ

𝑗∈𝑆
𝜋
𝑖𝑗
= 1. Moreover, the

transition rates matrix of the system (Σ) is defined by

[

[

[

[

[

𝜋
11

𝜋
12

⋅ ⋅ ⋅ 𝜋
1N

𝜋
21

𝜋
22

⋅ ⋅ ⋅ 𝜋
2N

...
... d

...
𝜋N1

𝜋N2
⋅ ⋅ ⋅ 𝜋NN

]

]

]

]

]

. (8)

The inputs of the plant are supposed to be bounded as follows:

−𝑢
0(𝑘)

≤ 𝑢
(𝑘)
≤ 𝑢

0(𝑘)
, 𝑢

0(𝑘)
> 0, 𝑘 = 1, . . . , 𝑚. (9)

For the system (Σ), to simplify the notation, we denote
𝐴

𝑖
= 𝐴(𝑟(𝑘)) for each 𝑟(𝑘) = 𝑖 ∈ 𝑆, and the other

symbols are similarly denoted. 𝐴
𝑖
, 𝐵

𝑖
, 𝐺

𝑖
, 𝐶

𝑖
,𝐷

1𝑖
, and𝐷

2𝑖
are

known mode-dependent constant matrices with appropriate
dimensions.
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Assumption 5 (see [34]). The external disturbance 𝑤(𝑘) is
varying and satisfies the following constraint condition:

Σ
𝑇

𝑘=0
𝑤(𝑘)

𝑇

𝑤 (𝑘) ≤ 𝑑, 𝑑 ≥ 0. (10)

For the system (Σ), we construct the following state feedback
controller:

𝑢 (𝑘) = 𝐾 (𝑟 (𝑘)) 𝑥 (𝑘) . (11)

Then, the resulting closed-loop discrete-time Markov jump
system (MJS) is as follows:

𝑥 (𝑘 + 1) = (𝐴
𝑖
+ 𝐵

𝑖
𝐾

𝑖
) 𝑥 (𝑘) + 𝐵

𝑖
𝜓 (𝑢 (𝑘)) + 𝐺

𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = (𝐶
𝑖
+ 𝐷

1𝑖
𝐾

𝑖
) 𝑥 (𝑘) + 𝐷

1𝑖
𝜓 (𝑢 (𝑘)) + 𝐷

2𝑖
𝑤 (𝑘) ,

(12)

where 𝜓(𝑢(𝑘)) = sat(𝑢(𝑘)) − 𝑢(𝑘).

3. Main Results

In this section, we investigate the design of a state feedback
controllerwhich guarantees the locally finite-time stabilizable
of the resulting closed-loop system. Some sufficient condi-
tions and the method of designing state feedback controller
are given.

Theorem 6. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, there exists a feedback
controller 𝑢(𝑘) = 𝐾

𝑖
𝑥(𝑘), 𝐾

𝑖
= 𝑌

𝑖
𝑋

−1

𝑖
, such that the resulting

closed-loop system (12) is SFTB with respect to (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑)

with 0 < 𝛿
𝑥
< 𝜖, if there exist scalars 𝜇 ≥ 0, 𝜎

1
≥ 0, and 𝜎

2
≥ 0,

three sets of mode-dependent symmetric matrices 𝑋
𝑖
> 0, 𝐽

𝑖
>

0, and𝑄
𝑖
> 0, and two sets of mode-dependent matrices 𝑌

𝑖
and

𝐿̄
𝑖
= 𝐿

𝑖
𝑋

𝑖
, such that the following conditions hold:

[

[

[

[

[

[

[

[

[

−𝜇𝑋
𝑖

0 𝐿̄
𝑇

𝑖
𝐿̄
𝑇

1𝑖

∗ −𝑄
𝑖

0 𝐿
𝑇

2𝑖

∗ ∗ −2𝐽
𝑖
𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]

]

]

]

]

]

]

]

]

< 0, (13)

[
𝜎
2
𝑑
2

− 𝜇
−𝑁

𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (14)

[

𝑋
𝑖

∗

𝑌
𝑖
+ 𝐿̄

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (15)

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
, (16)

0 < 𝑄
𝑖
< 𝜎

2
𝐼, (17)

where
𝑊 = diag {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

𝐿̄
𝑇

1𝑖

= [√𝜋
𝑖1
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
) √𝜋

𝑖2
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
) ⋅ ⋅ ⋅ √𝜋

𝑖𝑛
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
)] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐺
𝑇

𝑖 √𝜋
𝑖2
𝐺
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐺
𝑇

𝑖 ] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐽
𝑖
𝐵
𝑇

𝑖 √𝜋
𝑖2
𝐽
𝑖
𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐽
𝑖
𝐵
𝑇

𝑖 ] .

(18)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) . (19)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸 {Σ
𝑛

𝑗=1
𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇

𝑃
𝑗
𝑥 (𝑘 + 1)}

= 𝜉(𝑘)
𝑇

[𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
]

𝑇

𝑊̄ [𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
] 𝜉 (𝑘) ,

(20)

where
𝜉 (𝑘) = [𝑥(𝑘)

𝑇

𝑤(𝑘)
𝑇

𝜓(𝑘)
𝑇
] ,

𝑊̄ = diag {𝑃
1
, 𝑃

2
, . . . , 𝑃

ℎ
} ,

𝐿
𝑇

1𝑖

= [√𝜋
𝑖1
(𝐴

𝑖
+ 𝐵

𝑖
𝐾

𝑖
)
𝑇

√𝜋
𝑖2
(𝐴

𝑖
+ 𝐵

𝑖
𝐾

𝑖
)
𝑇

⋅ ⋅ ⋅ √𝜋
𝑖𝑛
(𝐴

𝑖
+ 𝐵

𝑖
𝐾

𝑖
)
𝑇
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐺

𝑇

𝑖
√𝜋

𝑖2
𝐺

𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐺

𝑇

𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑖
√𝜋

𝑖2
𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑖
] .

(21)

Then by pre- and postmultiplying (13) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}

with 𝑃
𝑖
= 𝑋

−1

𝑖
, 𝑇

𝑖
= 𝐽

−1

𝑖
, we have

[

[

[

[

[

[

[

[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖
𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

0 𝐿
𝑇

2𝑖

∗ ∗ −2𝑇
𝑖
𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]

]

]

]

]

]

]

]

]

< 0. (22)

By using Schur complement lemma, we derive

𝜉(𝑘)
𝑇
[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝑄
𝑖

0

∗ ∗ −2𝑇
𝑖

]

]

× 𝜉 (𝑘) + 𝜉(𝑘)
𝑇

[𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
]
𝑇

𝑊̄ [𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
] 𝜉 (𝑘) < 0.

(23)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇

𝑄
𝑖
𝑤 (𝑘)

+ 2𝜓(𝑘)
𝑇

𝑇
𝑖
𝜓 (𝑘) − 2𝜓(𝑘)

𝑇

𝑇
𝑖
𝐿

𝑖
𝑥 (𝑘) .

(24)
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Since 2𝜓(𝑘)𝑇𝑇
𝑖
𝜓(𝑘) − 2𝜓(𝑘)

𝑇

𝑇
𝑖
𝐿

𝑖
𝑥(𝑘) ≤ 0, we get

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇

𝑄
𝑖
𝑤 (𝑘) . (25)

It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝑤(𝑘)

𝑇

𝑤 (𝑘) . (26)

Then we have

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝐸 {𝑤(𝑘)

𝑇

𝑤 (𝑘)} .

(27)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝐸

×

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘

𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝜇

𝑘

𝑑
2

.

(28)

Let

𝑃̄
𝑖
= 𝑅

−1/2

𝑖
𝑃
𝑖
𝑅

−1/2

𝑖
, (29)

and noting that

𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
, (30)

it can be verified that

𝐸 {𝑉 (0)} = 𝐸 {𝑥
𝑇

(0) 𝑃
𝑖
𝑥 (0)} = 𝐸 {𝑥

𝑇

(0) 𝑅
1/2

𝑖
𝑃̄
𝑖
𝑅

𝑖
1/2𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃̄𝑖)} 𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃̄𝑖)} 𝛿
2

𝑥
.

(31)

Similarly, for all 𝑖 ∈ 𝑆, we can obtain

𝐸 {𝑉 (𝑘)} = 𝐸 {𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘)}

= 𝐸 {𝑥
𝑇

(𝑘) 𝑅
1/2

𝑖
𝑃̄
𝑖
𝑅

𝑖
1/2𝑥 (𝑘)}

≥ inf
𝑖∈𝑆

{𝜆min} (𝑃̄𝑖) 𝐸 {𝑥
𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)} .

(32)

Then it is not difficult to find that

𝐸 {𝑥
𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)}

<

sup
𝑖∈𝑆
{𝜆max (𝑃̄𝑖)} 𝜇

𝑘

𝛿
2

𝑥
+ sup

(𝑖∈𝑆)
{𝜆max (𝑄𝑖

)} 𝜇
𝑘

𝑑
2

inf
𝑖∈𝑆
{𝜆min} (𝑃̄𝑖)

,

(33)

which implies

sup
𝑖∈𝑆
{𝜆max (𝑃̄𝑖)} 𝜇

𝑘

𝛿
2

𝑥
+ sup

(𝑖∈𝑆)
{𝜆max (𝑄𝑖

)} 𝜇
𝑘

𝑑
2

inf
𝑖∈𝑆
{𝜆min} (𝑃̄𝑖)

< 𝜖
2

.

(34)

Then, one can obtain that

sup
𝑖∈𝑆

{𝜆max (𝑃̄𝑖)} 𝛿
2

𝑥

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝑑

2

< inf
𝑖∈𝑆

{𝜆min} (𝑃̄𝑖) 𝜇
−𝑁

𝜖
2

.

(35)

Set
𝑋

𝑖
= 𝑃

−1

𝑖
,

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
,

0 < 𝑄
𝑖
< 𝜎

2
𝐼;

(36)

it is easy to see that

𝜎
−1

1
𝛿
2

𝑥
+ 𝜎

2
𝑑
2

< 𝜇
−𝑁

𝜖
2

. (37)

It is obvious that (37) is equivalent to (14). Based on Lemma 1,
it is easy to obtain condition (15). This completes the proof.

Theorem 7. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, there exists a feedback
controller 𝑢(𝑘) = 𝐾

𝑖
𝑥(𝑘), 𝐾

𝑖
= 𝑌

𝑖
𝑋

−1

𝑖
, such that the resulting

closed-loop system (12) is said to be stochastic 𝐻
∞

finite-time
stable via state feedback with respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑), if

there exist three scalars 𝜇 ≥ 0, 𝜎
1
≥ 0, and 𝛾 ≥ 0, two sets

of mode-dependent symmetric matrices𝑋
𝑖
> 0 and 𝐽

𝑖
> 0, and

two sets of mode-dependent matrices 𝑌
𝑖
and 𝐿̄

𝑖
= 𝐿

𝑖
𝑋

𝑖
, such

that the following conditions hold:

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜇𝑋
𝑖

0 𝐿̄
𝑖

𝐿̄
1𝑖

𝑌
𝑇

𝑖
𝐷

𝑇

𝑖
+ 𝑋

𝑖
𝐶

𝑇

𝑖

∗ −𝛾
2

𝜇
−𝑁

𝐼 0 𝐿
𝑇

2𝑖
𝐷

𝑇

2𝑖

∗ ∗ −2𝐽
𝑖
𝐿
𝑇

3𝑖
𝐷

𝑇

1𝑖

∗ ∗ ∗ −𝑊 0

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (38)

[
𝜇
−𝑁

(𝑑
2

𝛾
2

− 𝜖
2

) ∗

𝛿
𝑥

−𝜎
1

] < 0, (39)

[

𝑋
𝑖

∗

𝑌
𝑖
+ 𝐿̄

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (40)

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
. (41)

Proof. Choose the similar Lyapunov function as Theorem 6
and denote

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖)

= 𝐸 {𝑉 (𝑘 + 1)} − 𝜇𝑉 (𝑘) + 𝑧(𝑘)
𝑇

𝑧 (𝑘)

− 𝛾
2

𝜇
−𝑁

𝑤(𝑘)
𝑇

𝑤 (𝑘) .

(42)
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Thus, in the light of Theorem 6, we have

Π(𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟
𝑘
= 𝑖)

≤ 𝜉(𝑘)
𝑇

[𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
]

𝑇

𝑊̄ [𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
] 𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇

[𝐶
𝑖
+ 𝐷

1𝑖
𝐾

𝑖
𝐷

2𝑖
𝐷

3𝑖
]
𝑇

× [𝐶
𝑖
+ 𝐷

1𝑖
𝐾

𝑖
𝐷

2𝑖
𝐷

3𝑖
] 𝜉 (𝑘)

+ 𝜉
𝑇

(𝑘)
[

[

−𝜇𝑋
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝛾
2

𝜇
−𝑁

𝐼 0

∗ ∗ −2𝑇
𝑖

]

]

𝜉 (𝑘) .

(43)

Then by pre- and postmultiplying (38) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼} and

considering Schur complement Lemma and (43), we derive

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖) < 0, (44)

holds for all 𝑟
𝑘
= 𝑖 ∈ 𝑆. According to (44), one can obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

− 𝐸 {𝑧(𝑘)
𝑇

𝑧 (𝑘)} + 𝛾
2

𝜇
−𝑁

𝐸 {𝑤(𝑘)
𝑇

𝑤 (𝑘)} .

(45)

Then, we have

𝐸 {𝑉 (𝑘)} < 𝜇
𝑘

𝐸 {𝑉 (0)}

− Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

+ 𝛾
2

𝜇
−𝑁

𝐸 {Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)} .

(46)

Under the zero-value initial condition and noting that𝑉(𝑘) ≥
0, for all𝐾 ∈ 𝑍

𝑘≥0
, it is shown that

Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

< 𝛾
2

𝜇
−𝑁

𝐸 {Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)} .

(47)

Since 𝜇 ≥ 1 and from (47), we have

𝐸 {Σ
𝑁

𝑗=0
𝑧(𝑗)

𝑇

𝑧 (𝑗)} = Σ
𝑁

𝑗=0
𝐸 {𝑧(𝑗)

𝑇

𝑧 (𝑗)}

≤ Σ
𝑁

𝑗=0
𝐸 {𝜇

𝑁−𝑗

𝑧(𝑗)
𝑇

𝑧 (𝑗)}

≤ 𝛾
2

𝜇
−𝑁

𝐸 {Σ
𝑁

𝑗=0
𝜇
𝑁−𝑗

𝑤(𝑗)
𝑇

𝑤 (𝑗)}

≤ 𝛾
2

𝐸 {Σ
𝑁

𝑗=0
𝑤(𝑗)

𝑇

𝑤 (𝑗)} .

(48)

The following proof is similar to the process of Zhang and Liu
[34].

Since 𝜖(𝑃
𝑖
, 1) ⊂ 𝐷(𝑢

0
), it follows that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (49)

and then by pre- and postmultiplying (49) by diag(𝑋
𝑖
, 𝐼, )

and its transpose, respectively, we derive condition (40). This
completes the proof.

Remark 8. For the given scalars (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑), we can

take 𝛾2 as the optimized variable to obtain an optimized
finite-time stabilized controller. The attenuation lever 𝛾2 can
be reduced to the minimum possible value such that LMIs
(38)–(41) hold. The optimization problem can be described
as follows:

min 𝜌

(𝑋
𝑖
𝑌
𝑖
𝐾

𝑖
𝛿
𝑥
)

s.t. LMIs (38)–(41) with 𝜌 = 𝛾2.

(50)

4. Illustrative Examples

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposedmethod. Consider the
following systems with four operation modes.

Mode 1. Consider

𝐴
1
= [

1.5 0

1.8 0.6
] , 𝐵

1
= [

1

0
] , 𝐺

1
= [

1

0
] . (51)

Mode 2. Consider

𝐴
2
= [

1.2 1

0.8 1
] , 𝐵

2
= [

1

0
] , 𝐺

2
= [

1

0
] . (52)

Mode 3. Consider

𝐴
3
= [

0.76 −2.28

0.80 −0.96
] , 𝐵

3
= [

1

0
] , 𝐺

3
= [

0.6

0
] .

(53)

Mode 4. Consider

𝐴
4
= [

1.28 −0.38

0.80 −0.88
] , 𝐵

4
= [

0.3

−0.1
] , 𝐺

4
= [

0.8

0
] .

(54)

The transition rate matrix is given as follows:

[

[

[

[

0.4 0.3 0.2 0.1

0.3 0.4 0.1 0.2

0.1 0.2 0.4 0.3

0.2 0.1 0.3 0.4

]

]

]

]

. (55)

In this case, we choose the initial values for 𝑅
𝑖
= 𝐼

2
, 𝑖 =

1, 2, 3, 4, 𝛿
𝑥
= 1, 𝑁 = 5, 𝛼 = 10

−10, 𝜇 = 2.5, and 𝑑 = 1;
Theorem 6 yields to 𝜖 = 36.2671, 𝜎

1
= 0.4906, 𝜎

2
= 13.7421,

and the bounds of the input saturation 𝑢
0
= 0.05.

Based onTheorem 7, we derive

𝐾
1
= [−0.7723 0.5862] , 𝐾

2
= [−0.1021 −0.0506] ,

𝐾
3
= [−0.8706 0.5591] , 𝐾

4
= [−0.3019 −0.3635] .

(56)

Remark 9. The figures are given on the last page. In this part
Figure 1 is 𝑟

𝑘
of the jump rates; Figure 2 shows the states of the

open-loopMarkovian jump system; Figure 3 shows the states
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Figure 1: 𝑟
𝑘
of jump rates.
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Figure 2: 𝑥(𝑘) of open-loop system.
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Figure 3: 𝑥(𝑘) of closed-loop system.

of the closed-loop Markovian jump system. By applying the
controller studied in this paper to the closed-loop plant, it is
obviously noticed that 𝑥

1
and 𝑥

2
converge to zero quickly.

Based on the figures provided, the controller we designed
guarantees that the resulting closed-loop systems are mean-
square locally asymptotically finite-time stabilizable.

5. Conclusions

This paper considers the finite-time 𝐻
∞

stabilization prob-
lem for a class of discrete-time Markov jump systems with
input saturation. The finite-time 𝐻

∞
controller via state

feedback is designed to guarantee the stochastic finite-time
boundedness and stochastic finite-time stabilization of the
considered closed-loop system for all admissible distur-
bances. Based on stochastic finite-time stability analysis,
sufficient conditions are derived in the form of linear matrix
inequalities. Finally, simulation results are given to illustrate
the effectiveness of the proposed approach. In the future, we
will study the finite-time stabilization problem for a class of
Markov jump systems with constrained input and time delay.
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