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We study the existence of positive solutions for a nonlinear higher-order multipoint boundary value problem. By applying a
monotone iterativemethod, some existence results of positive solutions are obtained.Themain result is illustrated with an example.

1. Introduction

Weconsider the following nonlinear higher-order differential
equation:

𝑢
(𝑛)

(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , . . . , 𝑢
(𝑝)

(𝑡)) = 0,

𝑡 ∈ (0, 1) ,

(1)

with the multipoint boundary conditions

𝑢
(𝑖)

(0) = 0, 0 ⩽ 𝑖 ⩽ 𝑛 − 2,

𝑢
(𝑝)

(1) =

𝑚

∑

𝑖=1

𝑘𝑖𝑢
(𝑝)

(𝜂𝑖) ,

(1 ⩽ 𝑝 ⩽ 𝑛 − 2, but fixed) .

(2)

Throughout this paper, we assume that the following condi-
tions are satisfied:

(H1) 𝑚 ⩾ 1, 𝑛 ⩾ 3, 𝑝 ∈ {1, 2, . . . , 𝑛 − 2} are fixed
integers, 𝑘𝑖 ⩾ 0, 0 < 𝜂𝑖 < 1 (1 ⩽ 𝑖 ⩽ 𝑚) with
Θ := ∑

𝑚

𝑖=1 𝑘𝑖𝜂
𝑛−𝑝−1

𝑖
< 1;

(H2) 𝑞 ∈ 𝐿
1
[0, 1] is nonnegative and 0 < ∫

1

0
(1 −

𝑠)
𝑛−𝑝−1

𝑞(𝑠)𝑑𝑠 < ∞;
(H3) 𝑓 : [0, 1] × [0, ∞)

𝑝+1
→ [0, ∞) is continuous.

In this paper, by a positive solution 𝑢
∗ of problems (1) and

(2), wemean a function 𝑢
∗ satisfying the differential equation

(1) and the boundary conditions (2) with 𝑢
∗

(𝑡) > 0 for all
𝑡 ∈ (0, 1].

The multipoint boundary value problems for ordinary
differential equations arise in a variety of different areas
of applied mathematics and physics. In recent years, the
existence and multiplicity of solutions of nonlinear higher-
order differential equations with various multipoint bound-
ary conditions have been studied extensively by numerous
researchers using a variety of methods and techniques.
For example, Graef and Yang [1] studied a higher-order
multipoint boundary value problem

𝑢
(𝑛)

(𝑡) + 𝜆𝑔 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢
(𝑖)

(0) = 0, 0 ⩽ 𝑖 ⩽ 𝑛 − 2,

𝑢
(𝑛−2)

(1) =

𝑚

∑

𝑖=1

𝑎𝑖𝑢
(𝑛−2)

(𝜉𝑖) ,

(3)

where 𝑛 ⩾ 3 and 𝑚 ⩾ 1 are integers, 𝑎𝑖 > 0 for 1 ⩽ 𝑖 ⩽ 𝑚,
and ∑

𝑚

𝑖=1 𝑎𝑖 = 1, 1/2 ⩽ 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑚 < 1, 𝜆 >

0, is a parameter. Some existence and nonexistence results
of positive solutions were obtained by using Krasnosel’skii’s
fixed point theorem. In [2], by applying fixed point index
theory, Pang et al. studied the expression and properties
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of Green’s function and obtained the existence of positive
solutions for 𝑛th-order 𝑚-point boundary value problems

𝑢
(𝑛)

(𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢
(𝑖)

(0) = 0, 0 ⩽ 𝑖 ⩽ 𝑛 − 2,

𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑘𝑖𝑢 (𝜉𝑖) ,

(4)

where 𝑛 ⩾ 2, 𝑘𝑖 > 0 (𝑖 = 1, 2, . . . , 𝑚 − 2), 0 < 𝜉1 < 𝜉2 <

⋅ ⋅ ⋅ < 𝜉𝑚 < 1 with 0 < ∑
𝑚−2

𝑖=1 𝑘𝑖𝜉
𝑛−1
𝑖 < 1. Guo et al. in

[3] imposed growth conditions on the nonlinearity 𝑓 which
yield the existence of multiple positive solutions by using the
Leggett-Williams fixed point theorem. Li and Wei in [4] and
Yang and Wei in [5] improved and generalized the results of
[2] by using different methods. Graef et al. [6] considered an
𝑛th-order multipoint boundary value problem

𝑢
(𝑛)

+ 𝑓 (𝑡, 𝑢, 𝑢
󸀠
, . . . , 𝑢

(𝑛−1)
) = 𝜆𝑝 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢
(𝑖)

(0) = 𝐴 𝑖, 𝑖 = 0, 1, . . . , 𝑛 − 3,

𝑢
(𝑛−2)

(0) −

𝑚

∑

𝑗=1

𝑎𝑗𝑢
(𝑛−2)

(𝑡𝑗) = 𝐴𝑛−2,

𝑢
(𝑛−2)

(1) −

𝑚

∑

𝑗=1

𝑏𝑗𝑢
(𝑛−2)

(𝑡𝑗) = 𝐴𝑛−1,

(5)

where 𝑛 ⩾ 2 and 𝑚 ⩾ 1 are integers, 𝜆 ∈ R is a parameter,
𝑓 ∈ 𝐶([0, 1] × R𝑛), 𝑝 ∈ 𝐶(0, 1) with 𝑝(𝑡) > 0 on [0, 1],
𝐴 𝑖 ∈ R for 𝑖 = 0, 1, . . . , 𝑛 − 1, and 𝑎𝑗, 𝑏𝑗 ∈ R+ := [0, ∞)

for 𝑗 = 1, 2, . . . , 𝑚. Sufficient conditions were obtained for the
existence of one solution and two solutions of the problem for
different values of 𝜆. The analysis mainly relies on the lower
and upper solution method and topological degree theory.
The results extended and improved some recent work in the
literature. In a recent paper [7], we study problems (1) and (2)
with 𝑚 = 1 by a fixed point theorem of cone expansion and
compression of functional type according to Avery et al. [8].
For other existence results of positive solutions for higher-
order multipoint problems, for a small sample of such work,
we refer the reader to Ahmad and Ntouyas [9], Anderson
et al. [10], Davis et al. [11], Du et al. [12, 13], Eloe and Hen-
derson [14], Fu and Du [15], Graef et al. [16, 17], Henderson
and Luca [18], Ji and Guo [19], Jiang [20], Liu et al. [21], Liu
andGe [22], Liu et al. [23], Palamides [24], Su andWang [25],
Zhang et al. [26], and Zhang [27] and the references therein.

We noticed that the main tools employed in above-
mentioned works are various fixed point theorems, such as
Krasnosel’skii, Leggett-Williams, and Avery and Peterson.
Recently, the monotone iterative method has been success-
fully employed to prove the existence of positive solutions of
nonlinear boundary value problems for ordinary differential
equations. For example, Ma et al. [28] proved the existence of
positive solutions of some multipoint 𝑝-Laplacian boundary
value problems via monotone iterative method. Ma and
Yang [29] obtained the existence of positive solutions and

established two corresponding iterative schemes for a third-
order three-point boundary value problem with increasing
homeomorphism and positive homomorphism. Sun and
Ge [30] applied monotone iterative procedure to prove the
existence of positive pseudosymmetric solutions for a three-
point second-order 𝑝-Laplacian boundary value problem.
Sun et al. [31] proved the existence of positive solutions
for some fourth-order two-point boundary value problems
via monotone iterative technique. Yao [32, 33] obtained a
successively iterative scheme of positive solution of Lidstone
boundary value problem and a beam equation with nonho-
mogeneous boundary condition, respectively. In this paper,
we will study the existence and iteration of positive solutions
for problems (1) and (2) by using the monotone iterative
method. The monotone iterative scheme can be developed
into a computational algorithm for numerical solutions.

2. Basic Lemmas

In this section, we present two lemmas, related to the
following higher-order differential equation with multipoint
boundary conditions:

𝑢
(𝑛)

(𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1) , (6)

𝑢
(𝑖)

(0) = 0, 0 ⩽ 𝑖 ⩽ 𝑛 − 2,

𝑢
(𝑝)

(1) =

𝑚

∑

𝑖=1

𝑘𝑖𝑢
(𝑝)

(𝜂𝑖) .

(7)

Lemma 1. Let ℎ ∈ 𝐶[0, 1] be a given function; then the
solution of problems (6) and (7) is given by

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (8)

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + 𝐺2 (𝑡, 𝑠) , (9)

𝐺1 (𝑡, 𝑠)

=

1

(𝑛 − 1)!

{

𝑡
𝑛−1

(1 − 𝑠)
𝑛−𝑝−1

− (𝑡 − 𝑠)
𝑛−1

, 𝑠 ⩽ 𝑡,

𝑡
𝑛−1

(1 − 𝑠)
𝑛−𝑝−1

, 𝑡 ⩽ 𝑠,

(10)

𝐺2 (𝑡, 𝑠) =

𝑡
𝑛−1

(𝑛 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖𝐻 (𝜂𝑖, 𝑠) , (11)

𝐻 (𝜂𝑖, 𝑠) =

{

{

{

𝜂
𝑛−𝑝−1

𝑖 (1 − 𝑠)
𝑛−𝑝−1

− (𝜂𝑖 − 𝑠)
𝑛−𝑝−1

, 0 ⩽ 𝑠 ⩽ 𝜂𝑖,

𝜂
𝑛−𝑝−1

𝑖 (1 − 𝑠)
𝑛−𝑝−1

, 𝜂𝑖 ⩽ 𝑠 ⩽ 1.

(12)

Proof. The solution of (6) is

𝑢 (𝑡) = −

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

ℎ (𝑠) 𝑑𝑠 + 𝐴𝑡
𝑛−1

+

𝑛−2

∑

𝑖=0

𝐴 𝑖𝑡
𝑖
,

(13)
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for some 𝐴, 𝐴 𝑖 ∈ R (𝑖 = 0, 1, 2, . . . , 𝑛 − 2). Noting that the
conditions are 𝑢(0) = 𝑢

󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, we obtain

𝐴0 = 𝐴1 = ⋅ ⋅ ⋅ = 𝐴𝑛−2 = 0. Consequently, the general
solution of problems (6) and (7) is

𝑢 (𝑡) = −

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

ℎ (𝑠) 𝑑𝑠 + 𝐴𝑡
𝑛−1

. (14)

Therefore, by (14), we have

𝑢
(𝑝)

(𝑡) = −

1

(𝑛 − 𝑝 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

(𝑛 − 1)!

(𝑛 − 𝑝 − 1)!

𝐴𝑡
𝑛−𝑝−1

,

(15)

which implies that

𝑢
(𝑝)

(1) = −

1

(𝑛 − 𝑝 − 1)!

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

(𝑛 − 1)!

(𝑛 − 𝑝 − 1)!

𝐴,

(16)

𝑢
(𝑝)

(𝜂𝑖) = −

1

(𝑛 − 𝑝 − 1)!

∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

(𝑛 − 1)!

(𝑛 − 𝑝 − 1)!

𝐴𝜂
𝑛−𝑝−1

𝑖
.

(17)

By the condition 𝑢
(𝑝)

(1) = ∑
𝑚

𝑖=1 𝑘𝑖𝑢
(𝑝)

(𝜂𝑖), (16) and (17), we
deduce

𝐴 =

1

(𝑛 − 1)! (1 − Θ)

[ ∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

−

𝑚

∑

𝑖=1

𝑘𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠]

=

1

(𝑛 − 1)!

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

∑
𝑚

𝑖=1 𝑘𝑖𝜂
𝑛−𝑝−1

𝑖

(𝑛 − 1)! (1 − Θ)

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

−

1

(𝑛 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

=

1

(𝑛 − 1)!

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

1

(𝑛 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖 ∫

1

0

𝐻 (𝜂𝑖, 𝑠) ℎ (𝑠) 𝑑𝑠.

(18)

Substituting (18) into (14), we obtain the unique solution 𝑢(𝑡)

of problems (6) and (7) as

𝑢 (𝑡) = −

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

ℎ (𝑠) 𝑑𝑠

+

𝑡
𝑛−1

(𝑛 − 1)!

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

ℎ (𝑠) 𝑑𝑠

+

𝑡
𝑛−1

(𝑛 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖 ∫

1

0

𝐻 (𝜂𝑖, 𝑠) ℎ (𝑠) 𝑑𝑠

= ∫

1

0

𝐺1 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠 + ∫

1

0

𝐺2 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠.

(19)

The proof is completed.

Lemma 2. Green’s function 𝐺(𝑡, 𝑠) defined by (9) has the fol-
lowing properties:

(i) 𝜕
𝑗
𝐺(𝑡, 𝑠)/𝜕𝑡

𝑗 is continuous on [0, 1] × [0, 1], 𝑗 = 0, 1,
2, . . . , 𝑛 − 2;

(ii) 0 ⩽ 𝜕
𝑗
𝐺(𝑡, 𝑠)/𝜕𝑡

𝑗
⩽ (𝑡
𝑛−𝑗−1

/(𝑛 − 𝑗 − 1)!(1 − Θ))(1 −

𝑠)
𝑛−𝑝−1, for all 𝑡, 𝑠 ∈ [0, 1], 𝑗 = 0, 1, 2, . . . , 𝑝;

(iii) 𝑡
𝑛−1

𝐺(1, 𝑠) ⩽ 𝐺(𝑡, 𝑠) ⩽ 𝐺(1, 𝑠), for all 𝑡, 𝑠 ∈ [0, 1].

Proof. The statement (i) is obvious. For the proof of the
statement (ii), we note that, for all 𝑡, 𝑠 ∈ [0, 1], if 𝑡 ⩽ 𝑠,
from definition, it is clear that 𝜕

𝑗
𝐺1(𝑡, 𝑠)/𝜕𝑡

𝑗
⩾ 0 for 𝑗 =

0, 1, 2, . . . , 𝑛 − 1. If 𝑠 ⩽ 𝑡, from (10), we obtain that

𝜕
𝑗
𝐺1 (𝑡, 𝑠)

𝜕𝑡
𝑗

=

1

(𝑛 − 𝑗 − 1)!

[𝑡
𝑛−𝑗−1

(1 − 𝑠)
𝑛−𝑝−1

− (𝑡 − 𝑠)
𝑛−𝑗−1

]

⩾

1

(𝑛 − 𝑗 − 1)!

[𝑡
𝑛−𝑗−1

(1 − 𝑠)
𝑛−𝑗−1

− (𝑡 − 𝑠)
𝑛−𝑗−1

]

⩾

1

(𝑛 − 𝑗 − 1)!

[(𝑡 − 𝑡𝑠)
𝑛−𝑗−1

− (𝑡 − 𝑠)
𝑛−𝑗−1

]

⩾ 0, 𝑗 = 0, 1, 2, . . . , 𝑝.

(20)

For any 𝑖 = 1, 2, . . . , 𝑚, if 𝑠 ⩾ 𝜂𝑖, from (12), it is obvious that
𝐻(𝜂𝑖, 𝑠) ⩾ 0. If 𝑠 ⩽ 𝜂𝑖, from (12), we have

𝜂
𝑛−𝑝−1

𝑖 (1 − 𝑠)
𝑛−𝑝−1

− (𝜂𝑖 − 𝑠)
𝑛−𝑝−1

= (𝜂𝑖 − 𝜂𝑖𝑠)
𝑛−𝑝−1

− (𝜂𝑖 − 𝑠)
𝑛−𝑝−1

⩾ 0,

(21)

which implies that

𝐻 (𝜂𝑖, 𝑠) ⩾ 0, 𝑠 ∈ [0, 1] , 𝑖 = 1, 2, . . . , 𝑚. (22)

By (20) and (22), we get

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

=

𝜕
𝑗
𝐺1 (𝑡, 𝑠)

𝜕𝑡
𝑗

+

𝜕
𝑗
𝐺2 (𝑡, 𝑠)

𝜕𝑡
𝑗

=

𝜕
𝑗
𝐺1 (𝑡, 𝑠)

𝜕𝑡
𝑗

+

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

𝑚−2

∑

𝑖=1

𝑘𝑖𝐻 (𝜂𝑖, 𝑠)

⩾ 0, 𝑡, 𝑠 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝.

(23)
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On the other hand, by (10) and (12), we find that

𝜕
𝑗
𝐺1 (𝑡, 𝑠)

𝜕𝑡
𝑗

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)!

(1 − 𝑠)
𝑛−𝑝−1

,

𝑡, 𝑠 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑛 − 2,

𝐻 (𝜂𝑖, 𝑠) ⩽ 𝜂
𝑛−𝑝−1

𝑖 (1 − 𝑠)
𝑛−𝑝−1

, 𝑠 ∈ [0, 1] , 𝑖 = 1, 2, . . . , 𝑚.

(24)

Therefore,

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

=

𝜕
𝑗
𝐺1 (𝑡, 𝑠)

𝜕𝑡
𝑗

+

𝜕
𝑗
𝐺2 (𝑡, 𝑠)

𝜕𝑡
𝑗

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)!

(1 − 𝑠)
𝑛−𝑝−1

+

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖𝐻 (𝜂𝑖, 𝑠)

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)!

(1 − 𝑠)
𝑛−𝑝−1

+

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

𝑚

∑

𝑖=1

𝑘𝑖𝜂
𝑛−𝑝−1

𝑖 (1 − 𝑠)
𝑛−𝑝−1

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)!

(1 − 𝑠)
𝑛−𝑝−1

+

Θ𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

(1 − 𝑠)
𝑛−𝑝−1

=

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

(1 − 𝑠)
𝑛−𝑝−1

,

𝑡, 𝑠 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑛 − 2.

(25)

In view of (23) and (25), we have the assertion.
Now, we prove the statement (iii). In fact, from the

statement (ii), we know that 𝜕𝐺(𝑡, 𝑠)/𝜕𝑡 ⩾ 0 for any 𝑡, 𝑠 ∈

[0, 1]. Thus, 𝐺(𝑡, 𝑠) is nondecreasing with respect to 𝑡 for any
𝑠 ∈ [0, 1]. Consequently,

𝐺 (𝑡, 𝑠) ⩽ 𝐺 (1, 𝑠) , for any (𝑡, 𝑠) ∈ [0, 1] × [0, 1] . (26)

If 𝑠 ⩽ 𝑡, then, from (10), we have

𝐺1 (𝑡, 𝑠) =

1

(𝑛 − 1)!

[𝑡
𝑛−1

(1 − 𝑠)
𝑛−𝑝−1

− (𝑡 − 𝑠)
𝑛−1

]

=

𝑡
𝑛−1

(𝑛 − 1)!

[(1 − 𝑠)
𝑛−𝑝−1

− (1 − 𝑠)
𝑛−1

]

+

1

(𝑛 − 1)!

[(𝑡 − 𝑡𝑠)
𝑛−1

− (𝑡 − 𝑠)
𝑛−1

]

⩾

𝑡
𝑛−1

(𝑛 − 1)!

[(1 − 𝑠)
𝑛−𝑝−1

− (1 − 𝑠)
𝑛−1

]

= 𝑡
𝑛−1

𝐺1 (1, 𝑠) .

(27)

Also, if 𝑠 ⩾ 𝑡, from (10), we have

𝐺1 (𝑡, 𝑠) =

1

(𝑛 − 1)!

𝑡
𝑛−1

(1 − 𝑠)
𝑛−𝑝−1

=

𝑡
𝑛−1

(𝑛 − 1)!

[(1 − 𝑠)
𝑛−𝑝−1

− (1 − 𝑠)
𝑛−1

]

+

1

(𝑛 − 1)!

(𝑡 − 𝑡𝑠)
𝑛−1

⩾

𝑡
𝑛−1

(𝑛 − 1)!

[(1 − 𝑠)
𝑛−𝑝−1

− (1 − 𝑠)
𝑛−1

]

= 𝑡
𝑛−1

𝐺1 (1, 𝑠) .

(28)

Thus, from (27) and (28), we obtain

𝐺1 (𝑡, 𝑠) ⩾ 𝑡
𝑛−1

𝐺1 (1, 𝑠) , (29)

which together with (9) and (11) implies

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠)

+

𝑡
𝑛−1

(𝑛 − 1)! (1 − ∑
𝑚−2

𝑖=1 𝑘𝑖𝜂
𝑛−𝑝−1

𝑖
)

𝑚

∑

𝑖=1

𝑘𝑖𝐻 (𝜂𝑖, 𝑠)

⩾ 𝑡
𝑛−1

𝐺1 (1, 𝑠)

+

𝑡
𝑛−1

(𝑛 − 1)! (1 − ∑
𝑚−2

𝑖=1 𝑘𝑖𝜂
𝑛−𝑝−1

𝑖
)

𝑚

∑

𝑖=1

𝑘𝑖𝐻 (𝜂𝑖, 𝑠)

= 𝑡
𝑛−1

𝐺 (1, 𝑠) .

(30)

Inequations (26) and (30) show that the statement (iii) is true.
Then, the proof is completed.

3. Main Results

In this section, we consider the existence of positive solutions
for problems (1) and (2) by using the monotone iterative
method. In the sequel, for any 𝑢 ∈ 𝐶[0, 1], we define ‖𝑢‖∞ =

max0⩽𝑡⩽1|𝑢(𝑡)|. Let 𝐸 = 𝐶
𝑝

[0, 1] be a Banach space with the
norm

‖𝑢‖ = max {‖𝑢‖∞,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

, . . . ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
(𝑝)󵄩󵄩

󵄩
󵄩
󵄩∞

} . (31)

We define a cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐶
𝑝

[0, 1] : 𝑢 (𝑡) ⩾ 𝑡
𝑛−1

‖𝑢‖∞, 𝑢
(𝑗)

(𝑡) ⩾ 0, 𝑡 ∈ [0, 1] ,

𝑗 = 0, 1, 2, . . . , 𝑝} ,

(32)

and an integral operator 𝑇 : 𝑃 → 𝐸 by

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠,

𝑢 ∈ 𝐶
𝑝

[0, 1] .

(33)
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Obviously, the fixed points of 𝑇 are nonnegative solutions of
problems (1) and (2). Applying Ascoli-Arzelà theorem and
a standard argument, we can prove that 𝑇 is completely
continuous.

For any 𝑢 ∈ 𝑃, it flows from Lemma 2 (iii) that

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠

⩽ ∫

1

0

𝐺 (1, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] ,

(34)

which implies that

‖𝑇𝑢‖∞ ⩽ ∫

1

0

𝐺 (1, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠.

(35)

On the other hand, by Lemma 2 (iii), we have

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠

⩾ 𝑡
𝑛−1

∫

1

0

𝐺 (1, 𝑠) 𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] ,

(36)

which together with (35) implies

(𝑇𝑢) (𝑡) ⩾ 𝑡
𝑛−1

‖𝑇𝑢‖∞, 𝑡 ∈ [0, 1] . (37)

In addition, it follows from Lemma 2 (ii) that

(𝑇𝑢)
(𝑗)

(𝑡) = ∫

1

0

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠 ⩾ 0,

𝑗 = 0, 1, 2, . . . , 𝑝.

(38)

Therefore, (37) and (38) indicate that 𝑇𝑢 ∈ 𝑃.
For convenience, we introduce the following notation:

Λ = (

1

1 − Θ

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞(𝑠)𝑑𝑠)

−1

. (39)

The conditions (H1) and (H2) indicate that Λ is well defined
and Λ > 0.

Theorem 3. Suppose (H1), (H2), and (H3) hold. Assume that
𝑓(𝑡, 0, 0, . . . , 0) ̸≡ 0 and there exists constant 𝑎 > 0, such that

(H4) 𝑓(𝑡, 𝑥0, 𝑥1, . . . , 𝑥𝑝) ⩽ 𝑓(𝑡, 𝑦0, 𝑦1, . . . , 𝑦𝑝), for 0 ⩽ 𝑥𝑗 ⩽

𝑦𝑗 ⩽ 𝑎, 𝑡 ∈ [0, 1], 𝑗 = 0, 1, 2, . . . , 𝑝;
(H5) max0⩽𝑡⩽1𝑓(𝑡, 𝑎, 𝑎, . . . , 𝑎) ⩽ Λ𝑎.

Then, problems (1) and (2) possess at least two positive solutions
𝑤
∗ and V∗, such that

(i) 0 < ‖𝑤
∗

‖ ⩽ 𝑎 and lim𝑘→∞𝑇
𝑘
𝑤0 = 𝑤

∗, where 𝑤0(𝑡) =

𝑎𝑡
𝑛−1

/(𝑛 − 1)!, 𝑡 ∈ [0, 1];
(ii) 0 < ‖V∗‖ ⩽ 𝑎 and lim𝑘→∞𝑇

𝑘V0 = V∗, where V0(𝑡) =

0, 𝑡 ∈ [0, 1].

Proof. We define 𝑃𝑎 = {𝑢 ∈ 𝑃 : ‖𝑢‖ ⩽ 𝑎}. In what follows, we
first prove 𝑇 : 𝑃𝑎 → 𝑃𝑎. In fact, if 𝑢 ∈ 𝑃𝑎, then ‖𝑢‖ ⩽ 𝑎; thus

0 ⩽ 𝑢
(𝑗)

(𝑠) ⩽ ‖𝑢‖ ⩽ 𝑎, 𝑠 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝. (40)

By assumptions (H4) and (H5), we have

0 ⩽ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) ⩽ 𝑓 (𝑠, 𝑎, . . . , 𝑎)

⩽ max
0⩽𝑠⩽1

𝑓 (𝑠, 𝑎, . . . , 𝑎) ⩽ Λ𝑎, 𝑠 ∈ [0, 1] .

(41)

Thus, by the definition of 𝑇 and Lemma 2 (ii), for 𝑗 = 0, 1,

2, . . . , 𝑝, we get

0 ⩽ (𝑇𝑢)
(𝑗)

(𝑡)

= ∫

1

0

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , . . . , 𝑢
(𝑝)

(𝑠)) 𝑑𝑠

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞 (𝑠) 𝑓 (𝑠, 𝑎, . . . , 𝑎) 𝑑𝑠

⩽

1

1 − Θ

Λ𝑎 ∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞 (𝑠) 𝑑𝑠 = 𝑎, 𝑡 ∈ [0, 1] .

(42)

Then, (42) shows that ‖𝑇𝑢‖ ⩽ 𝑎; thus we get 𝑇 : 𝑃𝑎 → 𝑃𝑎.
Let V0 = 0; then it is evident that V0 ∈ 𝑃𝑎. Let

V𝑘+1 = 𝑇V𝑘 (𝑘 = 0, 1, 2, . . .). The fact that 𝑇 : 𝑃𝑎 → 𝑃𝑎

implies that V𝑘 ∈ 𝑇(𝑃𝑎) ⊆ 𝑃𝑎 (𝑘 = 1, 2, . . .). Since 𝑇 is
completely continuous, we assert that the sequence {V𝑘}

∞
𝑘=1

has a convergent subsequence {V𝑘𝑖}
∞
𝑖=1 such that lim𝑖→∞V𝑘𝑖 =

V∗ ∈ 𝑃𝑎.
Since V1 = 𝑇V0 = 𝑇0 ∈ 𝑃𝑎, we have

𝑎 ⩾ V(𝑗)1 (𝑡) = (𝑇V0)
(𝑗)

(𝑡) = (𝑇0)
(𝑗)

(𝑡)

⩾ 0 = V(𝑗)0 (𝑡) , 𝑡 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝.

(43)

So, by (H4), one has

V(𝑗)2 (𝑡) = (𝑇V1)
(𝑗)

(𝑡) ⩾ (𝑇V0)
(𝑗)

(𝑡) = V(𝑗)1 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑗 = 0, 1, 2, . . . , 𝑝.

(44)

Thus, by the induction, we have

V(𝑗)
𝑘+1

(𝑡) ⩾ V(𝑗)
𝑘

(𝑡) , 𝑡 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝,

𝑘 = 0, 1, 2, . . . .

(45)
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Hence, lim𝑘→∞V𝑘 = V∗. Applying the continuity of 𝑇 and
taking the limit 𝑘 → ∞ in V𝑘+1 = 𝑇V𝑘, we get 𝑇V∗ = V∗.

Let 𝑤0(𝑡) = 𝑎𝑡
𝑛−1

/(𝑛 − 1)!, 𝑡 ∈ [0, 1], and 𝑤𝑘+1 = 𝑇𝑤𝑘

(𝑘 = 0, 1, 2, . . .). Then, 𝑤0 ∈ 𝑃𝑎. Since 𝑇 : 𝑃𝑎 → 𝑃𝑎,
we have 𝑤𝑘 ∈ 𝑇(𝑃𝑎) ⊆ 𝑃𝑎 (𝑘 = 1, 2, . . .). Since 𝑇 is
completely continuous, we assert that the sequence {𝑤𝑘}

∞
𝑘=1

has a convergent subsequence {𝑤𝑘𝑖
}
∞
𝑖=1 such that lim𝑖→∞𝑤𝑘𝑖

=

𝑤
∗

∈ 𝑃𝑎.
Since𝑤1 = 𝑇𝑤0 ∈ 𝑃𝑎, by Lemma 2 (ii) and (H4) and (H5),

for 𝑗 = 0, 1, 2, . . . , 𝑝, we have

(𝑇𝑤0)
(𝑗)

(𝑡)

= ∫

1

0

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

𝑞 (𝑠) 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤
󸀠

0 (𝑠) , . . . , 𝑤
(𝑝)

0 (𝑠)) 𝑑𝑠

⩽

𝑡
𝑛−𝑗−1

(𝑛 − 𝑗 − 1)! (1 − Θ)

× ∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞 (𝑠) 𝑓 (𝑠, 𝑎, . . . , 𝑎) 𝑑𝑠

⩽

𝑤
(𝑗)

0 (𝑡)

1 − Θ

Λ ∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞 (𝑠) 𝑑𝑠 = 𝑤
(𝑗)

0 (𝑡) ,

𝑡 ∈ [0, 1] .

(46)

Thus, we obtain that

𝑤
(𝑗)

1 (𝑡) ⩽ 𝑤
(𝑗)

0 (𝑡) , 𝑡 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝. (47)

So, by Lemma 2 (ii) and (H4), we have

𝑤
(𝑗)

2 (𝑡)

= (𝑇𝑤1)
(𝑗)

(𝑡)

= ∫

1

0

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

𝑞 (𝑠) 𝑓 (𝑠, 𝑤1 (𝑠) , 𝑤
󸀠

1 (𝑠) , . . . , 𝑤
(𝑝)

1 (𝑠)) 𝑑𝑠

⩽ ∫

1

0

𝜕
𝑗
𝐺 (𝑡, 𝑠)

𝜕𝑡
𝑗

𝑞 (𝑠) 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤
󸀠

0 (𝑠) , . . . , 𝑤
(𝑝)

0 (𝑠)) 𝑑𝑠

= (𝑇𝑤0)
(𝑗)

(𝑡) = 𝑤
(𝑗)

1 (𝑡) , 𝑡 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝.

(48)

By the induction, we have

𝑤
(𝑗)

𝑘+1
(𝑡) ⩽ 𝑤

(𝑗)

𝑘
(𝑡) , 𝑡 ∈ [0, 1] , 𝑗 = 0, 1, 2, . . . , 𝑝,

𝑘 = 0, 1, 2, . . . .

(49)

Hence, lim𝑘→∞𝑤𝑘 = 𝑤
∗. Applying the continuity of 𝑇 and

𝑤𝑘+1 = 𝑇𝑤𝑘, we get 𝑇𝑤
∗

= 𝑤
∗.

Furthermore, assumption 𝑓(𝑡, 0, 0, . . . , 0) ̸≡ 0 implies
that the zero function is not a solution of problems (1) and
(2); thus ‖𝑤

∗
‖∞ > 0, ‖V∗‖∞ > 0. The definition of the cone

𝑃 follows that we have 𝑤
∗

(𝑡) ⩾ 𝑡
𝑛−1

‖𝑤
∗

‖∞ > 0, V∗(𝑡) ⩾

𝑡
𝑛−1

‖V∗‖∞ > 0, 𝑡 ∈ (0, 1]. Thus, 𝑤
∗ and V∗ are positive

solutions of problems (1) and (2).The proof is completed.

Remark 4. The iterative sequences inTheorem 3 start offwith
the zero function and a known simple function, respectively.

Remark 5. We can easily get that 𝑤
∗ and V∗ are the maximal

andminimal solution of problems (1) and (2) in𝑃𝑎. Of course,
𝑤
∗

= V∗may happen and then problems (1) and (2) have only
one solution in 𝑃𝑎.

4. Example

Example 1. Consider the fourth-order four-point boundary
value problem

𝑢
󸀠󸀠󸀠󸀠

(𝑡) +

2

9

[𝑡 + 𝑢
2

(𝑡) + 𝑡𝑢
󸀠

(𝑡) + 𝑢
󸀠󸀠

(𝑡)] = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢
󸀠

(0) = 𝑢
󸀠󸀠

(0) = 0,

𝑢
󸀠󸀠

(1) = 𝑢
󸀠󸀠

(

1

4

) +

1

2

𝑢
󸀠󸀠

(

1

2

) .

(50)

In this problem, 𝑛 = 4, 𝑚 = 2, 𝑝 = 2, 𝑘1 = 1, 𝑘2 = 1/2,
𝜂1 = 1/4, 𝜂2 = 1/2, 𝑞(𝑡) ≡ 2/9, and 𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2) = 𝑡 +

𝑥
2
0 + 𝑡𝑥1 + 𝑥2. It is obvious that (H1)–(H3) hold. By direct

calculation, we get

Λ = (

1

1 − Θ

∫

1

0

(1 − 𝑠)
𝑛−𝑝−1

𝑞(𝑠)𝑑𝑠)

−1

=

9

2

. (51)

Choose 𝑎 = 2; then it is easy to check that (H4) and (H5)
hold. Thus, all the conditions of Theorem 3 are satisfied. By
Theorem 3, problem (50) has two positive solutions V∗ and
𝑤
∗, such that 0 < ‖V∗‖ ⩽ 2, 0 < ‖𝑤

∗
‖ ⩽ 2, lim𝑘→∞V𝑘 = V∗,

and lim𝑘→∞𝑤𝑘 = 𝑤
∗.

The two iterative sequences are as follows:

V0 (𝑡) = 0, 𝑡 ∈ [0, 1] ,

V𝑘+1 (𝑡)

= −

1

27

∫

𝑡

0

(𝑡 − 𝑠)
3

[𝑠 + V2𝑘 (𝑠) + 𝑠V󸀠𝑘 (𝑠) + V󸀠󸀠𝑘 (𝑠)] 𝑑𝑠

+

2𝑡
3

27

[∫

1

0

(1 − 𝑠) [𝑠 + V2𝑘 (𝑠) + 𝑠V󸀠𝑘 (𝑠) + V󸀠󸀠𝑘 (𝑠)] 𝑑𝑠

− ∫

1/4

0

(

1

4

− 𝑠) [𝑠 + V2𝑘 (𝑠) + 𝑠V󸀠𝑘 (𝑠) + V󸀠󸀠𝑘 (𝑠)] 𝑑𝑠

−

1

2

∫

1/2

0

(

1

2

− 𝑠)

× [𝑠 + V2𝑘 (𝑠) + 𝑠V󸀠𝑘 (𝑠) + V󸀠󸀠𝑘 (𝑠)] 𝑑𝑠] ,

𝑡 ∈ [0, 1] , 𝑘 = 0, 1, 2, . . . ,

𝑤0 (𝑡) =

1

3

𝑡
3
, 𝑡 ∈ [0, 1] ,
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𝑤𝑘+1 (𝑡)

= −

1

27

∫

𝑡

0

(𝑡 − 𝑠)
3

[𝑠 + 𝑤
2

𝑘 (𝑠) + 𝑠𝑤
󸀠

𝑘 (𝑠) + 𝑤
󸀠󸀠

𝑘 (𝑠)] 𝑑𝑠

+

2𝑡
3

27

[∫

1

0

(1 − 𝑠) [𝑠 + V2𝑘 (𝑠) + 𝑠V󸀠𝑘 (𝑠) + V󸀠󸀠𝑘 (𝑠)] 𝑑𝑠

− ∫

1/4

0

(

1

4

− 𝑠)

× [𝑠 + 𝑤
2

𝑘 (𝑠) + 𝑠𝑤
󸀠

𝑘 (𝑠) + 𝑤
󸀠󸀠

𝑘 (𝑠)] 𝑑𝑠

−

1

2

∫

1/2

0

(

1

2

− 𝑠)

× [𝑠 + 𝑤
2

𝑘 (𝑠) + 𝑠𝑤
󸀠

𝑘 (𝑠) + 𝑤
󸀠󸀠

𝑘 (𝑠)] 𝑑𝑠] ,

𝑡 ∈ [0, 1] , 𝑘 = 0, 1, 2, . . . .

(52)

The second and third terms of the two schemes are as
follows:

V1 (𝑡) =

59

5184

𝑡
3

−

1

540

𝑡
5
,

V2 (𝑡) =

59

5184

𝑡
3

−

1

540

𝑡
5

+

45253

11609505792

𝑡
9

−

3481

2902376448

𝑡
10

−

767

604661760

𝑡
11

+

59

151165440

𝑡
12

+

13

125971200

𝑡
13

−

1

31492800

𝑡
14

,

𝑤1 (𝑡) =

84571643

2229534720

𝑡
3

−

1

180

𝑡
5

−

1

3780

𝑡
7

−

1

204120

𝑡
10

,

𝑤2 (𝑡) =

59

5184

𝑡
3

−

1

540

𝑡
5

+

92980716396352837

2147396429240126668800

𝑡
9

−

7152362799719449

536849107310031667200

𝑡
10

−

1099431359

86684309913600

𝑡
11

+

84571643

21671077478400

𝑡
12

+

591299137

1820370508185600

𝑡
13

−

45484549

455092627046400

𝑡
14

+

13

146966400

𝑡
15

−

3774873023

98300007442022400

𝑡
16

+

136328699

24575001860505600

𝑡
17

+

11

11110659840

𝑡
18

−

1

1984046400

𝑡
19

+

13

166659897600

𝑡
20

−

1

41664974400

𝑡
21

+

13

17999268940800

𝑡
23

−

1

4499817235200

𝑡
24

.

(53)
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