
Research Article
Semantic Consistency Checking in Building Ontology
from Heterogeneous Sources

Shihan Yang,1,2 Hongyan Tan,3 and Jinzhao Wu1,2

1 Guangxi Key Lab of Hybrid Computation and IC Design Analysis, Nanning 530006, China
2 School of Information Sciences and Engineering, Guangxi University for Nationalities (GXUN), Nanning 530006, China
3 Institute of Acoustics Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Shihan Yang; dr.yangsh@gmail.com

Received 16 January 2014; Accepted 8 March 2014; Published 15 April 2014

Academic Editor: X. Song

Copyright © 2014 Shihan Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Semantic collision is inevitable while building a domain ontology fromheterogeneous data sources (semi-)automatically.Therefore,
the semantic consistency is indispensable precondition for building a correct ontology. In this paper, a model-checking-based
method is proposed to handle the semantic consistency problem with a kind of middle-model methodology, which could extract
a domain ontology from structured and semistructured data sources semiautomatically. The method translates the middle model
into the Kripke structure, and consistency assertions into CTL formulae, so a consistency checking problem is promoted to a global
model checking. Moreover, the feasibility and correctness of the transformation is proved, and case studies are provided.

1. Introduction

Semantic web has been a great idea and a promising research
area for a dozen years [1]. A main challenge of widen-
ing semantic web technologies is lack of semantic data,
which is named ontology. So lots of researchers focus on
how to transform the legacy mass web data into ontology.
The legacy web data in varietal forms can be classified
roughly into three types: structured data, such as relational
databases; semistructured data, such as XML documents and
emails; and nonstructured data, such as general text and
video. Recently, technologies of automatically transforming
semistructured data or structured data into a domain ontol-
ogy through mediate modeling are promising [2–6]. In these
technologies, some semantic collisions appear inevitably
when the same domain ontology has been built frommultiple
data sources. A domain ontology is a formal expression of a
domain knowledge, aiming to unify the general knowledge
of a special domain in order to share contents, achieve
interoperability, or integrate applications without specific
authorization. Unfortunately, the unification is very tough
even in the same organization, where the general knowledge

exists in very different forms, in very distinct interpreta-
tion and in very dissimilar usage for most applications. So
automatically creating domain ontology from heterogeneous
sources becomes a big challenge.The semantical paradox and
ambiguity must be of concern during the process of building
the domain ontology, whichmeans the validation of semantic
consistency.The semantic consistency guarantees correct and
concise specific domain ontology for all kinds of semantic
web applications with multiple data sources.

In [2, 7–11], researchers transform structured data (rela-
tional database schema) into a middle model and then create
a domain ontology from themodel.They regard that the rela-
tional database is the only data source and that the database
is well defined (no ambiguity), which is not always practical.
Some semantic preserving properties on transforming are
proved, but they do not concern the semantic consistency,
which is left for the created domain ontology.

As for semistructured data sources, in [4–6], researchers
employ a mediate model language for modeling semistruc-
tured data and then transform middle models into the
domain ontology. The validity checking has been provided

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 181938, 11 pages
http://dx.doi.org/10.1155/2014/181938

http://dx.doi.org/10.1155/2014/181938

2 Journal of Applied Mathematics

while collisions happen, which is generally a syntax checking.
Semantic consistency checking is also missed.

For building domain ontology from heterogeneous data
sources, the semantic consistency checking is necessary. In
[12, 13], the same middle formal model language has been
adopted to model both structured and semistructured data,
so the method can be used to build the domain ontology
from heterogeneous data sources. In this paper, we focus on
the semantic consistency problem based on this method.The
literature [14] develops a middle formal language to describe
semistructured data for model-checking purpose and [15]
employs graph-based formalism to model semistructured
data and queries based on the fixed point computation. We
are inspired by the model-checking technology [16], translate
the mediate model into a Kripke structure, and encode all
semantic query problems into CTL formulae and then we
transform the semantic consistency checking problem into a
global model-checking procedure.

The following Section 2 recalls the mediate-model-based
method of building domain ontologies and the model-
checking technology. In Section 3, the mediate model lan-
guage is introduced, and the model equivalence is analyzed.
And the model-checking-based consistency checking tech-
nology is proposed in Section 4 in detail. Some cases are
studied in Section 5. Section 6 gives a conclusion.

2. Mediate-Model-Based Technology and
Model Checking

In this section, the method of formally creating domain with
the mediate model [12, 13] and a model-checking technology
[16, 17] are introduced.

2.1. Formally Creating Domain Ontology. W-graph, a kind
of graph-based formal language, is used to model semantic
aspect of relationship databases [12]. The main idea is to
execute SQL procedures to retrieve the semantic information
of the database instances, transform the result sets into a W-
graphmodel, and then transform themodel into the ontology
autocompletely, which not only maps schemata to the middle
model, but also populates the model with data stored in
databases. This language is also used to model semantically
XML documents in [5]. In [5], they provide XML documents
for a semantical interpretation by theW-graph language.The
W-graph model created from relationship databases or XML
documents can be automatically transformed into a domain
ontology (expressed in ontology web language—OWL [18]).
And a W-graph is defined as follows.

Definition 1. AW-graph 𝐺
𝑤

is a directed labeled graph
⟨𝑁, 𝐸, ℓ⟩, where𝑁 = {𝑁

𝑎
, 𝑁
𝑐
} is a finite set of nodes,𝑁

𝑎
is a

finite set of atomic nodes depicted as ellipses,𝑁
𝑐
is a finite set

of composite nodes depicted as rectangles, 𝐸 ⊆ 𝑁
𝑐
×(C×L)×

𝑁 is a set of labeled edges of the form ⟨𝑚, attribute, 𝑛⟩, ℓ is
defined as ℓ : 𝑁 ∪ 𝐸 → C × (L ∪ {⊥}),C = {solid, dashed},
L is a set of labels, and⊥ is a symbol for nothing (empty label,
can be read as bottom).

Nodes in W-graph always represent objects, and edges
represent relationships between nodes.There are two types of
concrete W-graph: instances and schemata. An instance can
be formally defined as follows.

Definition 2. A W-instance 𝐼 is a W-graph such that ℓC(𝑒) =
solid for each edge 𝑒 of 𝐼 and ℓC(𝑛) = solid and ℓL(𝑛) ̸= ⊥ for
each node 𝑛 of 𝐼.

In Figure 1 a W-instance 𝐼 is depicted.

𝐼 = ⟨𝑁, 𝐸, ℓ⟩, where
𝑁 = ⟨{𝑛

1
, 𝑛
2
, 𝑛
3
, 𝑛
4
}, {𝑛
5
, 𝑛
6
, 𝑛
7
, 𝑛
8
}⟩,

𝐸 = ⟨(𝑛
1
, (solid, teaches), 𝑛

3
),

(𝑛
2
, (solid, teaches), 𝑛

3
),

(𝑛
4
, (solid, attends), 𝑛

3
), (𝑛
1
, (solid, age), 𝑛

5
),

(𝑛
2
, (solid, age), 𝑛

6
), (𝑛
3
, (solid, 𝑐Name), 𝑛

7
),

(𝑛
4
, (solid, name), 𝑛

8
)⟩,

ℓ(𝑛
1
) = ℓ(𝑛

2
) = (solid,Teacher),

ℓ(𝑛
3
) = (solid,Course), ℓ(𝑛

4
) = (solid, Student),

ℓ(𝑛
5
) = (solid, 37), ℓ(𝑛

6
) = (solid, 40),

ℓ(𝑛
7
) = (solid,Database), ℓ(𝑛

8
) = (solid, Smith).

It describes the information that two teachers, one 37
years old and another 40 years old, teach database course,
and the student Smith attends this course. In W-graph, edge
attribute consists of two components, the color and the label,
and the function ℓ returns a color and a label (possibly
empty, ⊥) for each node. Edge labels are stuck close to the
corresponding edges, and node labels are written inside the
rectangles representing the nodes.The set of colorsC denotes
how the lines of nodes and edges are drawn (solid or dashed),
and we also call this information the color of a node or
edge. On the other hand, the function ℓ can be seen as the
composition of the two single valued functions ℓC and ℓL, so
ℓ can also be implicitly defined on edges: if 𝑒 = ⟨𝑚, ⟨𝑐, 𝑘⟩, 𝑛⟩,
then ℓC(𝑒) = 𝑐 and ℓL(𝑒) = 𝑘. Two nodes may be connected
by more than one edge, provided that edge attributes are
different.

For two subsets of 𝑁, 𝑆, and 𝑇, 𝑇 is accessible from 𝑆 if
for each node 𝑛 in the set 𝑇 there is a corresponding node𝑚
in the set 𝑆 such that there exists a path from 𝑚 to 𝑛 in W-
graph 𝐺

𝑤
. For example, in the W-instance 𝐼 of Figure 1, the

set {𝑛
3
, 𝑛
5
, 𝑛
6
, 𝑛
7
, 𝑛
8
} is accessible from the set {𝑛

1
, 𝑛
2
, 𝑛
4
}.

The bisimulation semantics of the language is also given
as follows.

Definition 3. Given two W-graphs 𝐺
0
= ⟨𝑁

0
, 𝐸
0
, ℓ
0

⟩ and
𝐺
1
= ⟨𝑁

1
, 𝐸
1
, ℓ
1

⟩, a relation 𝑏 is said to be a bisimulation
between 𝐺

0
and 𝐺

1
(write 𝐺

0

𝑏

∼ 𝐺
1
) if and only if:

(1) for 𝑖 = 0, 1, ∀𝑛
𝑖
∈ 𝑁
𝑖
, ∃𝑛
1−𝑖

∈ 𝑁
1−𝑖

such that 𝑛
𝑖
𝑏𝑛
1−𝑖

,
(2) for 𝑖 = 0, 1, ∀𝑛

𝑖
∈ 𝑁
𝑖
, ∀𝑛
1−𝑖

∈ 𝑁
1−𝑖

, s.t. 𝑛
𝑖
𝑏𝑛
1−𝑖

→

ℓ
𝑖

L(𝑛𝑖) = ℓ
1−𝑖

L (𝑛
1−𝑖
) ∨ ℓ
𝑖

L(𝑛𝑖) =⊥ ∨ℓ
1−𝑖

L (𝑛
1−𝑖
) =⊥, and

Journal of Applied Mathematics 3

Teacher Teacher

Course Student

Database Smith

37

40

Age

Age

TeachesTeaches

Attends

NamecName

n1 n2

n3 n4n5

n6

n7 n8

Figure 1: A W-instance 𝐼.

(3) for 𝑖 = 0, 1, ∀𝑛 ∈ 𝑁
𝑖
, let 𝑀

𝑖
(𝑛)

def
= {⟨𝑚, label⟩ :

⟨𝑛, ⟨color, label⟩, 𝑚⟩ ∈ 𝐸
𝑖
}. Then, ∀𝑛

𝑖
∈ 𝑁

𝑖
,

∀𝑛
1−𝑖

∈ 𝑁
1−𝑖

such that 𝑛
𝑖
𝑏𝑛
1−𝑖

; for 𝑖 = 0, 1,
it holds that ∀⟨𝑚

𝑖
, ℓ
𝑖
⟩ ∈ 𝑀

𝑖
(𝑛
𝑖
), ∃⟨𝑚

1−𝑖
, ℓ
1−𝑖
⟩ ∈

𝑀
1−𝑖
(𝑛
1−𝑖
), s.t. 𝑚

𝑖
𝑏𝑚
1−𝑖
∧ ℓ
𝑖
= ℓ
1−𝑖

.

2.2. Model Checking. Model checking is an automated tech-
nique that, given a finite-state model of a system and a
formal property, systematically checks whether this property
holds for (a given state in) the model. Here the finite-state
model is always called Kripke structure (an automata-like
state transition system), and the formal properties are always
expressed by computation tree logic (CTL, a logic that is
based on a branching-time view) formulae.

Definition 4. A Kripke structure 𝐾 = ⟨Σ,Act, 𝑅, 𝐼⟩ is a
transition system over a set Π of atomic propositions, where
Σ is a set of states, Act is a set of actions, 𝑅 ⊆ Σ × Act × Σ is a
transition relations, and 𝐼 : Σ → 2

Π is an interpretation.

A path 𝜋 in a Kripke structure 𝐾 = ⟨Σ,Act, 𝑅, 𝐼⟩ is an
infinite sequence 𝜋 = ⟨𝜋

0
, 𝑎
0
, 𝜋
1
, 𝑎
1
, 𝜋
2
, 𝑎
2
, . . .⟩ of states and

actions (𝜋
𝑖
denotes the 𝑖th state in the path 𝜋), s.t.. For all

𝑖 ∈ 𝑁 it holds that 𝜋
𝑖
∈ Σ and either ⟨𝜋

𝑖
, 𝑎
𝑖
, 𝜋
𝑖+1
⟩ ∈ 𝑅, with

𝑎
𝑖
∈ Act, or there are no outgoing transitions from 𝜋

𝑖
and for

all 𝑗 ⩾ 𝑖 it holds that 𝑎
𝑗
is the special action 𝜏 (which is not in

Act) and 𝜋
𝑗
= 𝜋
𝑖
.

Definition 5. Given the setsΠ and Act of atomic propositions
and actions, computation tree logic (CTL) formulae are
recursively defined as follows:

(1) each 𝑝 ∈ Π is a CTL formula;

(2) if 𝜙
1

and 𝜙
2

are CTL formulae, 𝑎 ⊆ Act,
then ¬𝜙

1
, 𝜙
1
∧ 𝜙
2
,AX
𝑎
(𝜙
1
),EX
𝑎
(𝜙
1
),AU
𝑎
(𝜙
1
, 𝜙
2
),

andEU
𝑎
(𝜙
1
, 𝜙
2
) are CTL formulae.

A and E are the universal and existential path quantifiers,
while neXt (X) and Until (U) are the linear-time modalities.
Composition of formulae of the form 𝜙

1
∨ 𝜙
2
, 𝜙
1
→ 𝜙

2

can be, respectively, defined by ¬(¬𝜙
1
∧ ¬𝜙
2
) and ¬𝜙

1
∨

𝜙
2
, and the modalities Finally (F) and Generally (G) can

be defined in terms of the CTL formulae: F(𝜙) = U(true, 𝜙)
andG(𝜙) = ¬F(¬𝜙).

Definition 6. Satisfaction of a CTL formula by a state 𝑠 of the
Kripke structure 𝐾 = ⟨Σ,Act, 𝑅, 𝐼⟩ is defined recursively as
follows:

(i) if 𝑝 ∈ Π, then 𝑠 ⊨ 𝑝 iff 𝑝 ∈ 𝐼(𝑠). Moreover, 𝑠 ⊨ true,
and 𝑠 ⊭ false;

(ii) 𝑠 ⊨ ¬𝑝 iif 𝑠 ⊭ 𝑝;
(iii) 𝑠 ⊨ 𝜙

1
∧ 𝜙
2
iff 𝑠 ⊨ 𝜙

1
and 𝑠 ⊨ 𝜙

2
;

(iv) 𝑠 ⊨ EX
𝑎
(𝜙) iff there is a path 𝜋 = ⟨𝑠, 𝑥, 𝜋

1
, . . .⟩ s.t. 𝑥 ∈

𝑎 and 𝜋
1
⊨ 𝜙;

(v) 𝑠 ⊨ AX
𝑎
(𝜙) iff for all paths 𝜋 = ⟨𝑠, 𝑥, 𝜋

1
, . . .⟩, 𝑥 ∈ 𝑎

implies 𝜋
1
⊨ 𝜙;

(vi) 𝑠 ⊨ EU
𝑎
(𝜙
1
, 𝜙
2
) iff there is a path 𝜋 = ⟨𝜋

0
, 𝑥
0
, 𝜋
1
,

𝑥
1
, . . .⟩, and ∃𝑗 ∈ N s.t. 𝜋

0
= 𝑠, 𝜋

𝑗
⊨ 𝜙
2
, and

∀𝑖 < 𝑗, (𝜋
𝑖
⊨ 𝜙
1
and 𝑥

𝑖
∈ 𝑎);

(vii) 𝑠 ⊨ AU
𝑎
(𝜙
1
, 𝜙
2
) iff for all paths 𝜋 = ⟨𝜋

0
, 𝑥
0
, 𝜋
1
,

𝑥
1
, . . .⟩, s.t. 𝜋

0
= 𝑠, ∃𝑗 ∈ N, 𝜋

𝑗
⊨ 𝜙
2
, and ∀𝑖 < 𝑗, (𝜋

𝑖
⊨

𝜙
1
and 𝑥

𝑖
∈ 𝑎).

Definition 7 (the model-checking problem). Local model-
checking: given a Kripke structure𝐾, a formula 𝜙, and a state
𝑠 of 𝐾, the local model-checking is to verify whether 𝑠 ⊨ 𝜙.
Global model-checking: given a Kripke structure 𝐾, and a
formula 𝜙, the global model-checking is to find all states 𝑠 of
𝐾 such that 𝑠 ⊨ 𝜙.

If Σ is finite, the global model-checking problem for a
CTL formula 𝜙 can be solved in linear running time on
|𝜙|⋅(|Σ|+|𝑅|), where |𝜙| is the length of formula𝜙 and |Σ| is the
number of elements in the set Σ, |𝑅| is the elements number
of the transition relations set 𝑅 [16].

3. Modeling Semantic Inconsistency

When a language has been used to semantically model
different data sources for building the same domain ontology,
the semantic collision becomes prominent, so the consistency
checking is inevitable. Even from a single data source, the
incremental procedure of building the semantical model
may fail when a new snippet collides semantically with
some model segments that existed. Therefore, ambiguities
should be detected in order to get correct semantical model
during building a domain ontology.The semantic consistency
checking is a mechanism for checking whether the model is
semantic unambiguity or paradox.

Two kinds of problems would be of concern: redundancy
and paradox. The redundancy-free can reduce the size of the
model and accelerate modeling procedure. For the middle-
model language W-graph, according to Definition 3, two
equivalent models (or model segments) cause a redundancy.

As far as the paradox is concerned, there are four types of
inconsistency: concept inconsistency, relationship inconsis-
tency, attribute inconsistency, and fact inconsistencies. Before
discussing details of these inconsistencies, another specialW-
graph, so-called W-schema, will be presented. The schema
gives a pattern to organize data for an instance. The schema
of W-instance is also a W-graph, and it could be defined
formally as follows.

4 Journal of Applied Mathematics

Teacher Course Student

Age

Teach Attend

NamecName

⊥ ⊥ ⊥

Figure 2: A W-schema 𝑆 of 𝐼.

Teacher

Synonym Tutor

Course

Age

Age

Teach

Teach

⊥

⊥

Figure 3: A concept redundancy.

Definition 8. A W-schema 𝑆 is a W-graph such that ℓC(𝑒) =
solid for each edge 𝑒 of 𝑆 and ℓC(𝑛) = solid and ℓL(𝑛) =⊥ for
each node 𝑛 of 𝑆; that is, a schema has no values.

For example, Figure 2 depicts the W-schema of the W-
instance 𝐼 in Figure 1. So theW-graph language can be used to
model semantic aspects of the knowledge, nodes for concepts,
edges for relationships between them, W-schemata for the
patterns of the knowledge, and W-instances for the concrete
contents of that knowledge. Nowwe will discuss the details of
each inconsistency based on the W-graph.

Concept Redundancy. During the procedure of building
semantic model, if a new concept occurs, then we add this
concept to the model (add a new node to the W-schema). If
a concept paradox occurs, then we also add a new concept
to the model. But concepts redundancy will occur if we
find two concepts (different names, of course) getting the
same attribute set and relationship set. Concepts redundancy
always occurs in theW-schema. For example, Figure 3 shows
that Teacher and Tutor are the same concepts here. There is
not a new concept Tutor to be added into the model, but a
new synonym of Teacher can be annotated by only one edge
labeled “synonym.”

We define concept redundancy as follows.

Definition 9. In the W-graph ⟨𝑁, 𝐸, ℓ⟩, two concepts 𝐶
1
and

𝐶
2
(expressed as nodes 𝑛

1
, 𝑛
2
) are redundancy when they get

the same adjacent nodes set and edges set:

𝐶
1
≈ 𝐶
2
iff |{𝑛 | (𝑛, 𝑛

1
) ∈ 𝐸}| = |{𝑚 | (𝑚, 𝑛

2
) ∈ 𝐸}| ,

|{𝑛 | (𝑛
1
, 𝑛) ∈ 𝐸}| = |{𝑚 | (𝑛

2
, 𝑚) ∈ 𝐸| and for all 𝑚

and corresponding 𝑛 such that𝑚 ∼ 𝑛.

Here,𝑚 ∼ 𝑛means that after omitting concepts nodes 𝑛
1
,

𝑛
2
and their adjacent edges the subgraph𝑀 including node

𝑚 bisimulates the subgraph𝑁 including node 𝑛. Computing

Teacher Course Student

Teach

Teach Attend

Figure 4: A relationship inconsistency.

𝑚 ∼ 𝑛 is an iterative process. For deciding whether𝑚 ∼ 𝑛, we
delete node𝑚 and its adjacent edges from𝑀 and node 𝑛 and
its adjacent edges from 𝑁 and then decide whether the two
smaller subgraphs are bisimulation.The iterative process will
terminate because the nodes and edges are finite.

Relationships Inconsistency.When anew relationship between
concepts during modeling process is found, the relationship
cannot be added directly into the model, because some-
times the inconsistency will occur. Firstly, if the relationship
is redundant according to the bisimulation, it should be
ignored. Secondly, if the relationship is added into the
model, we must ensure not to introduce some paradox
into the model; otherwise, the relationship inconsistency
occurs. For example, Figure 4 shows that the relationship
“Student teaches Teacher” should cause a paradox. The
relationship may be found from XML documents “Teacher
teaches students knowledge, and meanwhile teacher also
learns something from students.” The relationship “teacher
learns from students” may be understood as “Student teaches
Teacher,” but this contradicts “Teacher teaches Student” rela-
tionship, which is reasoned from “Teacher teaches Course”
and “Student attends the Course.”

The paradox relationship can be formally defined as
follows.

Definition 10. In the W-graph ⟨𝑁, 𝐸, ℓ⟩, a paradox relation-
ship between node 𝑛

1
and node 𝑛

2
is that (𝑛

1
, 𝑛
2
) ∈ 𝐸 and

(𝑛
2
, 𝑛
1
) ∈ 𝐸, where ℓ((𝑛

1
, 𝑛
2
)) = ℓ((𝑛

2
, 𝑛
1
)).

Attribute Inconsistency.The attributes of concepts are another
kind of relationship, so-called “isa” or “hasa” relationship. So
attribute inconsistency is a kind of relationship inconsistency,
but simpler.

Fact Inconsistency. This kind of inconsistency occurs in
the W-instance. Facts are the individuals of concepts or
attributes. When creating W-instance by populating data
from the heterogeneous sources, lots of facts inconsistencies
may occur. In Figure 5(a), an attribute fact inconsistency
will happen if the fact “age is 40” is added into the model,
where the teacher named Charley gets two different ages.
And in Figure 5(b), the Teacher2 gets all the same value
set of attributes, so Teacher1 and Teacher2 are the concept
fact inconsistency. Therefore, the two facts “age is 40” and
“Teacher2” cannot be added into the model.

The fact inconsistency is formally defined as follows.

Definition 11. In the W-instance ⟨𝑁, 𝐸, ℓ⟩ where 𝑁 = {𝑁
𝑎
,

𝑁
𝑐
}, two facts 𝑛

1
, 𝑛
2
∈ 𝑁 are said to be inconsistent if

Journal of Applied Mathematics 5

Teacher

Name
Age

Age

37

40
Charley

(a)

Name
Age

Name Age

Teacher1 Teacher2

37Charley
37Charley

(b)

Figure 5: A fact inconsistency.

(1) for 𝑛
1
, 𝑛
2
∈ 𝑁
𝑎
, ∃𝑚 ∈ 𝑁

𝑐
s.t. ℓ((𝑚, 𝑛

1
)) = ℓ((𝑚, 𝑛

2
))

and ℓ(𝑛
1
) ̸= ℓ(𝑛

2
) or

(2) for 𝑛
1
, 𝑛
2
∈ 𝑁
𝑐
, ∀𝑚
1
∈ 𝑁
𝑎
, (𝑛
1
, 𝑚
1
) ∈ 𝐸 and 𝑚

2
∈

𝑁
𝑎
, (𝑛
2
, 𝑚
2
) ∈ 𝐸 s.t. ℓ((𝑛

1
, 𝑚
1
)) = ℓ((𝑛

2
, 𝑚
2
)) and

ℓ(𝑚
1
) = ℓ(𝑚

2
).

For all these inconsistencies, the core problem is how to
discovery the redundancy and paradox in the model. In fact,
the procedure of discovery is a subgraph query problem in
W-graph.

Definition 12. For a W-graph 𝐺 = ⟨𝑁, 𝐸, ℓ⟩, a subgraph of 𝐺
is also a W-graph 𝐺

𝑠
= ⟨𝑁

𝑠
, 𝐸
𝑠
, ℓ
𝑠
⟩, where 𝑁

𝑠
= {𝑛 ∈ 𝑁 :

ℓC(𝑛) = solid} and 𝐸
𝑠
= {(𝑚, (solid, ℓ), 𝑛) : 𝑚, 𝑛 ∈ 𝑁

𝑠
}.

Furthermore, given two sets of nodes 𝑆, 𝑇 ⊆ 𝑁,𝑇 is accessible
from 𝑆 if for each 𝑛 ∈ 𝑇 there is a node𝑚 ∈ 𝑆 such that there
is a path in 𝐺 from𝑚 to 𝑛.

Definition 13. A W-query is a pointed W-graph, namely, a
pair ⟨𝐺,]⟩with] as a node of𝐺 (the point). AW-query ⟨𝐺,]⟩
is accessible if the set𝑁 of nodes of 𝐺 is accessible from {]}.

For example, in Figure 6 three W-queries are depicted.
The thick arrows are their points, and they are W-queries.
Intuitively, the meaning of the first query is to collect all the
teachers aged 37. The second query asks for all the teachers
that have declared an age (observe the use of an undefined
node). The third query, instead, requires collecting all the
teachers that teach some courses but not Database, where
dashed nodes and lines are introduced to allow a form of
negation.

According to Definition 13, an inconsistency checking
problem is indeed a query problem in the partial W-graph
model. Meanwhile, the semantic equivalence must be of
concern during query processing. We call this a semantical
equivalence query problem. For the incremental procedure of
building domain ontology, a semantical equivalence querying
should be executed as soon as each new element (concept,
relationship, attribute or fact) is added into themodel. So, the
semantic equivalence querying problem is the basic problem
for the consistency checking.

However, the semantical equivalence querying problem
for a W-graph model is the subgraph-isomorphism problem,
which is NP problem in general. In this paper, we employ

model-checking technology to handle semantical equiva-
lence query problem in order to avoid computing subgraph
isomorphism.

4. Consistency Checking

In order to employ model-checking technology, we can see
a W-graph model as a Kripke structure and a semantical
equivalency query as a formula of the temporal logic CTL.
In this way, the inconsistency checking problem is reduced
to the problem of finding out the states of the model which
satisfy the formula (the model-checking problem) that can
be done in linear time.

4.1. W-Graph as Kripke Structure. With the following defini-
tion, we can build Kripke structure fromW-graph.

Definition 14. Let 𝐺 = ⟨𝑁, 𝐸, ℓ⟩ be a W-graph, the Kripke
structure 𝐾

𝐺
= ⟨Σ

𝐺
,Act
𝐺
, 𝑅
𝐺
, 𝐼
𝐺
⟩ over the set of atomic

properties Π
𝐺
is defined as follows:

(i) Π
𝐺
is the set of all node labels of 𝐺, Π

𝐺
= {𝑝 | ∀𝑛 ∈

𝑁, 𝑝 = ℓ(𝑛)}.
(ii) The set of states Σ

𝐺
= 𝑁.

(iii) The set of actions Act
𝐺
= {𝑝 | ∃𝑚, 𝑛 ∈ 𝑁, (𝑚, 𝑝, 𝑛) ∈

𝐸} ∪ {𝑝
−1

| ∃𝑚, 𝑛 ∈ 𝑁, (𝑚, 𝑝, 𝑛) ∈ 𝐸} ∪ {𝑝 | ∃𝑚, 𝑛 ∈

𝑁, (𝑚, 𝑝, 𝑛) ∈ 𝐸}; that is, the set of actions includes
all the edge labels, negative labels (express as 𝑝), and
their inverse labels (express as 𝑝−1, 𝑝−1); note that
negative labels are very different from inverse labels.
A negative label edge expresses that there is no special
relationship (i.e., “label” relationship) between two
nodes, but an inverse label edge expresses that there
is a special relationship (i.e., inverse relationship)
between this two nodes.

(iv) The ternary transition relation 𝑅
𝐺
= 𝐸∪ {(𝑛, 𝑝

−1

, 𝑚) |

(𝑚, 𝑝, 𝑛) ∈ 𝐸}. Moreover, assume that, for each state
𝑠 with no outgoing edge in 𝐸 (a leaf in 𝐺), a self-loop
edge labeled by the special action 𝜏 is added.

(v) The interpretation function 𝐼
𝐺
(𝑛) = {true, ℓL(𝑛)},

where 𝑛 ∈ 𝑁.That is, in each state 𝑛 the only formulae
that hold are the unary atom ℓL(𝑛) and true.

6 Journal of Applied Mathematics

Teacher

Age

37

(a)

Teacher

Age

(b)

Teacher

Course

Teaches

Database

cName

(c)

Figure 6: Three W-queries.

For instance, consider the W-graph of Figure 1. It holds
the following:

(i) Π
𝐺
= {Teacher,Course, Student, 37, 40, Databases,

Smith},

(ii) Σ
𝐺
= {𝑛
1
, 𝑛
2
, . . . , 𝑛

8
},

(iii) Act
𝐺

= {age, age−1, age, age−1, teaches, teaches−1,
teaches,teaches

−1

,attends,attends−1,attends,attends
−1

,

name, name−1, name, name−1, 𝑐Name, 𝑐Name−1,
𝑐Name, 𝑐Name−1},

(iv) 𝑅
𝐺

= {(𝑛
1
, age, 𝑛

5
), (𝑛
5
, age−1, 𝑛

1
), (𝑛
1
, teaches, 𝑛

3
),

(𝑛
3
, teaches−1, 𝑛

1
), (𝑛

2
, age, 𝑛

6
), (𝑛
6
, age−1, 𝑛

2
), (𝑛

2
,

teaches, 𝑛
3
), (𝑛
3
, teaches−1, 𝑛

2
), (𝑛
4
, attends, 𝑛

3
), (𝑛
3
,

attends−1, 𝑛
4
), (𝑛

3
, 𝑐Name, 𝑛

7
), (𝑛

7
, 𝑐Name−1, 𝑛

3
),

(𝑛
4
, name, 𝑛

8
), (𝑛
8
, name−1, 𝑛

4
), (𝑛
5
, 𝜏, 𝑛
5
), (𝑛
6
, 𝜏, 𝑛
6
),

(𝑛
7
, 𝜏, 𝑛
7
), (𝑛
8
, 𝜏, 𝑛
8
)},

(v) 𝐼
𝐺

= {𝐼
𝐺
(𝑛
1
) = {true,Teacher}, 𝐼

𝐺
(𝑛
2
) = {true,

Teacher}, 𝐼
𝐺
(𝑛
3
) = {true,Course}, 𝐼

𝐺
(𝑛
4
) =

{true, Student}, 𝐼
𝐺
(𝑛
5
) = {true, 37}, 𝐼

𝐺
(𝑛
6
) =

{true, 40}, 𝐼
𝐺
(𝑛
7
) = {true,Database}, 𝐼

𝐺
(𝑛
8
) = {true,

Smith}}.

And this Kripke structure is shown in Figure 7.

4.2. Query as CTL Formula. Reviewing the W-query in
Figure 6(a), intuitively, the CTL formula must express the
statement “the state Teacher formula is true and there is one
next state reachable by an edge labeled age, where the 37
formula is true,” this is to say

Teacher ∧ EXage (37) . (1)

For the query in Figure 6(b), the CTL formula should be
written as

Teacher ∧ EXage (true) , (2)

For the query of Figure 6(c), we get the following formula:

Teacher ∧ EXteaches (Course) ∧ AX
𝑐name (¬Database) . (3)

This formula is true if “there is a node labeled Teacher and
there exists one next node labeled Course, which is reachable
by an edge labeled teaches, such that for all next to Course
nodes labeled Database, the relation cName is not fulfilled”.
Let us then consider how to encode W-queries in CTL
formulae. We study the situation that W-graph and W-query
are both acyclic. Firstly, we define an auxiliary function to
simply handle labels of nodes and edges in W-graph.

Definition 15. Let 𝐺 = ⟨𝑁, 𝐸, ℓ⟩ be a W-graph, for all nodes
𝑛 ∈ 𝑁 and for all edges 𝑒 = ⟨𝑛

1
, (𝑐, 𝑝), 𝑛

2
⟩ ∈ 𝐸; an auxiliary

function 𝜑 is defined as

𝜑 (𝑛) = {
ℓL (𝑛) , if ℓL (𝑛) ̸= ⊥,

true otherwise

𝜑 (𝑒) = {
𝑝, if ℓC (𝑒) = ℓC (𝑛2) ,
𝑝, otherwise.

(4)

And the query translation can be formally defined as
follows.

Definition 16. Let 𝐺 = ⟨𝑁, 𝐸, ℓ⟩ be a acyclic W-graph,] ∈

𝑁, and let 𝑄 = ⟨𝐺,]⟩ be an accessible query. The formula
associatedwith𝑄 isΨ](𝐺), whereΨ](𝐺) is defined recursively
as follows:

(i) let 𝑏
1
, . . . , 𝑏

ℎ
(ℎ ≥ 0) be the successors of], s.t. ℓC(𝑏𝑖) =

solid,

(ii) let 𝑐
1
, . . . , 𝑐

𝑘
(𝑘 ≥ 0) be the successors of], s.t. ℓC(𝑐𝑖) =

dashed,

Journal of Applied Mathematics 7

{true, Teacher}
{true, Teacher}

{true, 37}

true, Database}{

{true, Course}

{true, Smith}

{true, Student}

{true, 40}
n1

n2

n3

n4
n5

n6

n7
n8

Age
Age

Age−1

Age−1

Teaches

Teaches
Teaches−1Teaches−1

Attends

Name
Name−1

cName cName−1

𝜏

𝜏
𝜏

𝜏

Attends−1

Figure 7: The Kripke structure of Figure 1.

(iii) for 𝑖 = 1, . . . , ℎ and 𝑗 = 1, . . . , 𝑘, let 𝑒
𝑖
be the edge

which links] to 𝑏
𝑖
and 𝑒
𝑖
the one which links] to 𝑐

𝑗
.

If ℓC(]) = solid, then

Ψ] (𝐺) = 𝜑 (]) ∧ ⋀

𝑖=1,...,ℎ

EX
𝜑(𝑒𝑖)

(Ψ
𝑏𝑖
(𝐺))

∧ ⋀

𝑗=1,...,𝑘

AX
𝜑(𝑒

𝑗
)
(Ψ
𝑐𝑗
(𝐺))

else (ℓC (]) = dashed) Ψ] (𝐺)

= ¬𝜑 (]) ∨ ⋁

𝑖=1,...,ℎ

AX
𝜑(𝑒𝑖)

(Ψ
𝑏𝑖
(𝐺))

∨ ⋁

𝑗=1,...,𝑘

EX
𝜑(𝑒

𝑗
)
(Ψ
𝑐𝑗
(𝐺)) .

(5)

The construction of the formula involves the unfolding
of a directed acyclic graph; the size of the formula Ψ](𝐺)

(written as |Ψ](𝐺)|) can grow exponentially with respect
to|𝐺|. Although that, it is easy to compute the formula
without repetitions of subformulae and keep the memory
allocation linear w.r.t. |𝐺|, so it is natural to compactly
represent the formula using a linear amount of memory.
This compact representation is allowed by themodel-checker
NuSMV [19].

Theorem 17. Given a W-instance 𝐼 and a W-query ⟨𝐺,]⟩, let
𝐾
𝐼
be the Kripke structure associated with 𝐼 andΨ](𝐺) the CTL

formula associated with ⟨𝐺,]⟩. Consistency checking 𝐼 with
⟨𝐺,]⟩ can be done in linear time on |𝐼| ⋅ |Ψ](𝐺)|.

Proof. For achieving the consistency checking procedure,
there are three steps to follow, translating the W-graph into a
Kripke structure, encoding theW-query into a CTL formula,
and executing a model-checking process.

Assuming that |𝐼| = |𝑁| + |𝐸|, where |𝑁| is the
number of nodes in W-instance 𝐼 and |𝐸| is the number
of edges in this graph, notating 𝐾

𝐼
= ⟨Σ

𝐼
,Act
𝐼
, 𝑅
𝐼
, 𝐼
𝐼
⟩,

expressing |Σ
𝐼
|, |Act

𝐼
|, |𝑅
𝐼
| as the number of states, actions,

and transition relations in |𝐾
𝐼
|, and writing |Ψ](𝐺)| as the

length of the CTL formula Ψ](𝐺), then the complexity issues
can be analyzed.

Firstly, when creating the Kripke structure, for each node,
action, and transitional relation that must be created one by
one, the time complexity should be |Σ

𝐼
|+ |Act

𝐼
|+ |𝑅
𝐼
| ≤ |𝑁|+

4|𝐸| + 3|𝐸| = 𝑂(|𝐼|), according to Definition 14. Secondly, we
consider the length of the encoded CTL formula |Ψ](𝐺)| ≤

|𝐺| = 𝑂(|𝐺|), because the worst situation is to encode the
whole W-graph into a formula, where |𝐺| is the total number
of edges and nodes in this query. The last step is to execute
model-checking procedure; the time complexity is |Ψ](𝐺)| ⋅

(|Σ
𝐼
| + |𝑅
𝐼
|) = 𝑂(|𝐺| ⋅ |𝐼|) according to [16]. So the total time

complexity is 𝑂(|𝐼|) + 𝑂(|𝐺|) + 𝑂(|𝐺| ⋅ |𝐼|), which is a linear
time on |𝐼| ⋅ |Ψ](𝐺)|.

If we think that the |𝐺| is always less than or equal to |𝐼|
(intuitively, it is always so), then𝑂(|𝐼|)+𝑂(|𝐺|)+𝑂(|𝐺|⋅ |𝐼|) ≤
𝑂(|𝐼|
2

) + 𝑂(|𝐼|), which is a polynomial time over |𝐼|.

The equivalence between two segments of W-graph is
the equivalence between two CTL formulae, which can be
formally proved in linear time. The consistency checking
problem for the W-graph model is promoted to the equiv-
alence proof problem for the CTL formulae with a Kripke
structure.

4.3. Checking Consistency. During the procedure of extract-
ing a domain ontology gradually from heterogeneous data
sources, semantic consistency has to be checked. According
to Definitions 14 and 16, after encoding a W-graph to a
Kripke structure and a W-query to a CTL formula, the
semantic equivalent query problem on theW-graph has been
promoted to a global model-checking problem.

Definition 18. Given a W-instance 𝐼 and a W-query ⟨𝐺,]⟩,
let 𝐾
𝐼
be the Kripke structure associated with 𝐼 and Ψ](𝐺)

the CTL formula associated with ⟨𝐺,]⟩. The Consistency
checking 𝐼 with ⟨𝐺,]⟩ amounts to solve the global model-
checking problem with the Kripke structure 𝐾

𝐼
and the CTL

formula Ψ](𝐺), namely, to find all the states 𝑠 of 𝐾
𝐼
such that

𝑠 ⊨ Ψ](𝐺). Algorithm 1 describes this procedure.

8 Journal of Applied Mathematics

Require: 𝐼, // W-graph semantic model
⟨𝐺,]⟩ // semantic segment expressed by W-query

Ensure: consistent or inconsistent
encoding 𝐼 to 𝐾

𝐼
; // according to Definition 14

encoding ⟨𝐺,]⟩ to Ψ](𝐺); // according to Definition 16
𝑆 = {𝑠 | 𝑠 ⊨ Ψ](𝐺)}; // model checking
if 𝑆 is emptyset then

return consistent;
else

return inconsistent;
end if

Algorithm 1: Semantic consistency checking.

So semantic consistency checking can be done with
model-checking technology. Let us consider each type of
inconsistency defined above. As for concepts inconsistency,
it is to find out whether there is another concept (equivalent
to 𝐶) in W-schema 𝑆, which has been built to be extended,
when a new concept 𝐶 has been added into the W-schema
𝑆. This is to say, a W-query 𝑄 = ⟨𝑆, 𝐶⟩ should be imposed on
the 𝑆 for consistency checking. Let𝐾

𝑆
be the Kripke structure

of 𝑆 and let Ψ
𝐶
(𝑆) = 𝜑(𝐶) be the CTL formula of 𝑄 and we

should find all states 𝑠 of𝐾
𝑆
such that 𝑠 ⊨ 𝜑(𝐶).

As far as relationship inconsistency is concerned, it is to
query aW-graph𝐺with aW-query𝑄 = ⟨𝐺, 𝑛

1
⟩ before a new

relationship (𝑛
1
, 𝑛
2
) is added into theW-graphmodel. Let𝐾

𝐺

be the Kripke structure of 𝐺, and the CTL formula is

Ψ
𝑛1
(𝐺) = 𝜑 (𝑛

1
) ∧ EX

𝜑((𝑛1 ,𝑛2))
(𝑛
2
) . (6)

The consistency checking is to find all states 𝑠 of 𝐾
𝐺
such

that 𝑠 ⊨ Ψ
𝑛1
(𝐺). If the states like this cannot be found, then

the model is consistent after adding the new relationship
(𝑛
1
, 𝑛
2
); if any state has been found, then the model will be

inconsistent and the new relationship cannot be added into
the model. This is the relationship redundant inconsistency.
As for paradox relationship paradox inconsistency, the CTL
formula is

Ψ
𝑛2
(𝐺) = 𝜑 (𝑛

2
) ∧ EX

𝜑((𝑛1 ,𝑛2))
(𝑛
1
) . (7)

As for fact consistency checking, the Kripke structure of
theW-instance 𝐼 is𝐾

𝐼
, and the CTL formula for the attribute

fact (the instance 𝑚 of a concept has the concrete attribute
value 𝑛, i.e., (𝑚, 𝑛)) inconsistency is

Ψ
𝑚
(𝐼) = 𝜑 (𝑚) ∧ EX

𝜑((𝑚,𝑛))
(𝑛) . (8)

The CTL formula for the concept fact (the instance𝑚 of one
concept to be added into the model) inconsistency is

Ψ
𝑚
(𝐼) = 𝜑 (𝑚) ∧ ⋀

𝑗=1,...,𝑘

AX
𝜑((𝑚,𝑛𝑗))

(Ψ
𝑛𝑗
(𝐼)) , (9)

where 𝑛
𝑗
, 𝑗 = 1, . . . , 𝑘 are all successors of𝑚. If some states of

𝐾
𝐼
satisfy the above formula, then the inconsistency occurs.

This is to say, a fact 𝑚 cannot be added into the model if an
equivalent fact has already existed in the model.

5. Cases Study

In this section, we will test the semantic consistency checking
technique presented above by using the model checker
NuSMV 2.5.4 [20]. NuSMV allows for the representation of
finite-state machines (FSMs) and for the analysis of spec-
ifications expressed in computation tree logic (CTL) using
symbol model-checking techniques. For using the tool, we
first rewrite the Kripke structure into a finite-state machine,
where edges are not labeled, as follows:

given a Kripke structure related to a W-instance,
replace every labeled edge𝑚 action

→ 𝑛 by the two edges
𝑚 → 𝜇, 𝜇 → 𝑛, where 𝜇 is a new node labeled
action.

The input of the NuSMV tool is represented by a SMV
program, which can express both the FSMs and CTL for-
mulae. The Algorithm 2 is the SMV program to describe the
Kripke structure of the W-instance in Figure 7 and some
CTL specification of consistency checking mentioned above,
where the line started with symbol “- -” is comment.

In this SMV program, the set of states of the Kripke
structure is chosen by declaring the state variable state to
assume values {n0, . . . , n8, teaches, . . . , tao}, where actions
have also been seen as states. The transition relation of the
Kripke structure is expressed by assigning (ASSIGN), for
each value of the variable state, the list of nodes that can
be reached from it through one edge. The variables label
and nl are introduced to define the node label of each state
identified by the value of the variable state. And CTL
formulae have been defined by CTLSPEC. The formula

(nl = Teacher) & EX(state = age) & EX(state =
teaches& EX(nl = Course))

says when a new concept Teacher, which has an age attribute,
has a teaches action, and can teach some Course, is to be
added into the model whether there exists an inconsistency.
And

(nl = Student) & EX(state = attends& EX(nl =
Course))

expresses whether a new relationship Student attends
→ Course

can be added into the model without semantic inconsistency.
And

(nl = Teacher) & EX(state = age & EX(nl = 40))

says whether the attribute relationship “the Teacher is 40
years old” can be added into the model without any redun-
dancy and paradox. And

(nl = Teacher) & EX(state = age & EX(nl = 37))
& EX(state = teaches & EX(nl = Course &
EX(state = cName & EX(nl = Database))))

expresses whether the fact “the 37-year Teacher teaches
Database Course” can be added into the model.

The results we have obtained on the 64-bit windows 7
operation system are shown in Figure 8.The output true for a

Journal of Applied Mathematics 9

- - SMV program for consistency checking

MODULE main

VAR

state:{n1,n2,n3,n4,n5,n6,n7,n8,teaches,inv teaches,attends,

inv attends,age,inv age,name,inv name,cName,inv cName,tao};

label:{Teacher,Course,Student,Database,Smith,37,40};

ASSIGN

init(state) := n1;

next(state) := case

state = n1 | state = n2 : {teaches,age};

state = teaches : n3;

state = age : {n5,n6};

state = n3:{inv attends,inv teaches,cName};

state = inv attends : n4;

state = inv teaches : {n1,n2};

state = cName : n7;

state = n4 : {attends,name};

state = attends : n3;

state = name : n8;

state = n5 : {inv age,tao};

state = inv age : {n1,n2};

state = tao : {n5,n6,n7,n8};

state = n6 : {inv age,tao};

state = n7 : {inv cName,tao};

state = inv cName : n3;

state = n8 : {inv name,tao};

state = inv name : n4;

TRUE : state;

esac;

DEFINE

nl := case

state = n1 | state = n2 : Teacher;

state = n3 : Course;

state = n4 : Student;

state = n5 : 37;

state = n6 : 40;

state = n7 : Database;

state = n8 : Smith;

TRUE : state;

esac;

- - concept redundancy checking

CTLSPEC (nl=Teacher) & EX(state=age) &

EX(state=teaches & EX(nl=Course))

- - relationship inconsistency checking

- - need to be changed to ‘init(state) := n4;’
CTLSPEC (nl=Student) & EX(state=attends & EX(nl=Course))

- - attribute inconsistency checking

CTLSPEC (nl=Teacher) & EX(state=age & EX(nl=40))

- - fact inconsistency checking

CTLSPEC (nl=Teacher) & EX(state=age&EX(nl=37)) &

EX(state=teaches & EX(nl=Course &

EX(state=cName & EX(nl=Database))))

Algorithm 2

CTL formula says that at least one inconsistency exists when
checking theW-graphmodel with the new semantic segment
(expressed by this formula), so the new segment cannot be
added into the model. Otherwise, we can choose another

initiate state to check again, until we finish all elements of
initiated state set. If we always get a final false output, then
the inconsistency has not occurred, and the new semantic
segment can be added into the model.

10 Journal of Applied Mathematics

Figure 8: Experiment results.

This test confirms the possibility of solving semantic
consistency checking problem by using model-checking on
polynomial time methods.

6. Conclusion

For validating semantic consistency during the increasing
procedure of building a domain ontology from heteroge-
neous sources, we employ the model-checking technology
to avoid subgraph isomorphism problem, which is NP hard.
In order to adopt model-checking method, we formally
transform the semantic model into a Kripke structure and
the semantic equivalent querying problem intoCTL formulae
and then the semantic consistency is promoted to the global
model-checking problem. The effective experiment with the
model-checking tool NuSMV has also been introduced. In
the future, the reasoning problem should be considered
clearly; for example, some implicative semantic elements
would be reasoned from the existingmodel. If a new semantic
segment is equivalent to some implicative semantic elements,
the inconsistency also occurs. In the near future, this type of
consistency checking should also be regarded.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This paper is supported by the Natural Science Founda-
tion of Guangxi under Grants nos. 2011GXNS-FA018154
and 2012GXNS-FGA060003, the Science and Technology
Foundation of Guangxi under Grant no. 10169-1, Guangxi
Scientific Research Project no. 201012MS274, and the starting
fund of GXUN under Grant no. 2011QD017. This paper is
supported also by Grant (2012HCIC04) of Guangxi Key
Laboratory of Hybrid Computation and IC Design Analysis
Open Fund.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] J. Barrasa, Ó. Corcho, and A. Gómez-pérez, “R2o, an exten-
sible and semantically based database-to-ontology mapping
language,” in Proceedings of the 2ndWorkshop on Semantic Web
and Databases (SWDB ’04), pp. 1069–1070, Springer, 2004.

[3] F. Zhang, L. Yan, Z.M.Ma, and J. Cheng, “Knowledge represen-
tation and reasoning of XML with ontology,” in Proceedings of
the 26th Annual ACM Symposium on Applied Computing (SAC
’11), pp. 1705–1710, New York, NY, USA, March 2011.

[4] T. Pankowski, “Detecting semantics-preserving xml schema
mappings based on annotations to owl ontology,” in Proceedings
of the 4th International Workshop on Logic in Databases (LID
’11), pp. 57–57, New York, NY, USA, 2011.

[5] S. Yang, J. Wu, A. He, and Y. Rao, “Derivation of owl ontology
from xml documents by formal semantic modeling,” Journal of
Computers, vol. 8, no. 2, pp. 372–379, 2013.

[6] S. Yang and J.Wu, “Mapping relational databases into ontologies
through a graph-based formal model,” in Proceedings of the
6th IEEE International Conference on Semantics Knowledge and
Grid (SKG ’10), pp. 219–226, 2010.

[7] C. Bizer, “D2r map—a database to rdf mapping language,” in
Proceedings of the 12th ACM International World Wide Web
Conference (WWW ’03), Budapest, Hungary, 2003.

[8] E. Dragut and R. Lawrence, “Composing mappings between
schemas using a reference ontology,” in On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
pp. 783–800, Springer, Berlin, Germany, 2004.

[9] D. Dejing, L. Paea, K. Shiwoong, and Q. Peishen, “Integrating
databases into the semantic web through an ontology-based
framework,” in Proceedings of the 22nd International Conference
on Data Engineering Workshops (ICDEW ’06), IEEE Computer
Society, p. 54, Washington, DC, USA, 2006.

[10] A. Yuan, B. Alex, and M. John, “Inferring complex semantic
mappings between relational tables and ontologies from simple
correspondences,” in On the Move to Meaningful Internet Sys-
tems 2005: CoopIS, DOA, and ODBASE, pp. 1152–1169, Springer,
Berlin, Germany, 2005.

[11] H.-H. Do and E. Rahm, “Coma: a system for flexible combina-
tion of schemamatching approaches,” in Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB ’02),
pp. 610–621, VLDB Endowment, 2002.

[12] S. Yang, Y. Zheng, and X. Yang, “Semi-automatically building
ontologies from relational databases,” in Proceedings of the
3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT ’10), vol. 1, pp. 150–154, July
2010.

[13] S. H. Yang, J. Z. Wu, and A. P. He, “Automatically transforming
legacy xml documents into owl ontology,” Applied Mechanics
and Materials, vol. 241, pp. 2638–2644, 2013.

[14] A.Dovier andE.Quintarelli, “Applyingmodel-checking to solve
queries on semistructured data,” Computer Languages, Systems
and Structures, vol. 35, no. 2, pp. 143–172, 2009.

[15] S. Cluet, “Modeling and querying semi-structured data,” in
Information Extraction a Multidisciplinary Approach to an
Emerging Information Technology, M. Pazienza, Ed., vol. 1299 of
Lecture Notes in Computer Science, pp. 192–213, Springer, 1997.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking,
MIT Press, 1999.

Journal of Applied Mathematics 11

[17] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT
Press, Cambridge, Mass, USA, 2008.

[18] B. Motik, P. F. Patel-Schneider, and B. Parsia, “Owl 2 web
ontology language structural specification and functional-style
syntax, W3Cr,” 2009, http://www.w3.org/TR/2009/REC-owl2-
syntax-20091027/.

[19] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a
new symbolic model checker,” International Journal on Software
Tools for Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[20] C. Alessandro, R. Marco, C. Roberto et al., “Nusmv2 (version
2.5.4),” 2011, http://nusmv.fbk.eu/.

